Main Page   Modules   Namespace List   Class Hierarchy   Compound List   File List   Namespace Members   Compound Members   File Members   Related Pages  

LinBox Namespace Reference


Compounds

class  ActivityState
 used by commentator This stores a snapshot of the state of the commentator's activity stack, so it may be restored after an exception is thrown More...

class  BaseTimer
class  BasicReader
class  BitVector
struct  BlackboxSpecifier
struct  BlasEliminationTraits
struct  BlockLanczosTraits
struct  BlockWiedemannTraits
class  BooleanSwitch
class  BooleanSwitchFactory
class  CekstvSwitch
class  CekstvSwitchFactory
class  const_reference
class  const_iterator
class  ConstantVectorStream
class  DenseReader
class  RawVector
struct  Rebind< std::map< size_t, T >, U >
struct  Rebind< std::pair< std::vector< size_t >, std::vector< T > >, U >
struct  Rebind< std::vector< std::pair< size_t, T > >, U >
struct  Rebind< std::vector< T >, U >
struct  rebind
struct  SparseSequenceVectorPairLessThan
struct  Vector
struct  SparseParallelVectorTag
struct  SparseAssociativeVectorTag
struct  SparseSequenceVectorTag
struct  DenseVectorTag
struct  SparseZeroOneVectorTag
struct  DenseZeroOneVectorTag
struct  DixonTraits
class  DotProductDomain
struct  EliminationSpecifier
class  FieldAXPY
class  FieldReaderAnalyzer
class  GenericRandIter
struct  GenericVectorTag
class  GF2RandIter
class  GivPolynomialRing
class  GmpRandomPrime
 generating random prime integers, using the gmp library. More...

class  GMPRationalRandIter
struct  HybridSpecifier
class  InconsistentSystem
struct  IntegerModularDet
struct  IntegerModularMinpoly
struct  IntegerModularSOLUTION
class  iterator
struct  LanczosTraits
struct  LessThanString
class  LidiaGfqRandIter
class  LinboxBadFormat
class  LinboxError
class  LinboxMathDivZero
class  LinboxMathError
struct  LPM_Method
class  MapleDense1Reader
class  MapleSparse1Reader
class  MatrixMarketReader
class  MatrixStream
class  MatrixStreamReader
struct  MatrixTraits< const SparseMatrixBase< Element, Row, Trait > >
struct  MatrixTraits< const TransposeMatrix< Matrix, MatrixCategories::ColMatrixTag > >
struct  MatrixTraits< const TransposeMatrix< Matrix, MatrixCategories::RowColMatrixTag > >
struct  MatrixTraits< const TransposeMatrix< Matrix, MatrixCategories::RowMatrixTag > >
struct  MatrixTraits< SparseMatrixBase< Element, Row, Trait > >
struct  MatrixTraits< TransposeMatrix< Matrix, MatrixCategories::ColMatrixTag > >
struct  MatrixTraits< TransposeMatrix< Matrix, MatrixCategories::RowColMatrixTag > >
struct  MatrixTraits< TransposeMatrix< Matrix, MatrixCategories::RowMatrixTag > >
class  MersenneTwister
struct  Method
 Method specifiers for controlling algorithm choice. More...

struct  MinpolyMethod
class  ModularRandIter
class  NoFiniteExtendedInLinBox
struct  NonBlasEliminationTraits
class  NonzeroRandIter
class  NoTableFiniteInLinBox
class  NTL_ZZRandIter
struct  NumericalTraits
class  ParamFuzzyRandIter
class  PowerOfTwoModular
struct  RandIter
class  PreconditionFailed
class  PrimeStream
class  RandIter
class  RandIterAbstract
class  RandIterArchetype
class  RandIterEnvelope
class  RandomDenseStream
class  RandomDenseStream< Field, _Vector, RandIter, VectorCategories::DenseVectorTag >
class  RandomPrime
class  RandomSparseStream
class  RandomSparseStream< Field, _Vector, RandIter, VectorCategories::DenseVectorTag >
class  RandomSparseStream< Field, _Vector, RandIter, VectorCategories::SparseAssociativeVectorTag >
class  RandomSparseStream< Field, _Vector, RandIter, VectorCategories::SparseParallelVectorTag >
class  RandomSparseStream< Field, _Vector, RandIter, VectorCategories::SparseSequenceVectorTag >
class  Reader
class  ReaderBlackBoxFactory
class  ReaderIterator
class  ReaderNotAField
class  RealTimer
class  reference
class  ReverseVector
class  RingAbstract
class  RingArchetype
class  RingEnvelope
class  RingInterface
class  SMSReader
class  SolveFailed
struct  SolverTraits
struct  SparseEliminationTraits
class  _RawIndexedIterator
class  _RawIterator
struct  rebind
class  _RawIndexedIterator
class  _RawIterator
struct  rebind
class  SparseMatrixBase< _Element, _Row, VectorCategories::SparseAssociativeVectorTag >
class  SparseMatrixBase< _Element, _Row, VectorCategories::SparseParallelVectorTag >
class  _RawIndexedIterator
class  _RawIterator
struct  BBBase
class  BBThread
class  FieldIO
 Dummy field for conceptually unclear io. More...

class  InvalidMatrixInput
struct  ColMatrixTag
struct  BlackboxTag
struct  MatrixCategories
 For specializing matrix arithmetic. More...

struct  Blackbox
class  BlackboxArchetype
 showing the member functions provided by all blackbox matrix classes. More...

class  BlackboxFactory
 A tool for computations with integer and rational matrices. @doc The blackbox factory provides a facility for performing integer or rational computations by reducing modulo one or more primes and recovering the solution with Chinese Remaindering, lifting, or rational reconstruction. It is an interface that provides one method which, given a field, produces a black box representing a particular matrix over that field. The factory object may be passed to various procedures, such as rank, det, and solve, which will perform the required modular reductions to find integer or rational solutions. More...

class  BlackboxInterface
class  BlackboxSymmetrizeIterator
class  BlasApply
class  BlasBlackbox
 template <class _Field> More...

struct  Container
struct  BlasContainer
class  BlasMatrix
 @memo Limited docs so far. More...

class  BlasMatrixApplyDomain
class  BlasPermutation
class  BlasTag
class  Butterfly
 Butterfly Switching Network based BlackBox Matrix. A good preconditioner. @doc Implements butterfly switching network on a LinBox vector as a black box matrix through the use of a switch object. More...

struct  ClassifyRing
struct  ClassifyRing< DoubelFMod >
struct  ClassifyRing< GF2 >
struct  ClassifyRing< GivaroExtension< BaseField > >
struct  ClassifyRing< GivaroGfq >
struct  ClassifyRing< GivaroMontg >
struct  ClassifyRing< GivaroRational >
struct  ClassifyRing< GivaroZpz< Tag > >
struct  ClassifyRing< GMP_Integers >
struct  ClassifyRing< GMPRationalField >
struct  ClassifyRing< LidiaGfq >
struct  ClassifyRing< Local2_32 >
struct  ClassifyRing< Modular< double > >
struct  ClassifyRing< Modular< Element > >
struct  ClassifyRing< Modular< int > >
struct  ClassifyRing< Modular< int32 > >
struct  ClassifyRing< Modular< int8 > >
struct  ClassifyRing< Modular< short > >
struct  ClassifyRing< NTL_PID_zz_p >
struct  ClassifyRing< NTL_ZZ >
struct  ClassifyRing< NTL_zz_p >
struct  ClassifyRing< PID_integer >
struct  ClassifyRIng< PIR_ntl_ZZ_p >
struct  ClassifyRIng< PIRModular< int > >
struct  ClassifyRIng< PIRModular< int32 > >
struct  ClassifyRing< UnparametricField< K > >
struct  ClassifyRing< UnparametricField< NTL::RR > >
struct  ClassifyRing< UnparametricField< NTL::ZZ_p > >
struct  ClassifyRing< UnparametricRandIter< NTL::GF2E > >
struct  ClassifyRing< UnparametricRandIter< NTL::ZZ_pE > >
struct  ClassifyRing< UnparametricRandIter< NTL::zz_pE > >
class  ConstRawIndexedIterator
class  ColIterator
struct  Companion
 Companion matrix of a monic polynomial. More...

class  Compose
 General case. More...

class  Compose< _Blackbox, _Blackbox >
 specialization for _Blackbox1 = _Blackbox2 More...

class  ComposeTraits
class  ComposeTraits< DenseMatrix< Field > >
class  ConstColIterator
class  ConstRowIterator
class  DenseMatrixBase
class  ConstRawIterator
class  DenseMatrix
 Blackbox interface to dense matrix representation. More...

class  DenseMatrixFactory
class  DenseRowsMatrix
class  DenseSubmatrix
class  Diagonal
 General diagonal, not be implemented. More...

class  Diagonal< _Field, VectorCategories::DenseVectorTag >
 Specialization of Diagonal for application to dense vectors. More...

class  Diagonal< Field, VectorCategories::SparseAssociativeVectorTag >
 Specialization of Diagonal for application to sparse associative vectors. More...

class  Diagonal< Field, VectorCategories::SparseSequenceVectorTag >
 Specialization of Diagonal for application to sparse sequence vectors. More...

class  Diagonal< GF2, VectorTraits< Vector< GF2 >::Dense >::VectorCategory >
class  Dif
 Blackbox of a difference: C := A - B, i.e. Cx = Ax - Bx. More...

class  DirectSum
 If C = DirectSum(A, B) and y = xA and z = wB, then (y,z) = (x,w)C. More...

class  DirectSum< Blackbox, Blackbox >
class  DotProductDomain< DoubleFmod >
class  DotProductDomain< GF2 >
class  DotProductDomain< GivaroZpz< Std16 > >
class  DotProductDomain< GivaroZpz< Std32 > >
class  DotProductDomain< Modular< double > >
class  DotProductDomain< Modular< int > >
class  DotProductDomain< Modular< int16 > >
class  DotProductDomain< Modular< int32 > >
class  DotProductDomain< Modular< int8 > >
class  DotProductDomain< Modular< uint16 > >
class  DotProductDomain< Modular< uint32 > >
class  DotProductDomain< Modular< uint8 > >
class  DotProductDomain< PIR_ntl_ZZ_p >
class  DotProductDomain< PIRModular< int > >
class  DotProductDomain< PIRModular< int32 > >
class  DoubleFmod
class  ElementAbstract
 Abstract element base class, a technicality. More...

class  ElementArchetype
 This is the Field and Ring element interface specification and archetypical instance class. @doc Element classes must contain public default constructor, copy constructor, assignment operator, and destructor. Note that primitive types such as int and double meet this specification. More...

class  ElementEnvelope
 Adaptor from archetypical interface to abstract interface, a technicality. More...

class  FactorizedMatrixLeftLSolve
class  FactorizedMatrixLeftLSolve< Field, BlasMatrix< typename Field::Element > >
class  FactorizedMatrixLeftLSolve< Field, std::vector< typename Field::Element > >
class  FactorizedMatrixLeftSolve
class  FactorizedMatrixLeftSolve< Field, BlasMatrix< typename Field::Element > >
class  FactorizedMatrixLeftSolve< Field, std::vector< typename Field::Element > >
class  FactorizedMatrixLeftUSolve
class  FactorizedMatrixLeftUSolve< Field, BlasMatrix< typename Field::Element > >
class  FactorizedMatrixLeftUSolve< Field, std::vector< typename Field::Element > >
class  FactorizedMatrixRightLSolve
class  FactorizedMatrixRightLSolve< Field, BlasMatrix< typename Field::Element > >
class  FactorizedMatrixRightLSolve< Field, std::vector< typename Field::Element > >
class  FactorizedMatrixRightSolve
class  FactorizedMatrixRightSolve< Field, BlasMatrix< typename Field::Element > >
class  FactorizedMatrixRightSolve< Field, std::vector< typename Field::Element > >
class  FactorizedMatrixRightUSolve
class  FactorizedMatrixRightUSolve< Field, BlasMatrix< typename Field::Element > >
class  FactorizedMatrixRightUSolve< Field, std::vector< typename Field::Element > >
class  FFLAS
 BLAS for matrices over finite fields. More...

class  FFPACK
 Set of elimination based routines for dense linear algebra with matrices over finite field. More...

class  FieldAbstract
class  FieldArchetype
class  FieldAXPY< DoubleFmod >
class  FieldAXPY< GivaroZpz< Std16 > >
class  FieldAXPY< GivaroZpz< Std32 > >
class  FieldAXPY< Modular< _Element > >
class  FieldAXPY< Modular< double > >
class  FieldAXPY< Modular< int > >
class  FieldAXPY< Modular< int16 > >
class  FieldAXPY< Modular< int32 > >
class  FieldAXPY< Modular< int8 > >
class  FieldAXPY< Modular< uint16 > >
class  FieldAXPY< Modular< uint32 > >
class  FieldAXPY< Modular< uint8 > >
class  FieldAXPY< NTL_ZZ >
class  FieldAXPY< PIR_ntl_ZZ_p >
class  FieldAXPY< PIRModular< int > >
class  FieldAXPY< PIRModular< int32 > >
class  FieldAXPY< UnparametricField< integer > >
class  FieldEnvelope
class  FieldInterface
 This field base class exists solely to aid documentation organization. @doc For the general field member function documentation consult the FieldArchetype. For specific properties of individual representations consult the specific field classes. More...

struct  FieldTraits
struct  FieldTraits< GivaroExtension< BaseField > >
class  GF2
class  GivaroExtension
class  GivaroGfq
class  GivaroMontg
class  GivaroRational
class  GivaroZpz
class  GMPRationalField
class  Hom
class  Hom< Source, Source >
class  ImageField
class  indexDomain
class  LidiaGfq
struct  Local2_32
class  LQUPMatrix
class  MatrixArchetype
struct  MatrixContainerCategory
class  MatrixContainerTrait
class  MatrixContainerTrait< BlasMatrix< typename Field::Element > >
class  MatrixContainerTrait< const BlasMatrix< typename Field::Element > >
class  MatrixContainerTrait< DenseMatrix< Field > >
class  MatrixContainerTrait< DenseMatrixBase< typename Field::Element > >
class  MatrixContainerTrait< SparseMatrix< Field > >
class  MatrixContainerTrait< SparseMatrixBase< typename Field::Element > >
class  MatrixDomain
 Class of matrix arithmetic functions. More...

class  MatrixDomain< GF2 >
struct  MatrixTraits
struct  MatrixTraits< BlasMatrix< Element > >
struct  MatrixTraits< const BlasMatrix< Element > >
struct  MatrixTraits< const DenseMatrixBase< Element > >
struct  MatrixTraits< DenseMatrixBase< Element > >
struct  MatrixTraits< DenseRowsMatrix< Row > >
struct  MatrixTraits< DenseSubmatrix< Element > >
struct  MatrixTraits< MatrixArchetype< Element > >
class  Modular
 Prime fields of positive characteristic implemented directly in LinBox. @doc This parameterized field can be used to construct prime fields. Typical use would be Modular<integer> for integers modulo a large prime, Modular<uint32>, modular<int>, or modular<double> for integers modulo a wordsize * prime. Each of those has specialized performance features suitable to certain applications. More...

class  Modular< double >
class  Modular< int >
 Specialization of Modular to int element type with efficient dot product. @doc Efficient element operations for dot product, mul, axpy, by using floating point inverse of modulus (borrowed from NTL) and some use of non-normalized intermediate values. More...

class  Modular< int16 >
 Specialization of Modular to short element type with efficient dot product. @doc Efficient element operations for dot product, mul, axpy, by using floating point inverse of modulus (borrowed from NTL) and some use of non-normalized intermediate values. More...

class  Modular< int32 >
 Specialization of Modular to int32 element type with efficient dot product. @doc Efficient element operations for dot product, mul, axpy, by using floating point inverse of modulus (borrowed from NTL) and some use of non-normalized intermediate values. More...

class  Modular< int8 >
 Specialization of Modular to signed 8 bit element type with efficient dot product. @doc Efficient element operations for dot product, mul, axpy, by using floating point inverse of modulus (borrowed from NTL) and some use of non-normalized intermediate values. More...

class  Modular< uint16 >
 Specialization of class Modular for uint16 element type. More...

class  Modular< uint32 >
 Specialization of class Modular for uint32 element type. More...

class  Modular< uint8 >
 Allows compact storage when the modulus is less than 2^8. @doc Requires 1 < the modulus < 2^8, normally prime. See FieldArchetype for member specifications. More...

class  ModularBase
class  MVProductDomain
 Helper class to allow specializations of certain matrix-vector products. More...

class  MVProductDomain< Modular< int16 > >
class  MVProductDomain< Modular< int32 > >
class  MVProductDomain< Modular< int8 > >
class  MVProductDomain< Modular< uint16 > >
class  MVProductDomain< Modular< uint32 > >
class  MVProductDomain< Modular< uint8 > >
class  MVProductDomain< PIR_ntl_ZZ_p >
class  MVProductDomain< PIRModular< int32 > >
struct  rebind
struct  rebind
class  SparseMatrixBase
class  SparseMatrixBase< _Element, _Row, VectorCategories::SparseSequenceVectorTag >
class  NoField
class  SparseMatrixReadWriteHelper
class  NoField
class  NoHomError
 Error object for attempt to establish a Hom that cannot exist. More...

class  NTL_GF2E
struct  NTL_PID_zz_p
 extend Wrapper of zz_p from NTL. Add PID functions More...

class  NTL_ZZ
struct  NTL_ZZ_p
struct  NTL_zz_p
class  NTL_ZZ_pE
class  NTL_zz_pE
class  ParamFuzzy
class  PID_double
class  PID_integer
class  PIR_ntl_ZZ_p
 extend Wrapper of ZZ_p from NTL. Add PIR functions More...

class  PIRModular< int >
class  PIRModular< int32 >
class  RandomDenseStreamGF2
class  RandomSparseStreamGF2
class  RawIterator
class  RawIndexedIterator
class  RawVector< bool >
struct  rebind
struct  rebind
struct  Rebind
struct  RationalTag
struct  IntegerTag
struct  ModularTag
struct  GenericTag
class  GMPRationalElement
class  RingCategories
class  RowIterator
struct  RowMatrixTag
struct  RowColMatrixTag
class  SparseMatrixWriteHelper
class  SparseMatrixWriteHelper< _Element, Row, VectorCategories::SparseParallelVectorTag >
class  SparseRowReader
struct  Specifier
class  StandardBasisStream
class  StandardBasisStream< Field, _Vector, VectorCategories::DenseVectorTag >
class  StandardBasisStream< Field, _Vector, VectorCategories::SparseAssociativeVectorTag >
class  StandardBasisStream< Field, _Vector, VectorCategories::SparseParallelVectorTag >
class  StandardBasisStream< Field, _Vector, VectorCategories::SparseSequenceVectorTag >
class  Subiterator
class  Subvector
class  SysTimer
struct  TagTreeFrame
class  Timer
class  TransposedBlasMatrix
class  TransposedBlasMatrix< TransposedBlasMatrix< Matrix > >
class  TransposeMatrix
class  TransposeMatrix< Matrix, MatrixCategories::ColMatrixTag >
class  TransposeMatrix< Matrix, MatrixCategories::RowColMatrixTag >
class  TransposeMatrix< Matrix, MatrixCategories::RowMatrixTag >
class  TriangularBlasMatrix
class  UnparametricField
class  UnparametricRandIter
class  UnparametricRandIter< NTL::GF2E >
class  UnparametricRandIter< NTL::ZZ_pE >
class  UnparametricRandIter< NTL::zz_pE >
class  UnSupportedMatrixType
class  UserTimer
class  Valence
struct  VectorCategories
class  VectorDomain
class  VectorDomain< GF2 >
class  VectorDomainBase
class  VectorStream
struct  VectorTraits
struct  VectorTraits< BitVector >
struct  VectorTraits< ReverseVector< Vector > >
struct  VectorTraits< std::deque< std::pair< size_t, Element > > >
struct  VectorTraits< std::list< std::pair< size_t, Element > > >
struct  VectorTraits< std::map< size_t, Element > >
struct  VectorTraits< std::pair< std::vector< size_t >, std::vector< Element > > >
struct  VectorTraits< std::vector< Element > >
struct  VectorTraits< std::vector< std::pair< size_t, Element > > >
struct  VectorTraits< Subvector< Iterator, ConstIterator > >
struct  WiedemannTraits
class  Writer
struct  WriterFrame
class  RawIndexIterator
class  RawIterator
class  Mod32Field
class  NormField
class  FieldType
class  Frobenius
 template <class _Field> More...

class  Hankel
 template <class _Field> More...

class  Hilbert
 Example of a blackbox that is space efficient, though not time efficient. More...

class  Hilbert< _Field, VectorCategories::DenseVectorTag >
class  Hilbert< _Field, VectorCategories::SparseAssociativeVectorTag >
class  Hilbert< _Field, VectorCategories::SparseSequenceVectorTag >
class  Inverse
 A Blackbox for the inverse. Not efficient if many applications are used. More...

class  LessTypeInfo
class  MatrixApplyDomain
class  MatrixApplyDomain< Domain, BlasBlackbox< Domain > >
class  MatrixApplyDomain< Domain, BlasMatrix< typename Domain::Element > >
class  MatrixApplyDomain< Domain, DenseMatrix< Domain > >
struct  rebind
class  MatrixContainerTrait< BlasBlackbox< Field > >
class  MatrixContainerTrait< const BlasBlackbox< Field > >
struct  MatrixTraits< BlasBlackbox< Field > >
struct  MatrixTraits< const BlasBlackbox< Field > >
struct  rebind
struct  rebind
struct  rebind
struct  rebind
struct  rebind
struct  MatrixTraits< const DenseMatrix< Field > >
struct  MatrixTraits< const SparseMatrix< Field, _Row > >
struct  MatrixTraits< DenseMatrix< Field > >
struct  rebind
struct  rebind
struct  rebind
struct  rebind
struct  rebind
struct  rebind
struct  rebind
struct  rebind
struct  rebind
struct  MatrixTraits< SparseMatrix< Field, _Row > >
class  MoorePenrose
 Generalized inverse of a blackbox. Efficiency concerns when many applications are used. More...

struct  rebind
struct  rebind
class  NullMatrix
 This is a representation of the 0 by 0 empty matrix which does not occupy memory. It has it's uses! More...

struct  rebind
class  Permutation
 size is n. More...

struct  rebind
class  PolynomialBB
 represent the matrix P(A) where A is a blackbox and P a polynomial More...

struct  rebind
class  RandomMatrix
class  RandomMatrixTraits
struct  rebind
struct  rebind
struct  rebind
struct  rebind
struct  rebind
struct  rebind
struct  rebind
struct  rebind
struct  rebind
struct  rebind
class  ScalarMatrix
 Blackbox for aI. Use particularly for representing 0 and I. More...

class  SCompose
class  SparseMatrix
 vector of sparse rows. More...

class  SparseMatrixFactory
class  Submatrix
class  Submatrix< Blackbox, VectorCategories::DenseVectorTag >
class  Submatrix< DenseMatrix< _Field >, VectorCategories::DenseVectorTag >
class  SubMatrixTraits< DenseMatrix< Field > >
class  SubMatrixTraits< Submatrix< DenseMatrix< Field > > >
class  SubRowMatrix< Matrix, MatrixCategories::RowMatrixTag >
class  Sum
 blackbox of a matrix sum without copying. More...

struct  rebind
struct  rebind
class  Minpoly_Method
class  BLAS_LPM_Method
class  BlockWiedemannLiftingContainer
class  DixonLiftingContainer
class  const_iterator
class  InnerProductArray
struct  Iterate
struct  ElimStep
class  BasisTransformation
class  BlackboxBlockContainer
class  BlackboxBlockContainerBase
 A base class for BlackboxBlockContainer. The primary member function is begin(). @doc It returns an iterator which after i increments (++) dereferences to $U A^i V$, for $U$ and $V$ determined by the init function. It is designed to be used with implementations of Block Berlekamp-Massey such as BlockMasseyDomain. More...

class  const_iterator
class  BlackboxBlockContainerRecord
class  BlackboxContainer
 Limited doc so far. More...

class  BlackboxContainerBase
 A base class for BlackboxContainer. The primary member function is begin(). @doc It returns an iterator which after i increments (++) dereferences to $v^T A^i u$, for $v$ and $u$ determined by the form of construction. It is designed to be used with implementations of Berlekamp-Massey such as MasseyDom. More...

class  const_iterator
class  BlackboxContainerSymmetric
 See base class for doc. More...

class  BlackboxContainerSymmetrize
 Symmetrizing iterator (for rank computations). @doc # //================================================================ // LinBox Project 1999 // Symmetrizing iterator (for rank computations) // Same left and right vector // A is supposed to have tranpose-vector product // the sequence is u^t u, (A u)^t (A u) = u^t (A^t A) u, // (A^t (A u))^t (A^t (A u)) = u^t (A^t A)^2 u , etc. // Time-stamp: <13 Jun 02 18:16:43 Jean-Guillaume.Dumas@imag.fr> // ================================================================ #. More...

class  BlasMatrixDomain
class  BlasMatrixDomainCharpoly
class  BlasMatrixDomainCharpoly< Field, Polynomial, Container, BlasMatrix< typename Field::Element > >
class  BlasMatrixDomainDet
class  BlasMatrixDomainDet< Field, BlasBlackbox< Field > >
class  BlasMatrixDomainDet< Field, BlasMatrix< typename Field::Element > >
class  BlasMatrixDomainInv
class  BlasMatrixDomainInv< Field, BlasBlackbox< Field > >
class  BlasMatrixDomainInv< Field, BlasMatrix< typename Field::Element > >
class  BlasMatrixDomainLeftSolve
class  BlasMatrixDomainLeftSolve< Field, BlasMatrix< typename Field::Element >, BlasMatrix< typename Field::Element > >
class  BlasMatrixDomainLeftSolve< Field, BlasMatrix< typename Field::Element >, TriangularBlasMatrix< typename Field::Element > >
class  BlasMatrixDomainLeftSolve< Field, std::vector< typename Field::Element >, BlasMatrix< typename Field::Element > >
class  BlasMatrixDomainLeftSolve< Field, std::vector< typename Field::Element >, TriangularBlasMatrix< typename Field::Element > >
class  BlasMatrixDomainMinpoly
class  BlasMatrixDomainMinpoly< Field, Polynomial, BlasMatrix< typename Field::Element > >
class  BlasMatrixDomainMul
class  BlasMatrixDomainMul< Field, BlasMatrix< typename Field::Element >, BlasMatrix< typename Field::Element >, BlasPermutation >
class  BlasMatrixDomainMul< Field, BlasMatrix< typename Field::Element >, BlasMatrix< typename Field::Element >, TransposedBlasMatrix< BlasPermutation > >
class  BlasMatrixDomainMul< Field, BlasMatrix< typename Field::Element >, BlasMatrix< typename Field::Element >, TriangularBlasMatrix< typename Field::Element > >
class  BlasMatrixDomainMul< Field, BlasMatrix< typename Field::Element >, BlasPermutation, BlasMatrix< typename Field::Element > >
class  BlasMatrixDomainMul< Field, BlasMatrix< typename Field::Element >, BlasPermutation, TriangularBlasMatrix< typename Field::Element > >
class  BlasMatrixDomainMul< Field, BlasMatrix< typename Field::Element >, TransposedBlasMatrix< BlasPermutation >, BlasMatrix< typename Field::Element > >
class  BlasMatrixDomainMul< Field, BlasMatrix< typename Field::Element >, TriangularBlasMatrix< typename Field::Element >, BlasMatrix< typename Field::Element > >
class  BlasMatrixDomainMul< Field, BlasMatrix< typename Field::Element >, TriangularBlasMatrix< typename Field::Element >, BlasPermutation >
class  BlasMatrixDomainMul< Field, std::vector< typename Field::Element >, BlasPermutation, std::vector< typename Field::Element > >
class  BlasMatrixDomainMul< Field, std::vector< typename Field::Element >, std::vector< typename Field::Element >, BlasPermutation >
class  BlasMatrixDomainMul< Field, std::vector< typename Field::Element >, std::vector< typename Field::Element >, TransposedBlasMatrix< BlasPermutation > >
class  BlasMatrixDomainMul< Field, std::vector< typename Field::Element >, TransposedBlasMatrix< BlasPermutation >, std::vector< typename Field::Element > >
class  BlasMatrixDomainMulAdd
class  BlasMatrixDomainMulAdd< Field, BlasMatrix< typename Field::Element >, BlasMatrix< typename Field::Element >, BlasMatrix< typename Field::Element > >
class  BlasMatrixDomainMulAdd< Field, std::vector< typename Field::Element >, BlasMatrix< typename Field::Element >, std::vector< typename Field::Element > >
class  BlasMatrixDomainMulAdd< Field, std::vector< typename Field::Element >, std::vector< typename Field::Element >, BlasMatrix< typename Field::Element > >
class  BlasMatrixDomainMulin
class  BlasMatrixDomainMulin< Field, BlasMatrix< typename Field::Element >, BlasPermutation >
class  BlasMatrixDomainMulin< Field, BlasMatrix< typename Field::Element >, TransposedBlasMatrix< BlasPermutation > >
class  BlasMatrixDomainMulin< Field, BlasMatrix< typename Field::Element >, TriangularBlasMatrix< typename Field::Element > >
class  BlasMatrixDomainMulin< Field, std::vector< typename Field::Element >, BlasPermutation >
class  BlasMatrixDomainMulin< Field, std::vector< typename Field::Element >, TransposedBlasMatrix< BlasPermutation > >
class  BlasMatrixDomainRank
class  BlasMatrixDomainRank< Field, BlasBlackbox< Field > >
class  BlasMatrixDomainRank< Field, BlasMatrix< typename Field::Element > >
class  BlasMatrixDomainRightSolve
class  BlasMatrixDomainRightSolve< Field, BlasMatrix< typename Field::Element >, BlasMatrix< typename Field::Element > >
class  BlasMatrixDomainRightSolve< Field, BlasMatrix< typename Field::Element >, TriangularBlasMatrix< typename Field::Element > >
class  BlasMatrixDomainRightSolve< Field, std::vector< typename Field::Element >, BlasMatrix< typename Field::Element > >
class  BlasMatrixDomainRightSolve< Field, std::vector< typename Field::Element >, TriangularBlasMatrix< typename Field::Element > >
class  BlockLanczosSolver
class  BlockMasseyDomain
 Compute the linear generator of a sequence of matrices @doc Giorgi, Jeannerod Villard algorithm from ISSAC'03 This class encapsulates the functionality required for computing the block minimal polynomial of a matrix. More...

class  BlockWiedemannSolver
struct  ChineseRemainder
class  CRA
class  DenseContainer
 Limited doc so far. More...

class  DiophantineSolver
 DiophantineSolver<QSolver> creates a diophantine solver using a QSolver to generate rational solutions @doc Methods solve, randomSolve just expose functions from underlying rational solver. Method diophantineSolve creates a solution with minimal denominator, and can also create a certificate of minimality (described in 'Certified Dense Linear System Solving' by Mulders+Storjohann) which will be left in the public field lastCertificate. More...

class  Eliminator
class  GaussDomain
 Repository of functions for rank by elimination on sparse matrices. @doc Several versions allow for adjustment of the pivoting strategy and for choosing in-place elimination or for not modifying the input matrix. Also an LU interface is offered. More...

class  IliopoulosElimination
 This is Iliopoulos' algorithm do diagonalize. @doc Compute Smith Form by elimination modulo m, for some modulus m such as S(n), the last invariant factor. The elimination method is originally described in "Worst Case Complexity Bounds on Algorithms for computing the Canonical Structure of Finite Abelian Groups and the Hermite and Smith Normal Forms of an Integer Matrix", by Costas Iliopoulos. More...

class  LABlockLanczosSolver
class  LanczosSolver
 Solve a linear system using the conjugate Lanczos iteration. @doc Lanczos system solver class. This class encapsulates the functionality required for solving a linear system through the conjugate Lanczos iteration. More...

class  LastInvariantFactor
 This is used in a Smith Form algorithm. @doc This computes the last invariant factor of an integer matrix, whether zero or not, by rational solving. More...

struct  LazyProduct
class  LiftingContainer
class  LiftingContainerBase
class  LocalSmith
 Smith normal form (invariant factors) of a matrix over a local ring. More...

class  LocalSmith< Local2_32 >
class  MasseyDomain
 Berlekamp/Massey algorithm. @doc Domain Massey - Computation is stopped when the polynomials remain the same for more than EARLY_TERM_THRESOLD - When minimal polynomial equals characteristic polynomial, 2 additional iterations are needed to compute it (parameter DEFAULT_ADDITIONAL_ITERATION), but those iterations are not needed for the rank. More...

struct  MatrixHomTrait
struct  MatrixHomTrait< BlasBlackbox< Ring >, Field >
struct  MatrixHomTrait< DenseMatrix< Ring >, Field >
struct  MatrixHomTrait< DenseMatrixBase< typename Ring::Element >, Field >
struct  MatrixHomTrait< SparseMatrix< Ring, typename Vector< Ring >::SparseMap >, Field >
struct  MatrixHomTrait< SparseMatrix< Ring, typename Vector< Ring >::SparsePar >, Field >
struct  MatrixHomTrait< SparseMatrix< Ring, typename Vector< Ring >::SparseSeq >, Field >
class  MatrixInverse
class  MatrixRank
class  MGBlockLanczosSolver
 Block Lanczos iteration. More...

class  MinPoly
class  MinPolyBlas
class  OneInvariantFactor
 Limited doc so far. More...

class  RationalReconstruction
 Limited doc so far. Used, for instance, after LiftingContainer. More...

class  RationalSolver
class  RationalSolver< Ring, Field, RandomPrime, BlockWiedemannTraits >
class  RationalSolver< Ring, Field, RandomPrime, DixonTraits >
class  RationalSolver< Ring, Field, RandomPrime, NumericalTraits >
class  RationalSolver< Ring, Field, RandomPrime, WiedemannTraits >
class  RationalSolverAdaptive
class  Signature
class  SmithForm
 Compute Smith form. More...

class  SmithFormAdaptive
class  Sylvester
class  Thread
class  Toeplitz
 This is the blackbox representation of a Toeplitz matrix. More...

class  Transpose
 transpose matrix without copying. More...

class  TriplesBB
 wrapper for NAG Sparse Matrix format. More...

class  VectorFraction
 VectorFraction<Domain> is a vector of rational elements with common reduced denominator. @doc Here Domain is a ring supporting the gcd, eg NTL_ZZ or PID_integer For compatability with the return type of rationalSolver, it allows conversion from/to std::vector<std::pair<Domain::Element> >. All functions will return the fraction in reduced form, calling reduce() if necessary. More...

class  WiedemannLiftingContainer
class  WiedemannSolver
 Linear system solvers based on Wiedemann's method. @doc This class encapsulates all of the functionality for linear system solving with Wiedemann's algorithm. It includes the random solution and random nullspace element of Kaltofen and Saunders (1991), as well as the certificate of inconsistency of Giesbrecht, Lobo, and Saunders (1998). More...

class  ZeroOne
 Time and space efficient representation of sparse {0,1}-matrices. More...


int32

@memo This is a representation of 32 bit ints, usually equivalent to `int'. @doc The use of `int32' ensures you are working with 32 bit signed ints, [-2^31..2^31). Similarly, int8, int16, and int64 are defined.

typedef signed __LINBOX_INT32 int32
typedef signed __LINBOX_INT64 int64
typedef unsigned __LINBOX_INT8 uint8
typedef unsigned __LINBOX_INT16 uint16

uint32

@memo This is a representation of 32 bit unsigned ints, usually equivalent to `unsigned int'. @doc The use of `uint32' ensures you are working with 32 bit unsigned ints, [0..2^32). Similarly, uint8, uint16, and uint64 are defined.

typedef unsigned __LINBOX_INT32 uint32
typedef unsigned __LINBOX_INT64 uint64
template<class T> T abs (const T &a)

Butterfly

Butterfly preconditioner and supporting function

std::vector< bool > setButterfly (const std::vector< bool > &x, size_t j=0)

[NOHEADER]

template<class Field>  Diagonal< Field, VectorCategories::DenseVectorTag >::Diagonal (const Field F, const std::vector< typename Field::Element > &v)
template<class _Field>  Diagonal< _Field, VectorCategories::DenseVectorTag >::Diagonal (const Field F, const size_t n)
template<class Field>  Diagonal< Field, VectorCategories::DenseVectorTag >::Diagonal (const Field F, const size_t n, typename Field::RandIter &iter)
template<class OutVector, class InVector> OutVector & Diagonal< Field, VectorCategories::DenseVectorTag >::apply (OutVector &y, const InVector &x) const
template<class Field>  Diagonal< Field, VectorCategories::SparseSequenceVectorTag >::Diagonal (const Field F, const std::vector< typename Field::Element > &v)
template<class OutVector, class InVector> OutVector & Diagonal< Field, VectorCategories::SparseSequenceVectorTag >::apply (OutVector &y, const InVector &x) const
template<class Field>  Diagonal< Field, VectorCategories::SparseAssociativeVectorTag >::Diagonal (const Field F, const std::vector< typename Field::Element > &v)
template<class OutVector, class InVector> OutVector & Diagonal< Field, VectorCategories::SparseAssociativeVectorTag >::apply (OutVector &y, const InVector &x) const

GMP Rational field

Field of rational numbers using GMP

@doc This is a wrapper for the GMP rational number facility, built to the interface of the field archetype.

std::ostream & operator<< (std::ostream &os, GMPRationalElement &elt)
std::istream & operator>> (std::istream &is, GMPRationalElement &elt)

NTL_zz_p

long ints modulo a positive integer. @doc While NTL allows any int to serve as the modulus, only prime moduli yield fields. The primality of the modulus will not be checked, so it is the programmer's responsibility to supply a prime modulus if a field is wanted. These specializations allow the \Ref{UnparametricField} template class to be used to wrap NTL's {\tt zz\_p} class as a LinBox field. Uses nice trick for mod p via floating point.

 UnparametricField< NTL::zz_p >::UnparametricField (integer q, size_t e)
template<> NTL::zz_p & UnparametricField< NTL::zz_p >::init (NTL::zz_p &x, const integer &y) const
template<> integerUnparametricField< NTL::zz_p >::convert (integer &x, const NTL::zz_p &y) const
template<> integerUnparametricField< NTL::zz_p >::cardinality (integer &c) const
template<> integerUnparametricField< NTL::zz_p >::characteristic (integer &c) const
template<> NTL::zz_p & UnparametricField< NTL::zz_p >::inv (NTL::zz_p &x, const NTL::zz_p &y) const
template<> bool UnparametricField< NTL::zz_p >::isZero (const NTL::zz_p &x) const
template<> bool UnparametricField< NTL::zz_p >::isOne (const NTL::zz_p &x) const
template<> NTL::zz_p & UnparametricField< NTL::zz_p >::invin (NTL::zz_p &x) const
template<> std::ostream & UnparametricField< NTL::zz_p >::write (std::ostream &os) const
template<>  UnparametricRandIter< NTL::zz_p >::UnparametricRandIter< NTL::zz_p > (const UnparametricField< NTL::zz_p > &F, const integer &size, const integer &seed)
 Constructor for random field element generator.

template<> NTL::zz_p & UnparametricRandIter< NTL::zz_p >::random (NTL::zz_p &x) const
 Random field element creator.


class RR.

Rational number field. This field is provided as a convenience in a few places. Use with caution because expression swell.

This specialization allows the \Ref{UnparametricField} template class to be used to wrap NTL's RR class as a LinBox field.

template<> NTL::RR & UnparametricField< NTL::RR >::init (NTL::RR &x, const integer &y) const
template<> integerUnparametricField< NTL::RR >::convert (integer &x, const NTL::RR &y) const
template<> NTL::RR & UnparametricField< NTL::RR >::inv (NTL::RR &x, const NTL::RR &y) const
template<> bool UnparametricField< NTL::RR >::isZero (const NTL::RR &x) const
template<> bool UnparametricField< NTL::RR >::isOne (const NTL::RR &x) const
template<> NTL::RR & UnparametricField< NTL::RR >::invin (NTL::RR &x) const
template<> std::ostream & UnparametricField< NTL::RR >::write (std::ostream &os) const
template<> NTL::RR & UnparametricRandIter< NTL::RR >::random (NTL::RR &elt) const

NTL_ZZ_p

Arbitrary precision integers modulus a positive integer. @doc While NTL allows any integer to serve as the modulus, only prime moduli yield fields. Therefore, while arthmetic operations may be valid for any modulus, only prime moduli are supported in this implementation. The primality of the modulus will not be checked, so it is the programmer's responsibility to supply a prime modulus. These specializations allow the \Ref{UnparametricField} template class to be used to wrap NTL's {\tt ZZ\_p} class as a LinBox field.

doc of NTL_ZZ_p UnparametricField< NTL::ZZ_p >::UnparametricField (integer q, size_t e)
template<> integerUnparametricField< NTL::ZZ_p >::convert (integer &x, const NTL::ZZ_p &y) const
template<> double & UnparametricField< NTL::ZZ_p >::convert (double &x, const NTL::ZZ_p &y) const
template<> integerUnparametricField< NTL::ZZ_p >::cardinality (integer &c) const
template<> integerUnparametricField< NTL::ZZ_p >::characteristic (integer &c) const
template<> NTL::ZZ_p & UnparametricField< NTL::ZZ_p >::inv (NTL::ZZ_p &x, const NTL::ZZ_p &y) const
template<> bool UnparametricField< NTL::ZZ_p >::isZero (const NTL::ZZ_p &x) const
template<> bool UnparametricField< NTL::ZZ_p >::isOne (const NTL::ZZ_p &x) const
template<> NTL::ZZ_p & UnparametricField< NTL::ZZ_p >::invin (NTL::ZZ_p &x) const
template<> std::ostream & UnparametricField< NTL::ZZ_p >::write (std::ostream &os) const
template<>  UnparametricRandIter< NTL::ZZ_p >::UnparametricRandIter< NTL::ZZ_p > (const UnparametricField< NTL::ZZ_p > &F, const integer &size, const integer &seed)
 Constructor for random field element generator.

template<> NTL::ZZ_p & UnparametricRandIter< NTL::ZZ_p >::random (NTL::ZZ_p &x) const
 Random field element creator.


Typedefs

typedef std::vector< BBBase * > BB_list
typedef std::map< const std::type_info *,
BB_list, LessTypeInfo
BB_list_list
typedef UnparametricField<
integer
GMP_Integers
typedef ParamFuzzy DoubleRealApproximation
typedef Integer integer
typedef signed __LINBOX_INT8 int8
typedef signed __LINBOX_INT16 int16
typedef GMPRationalElement rational

Enumerations

enum  SolverReturnStatus {
  SS_OK, SS_FAILED, SS_SINGULAR, SS_INCONSISTENT,
  SS_BAD_PRECONDITIONER
}
enum  SolverLevel { SL_MONTECARLO, SL_LASVEGAS, SL_CERTIFIED }
enum  FileFormatTag {
  FORMAT_DETECT, FORMAT_GUILLAUME, FORMAT_TURNER, FORMAT_MATLAB,
  FORMAT_MAPLE, FORMAT_PRETTY, FORMAT_MAGMACPT
}
 tags for SparseMatrixBase::read() and write() More...

enum  MatrixStreamError {
  AMBIGUOUS_FORMAT = -1, GOOD, END_OF_MATRIX, END_OF_FILE,
  BAD_FORMAT, NO_FORMAT
}

Functions

template<class Iterator, class Comparator> void bitonicSort (Iterator begin, Iterator end, const Comparator &comparator=Comparator())
template<class Iterator, class Comparator> void bitonicMerge (Iterator begin, Iterator end, const Comparator &comparator=Comparator())
template<class Domain, class Object> void BLTraceReport (std::ostream &out, Domain &D, const char *text, size_t iter, const Object &obj)
void reportS (std::ostream &out, const std::vector< bool > &S, size_t iter)
template<class Field, class Matrix> void checkAConjugacy (const MatrixDomain< Field > &MD, const Matrix &AV, const Matrix &V, Matrix &T, size_t AV_iter, size_t V_iter)
template<class Blackbox, class MethodTraits> integerdet_cra (integer &res, const Blackbox &A, const MethodTraits &M)
template<class Vector> long density (const Vector &v)
 Estimate nonzero entries in a vector, used in parallel elimination.

template<class Vector, class VectorCategory> long density (const Vector &, VectorCategory)
template<class Vector> long density (const Vector &v, VectorCategories::DenseVectorTag)
std::ostream & reportPermutation (std::ostream &out, const std::vector< std::pair< unsigned int, unsigned int > > &P)
template<class Domain, class Object> void LABLTraceReport (std::ostream &out, Domain &D, const char *text, size_t iter, const Object &obj)
void LABLReportPriorityIndices (std::ostream &, std::list< size_t > &, const char *)
template<class Field, class Vector> void traceReport (std::ostream &out, VectorDomain< Field > &VD, const char *text, size_t iter, const Vector &v)
template<class Field, class Vector> void traceReport (std::ostream &out, const Field &F, const char *text, size_t iter, const typename Field::Element &a)
template<class Ring, class ItMatrix> void SpecialBound (const Ring &R, typename Ring::Element &H_col_sqr, typename Ring::Element &short_col_sqr, const ItMatrix &A)
template<class Ring> void BoundBlackbox (const Ring &R, typename Ring::Element &H_col_sqr, typename Ring::Element &short_col_sqr, const DenseMatrixBase< typename Ring::Element > &A)
template<class Ring> void BoundBlackbox (const Ring &R, typename Ring::Element &H_col_sqr, typename Ring::Element &short_col_sqr, const DenseSubmatrix< typename Ring::Element > &A)
template<class Ring> void BoundBlackbox (const Ring &R, typename Ring::Element &H_col_sqr, typename Ring::Element &short_col_sqr, const SparseMatrix< Ring > &A)
template<class Ring, class Matrix1, class Matrix2> void BoundBlackbox (const Ring &R, typename Ring::Element &H_col_sqr, typename Ring::Element &short_col_sqr, const Compose< Matrix1, Matrix2 > &A)
template<class Ring, class Matrix> void BoundBlackbox (const Ring &R, typename Ring::Element &H_col_sqr, typename Ring::Element &short_col_sqr, const Transpose< Matrix > &A)
template<class Ring, class ItMatrix> void ApplyBound (const Ring &R, typename Ring::Element &bound_A, const ItMatrix &A)
template<class Domain, class Object> void MGBLTraceReport (std::ostream &out, Domain &D, const char *text, size_t iter, const Object &obj)
int rational_reconstruction (integer &a, integer &b, const integer &n0, const integer &d0, const integer &B)
template<class Domain> void reduceIn (Domain &D, std::pair< typename Domain::Element, typename Domain::Element > &frac)
template<class Domain, class Vector> void vectorGcdIn (typename Domain::Element &result, Domain &D, Vector &v)
template<class Domain, class Vector> Domain::Element vectorGcd (Domain &D, Vector &v)
template<class OutV, class Matrix, class InV> OutV & apply (OutV &y, const Matrix &A, const InV &x)
template<class OutV, class Matrix, class InV> OutV & applyTranspose (OutV &y, const Matrix &A, const InV &x)
template<class Domain, class IMatrix> void create_padic_chunk (const Domain &D, const IMatrix &M, double *chunks, size_t num_chunks)
 split an integer matrix into a padic chunk representation

template<class Out, class Matrix, class In> Out & BlackboxParallel (Out &out, const Matrix &m, const In &in, BBBase::BBType type)
 This is a matrix representation supporting a parallel matrix vector product.

void * runThread (void *arg)
template<class Matrix, class Out, class In> BBThread< Matrix, Out, In > * createBBThread (const Matrix *m, Out *out, const In *in)
template<class Field>  Hilbert< Field, VectorCategories::DenseVectorTag >::Hilbert (Field F, size_t n)
template<class OutVector, class InVector> OutVector & Hilbert< Field, VectorCategories::DenseVectorTag >::apply (OutVector &y, const InVector &x) const
template<class Field>  Hilbert< Field, VectorCategories::SparseSequenceVectorTag >::Hilbert (Field F, size_t n)
template<class OutVector, class InVector> OutVector & Hilbert< Field, VectorCategories::SparseSequenceVectorTag >::apply (OutVector &y, const InVector &x) const
template<class Field>  Hilbert< Field, VectorCategories::SparseAssociativeVectorTag >::Hilbert (Field F, size_t n)
template<class OutVector, class InVector> OutVector & Hilbert< Field, VectorCategories::SparseAssociativeVectorTag >::apply (OutVector &y, const InVector &x) const
size_t mul_bound_compute (const long long pi)
size_t mul_bound (const long long pi)
size_t bound_compute (const long long pi)
size_t bound_compute_centered (const long long pi)
size_t bound (const long long pi)
template<> NTL::GF2E & UnparametricField< NTL::GF2E >::init (NTL::GF2E &x, const integer &y) const
template<> integerUnparametricField< NTL::GF2E >::convert (integer &x, const NTL::GF2E &y) const
template<> bool UnparametricField< NTL::GF2E >::isZero (const NTL::GF2E &a) const
template<> bool UnparametricField< NTL::GF2E >::isOne (const NTL::GF2E &a) const
template<> integerUnparametricField< NTL::GF2E >::characteristic (integer &c) const
template<> integerUnparametricField< NTL::GF2E >::cardinality (integer &c) const
NTL::GF2E & UnparametricField< NTL::GF2E >::inv (NTL::GF2E &x, const NTL::GF2E &y) const
NTL::GF2E & UnparametricField< NTL::GF2E >::invin (NTL::GF2E &x) const
template<> std::istream & UnparametricField< NTL::GF2E >::read (std::istream &is, NTL::GF2E &x) const
template<> NTL::zz_pE & UnparametricField< NTL::zz_pE >::init (NTL::zz_pE &x, const integer &y) const
template<> integerUnparametricField< NTL::zz_pE >::convert (integer &x, const NTL::zz_pE &y) const
template<> bool UnparametricField< NTL::zz_pE >::isZero (const NTL::zz_pE &a) const
template<> bool UnparametricField< NTL::zz_pE >::isOne (const NTL::zz_pE &a) const
template<> integerUnparametricField< NTL::zz_pE >::characteristic (integer &c) const
template<> integerUnparametricField< NTL::zz_pE >::cardinality (integer &c) const
NTL::zz_pE & UnparametricField< NTL::zz_pE >::inv (NTL::zz_pE &x, const NTL::zz_pE &y) const
NTL::zz_pE & UnparametricField< NTL::zz_pE >::invin (NTL::zz_pE &x) const
template<> std::istream & UnparametricField< NTL::zz_pE >::read (std::istream &is, NTL::zz_pE &x) const
template<> NTL::ZZ_p & UnparametricField< NTL::ZZ_p >::init (NTL::ZZ_p &x, const integer &y) const
template<> NTL::ZZ_pE & UnparametricField< NTL::ZZ_pE >::init (NTL::ZZ_pE &x, const integer &y) const
template<> bool UnparametricField< NTL::ZZ_pE >::isZero (const NTL::ZZ_pE &a) const
template<> bool UnparametricField< NTL::ZZ_pE >::isOne (const NTL::ZZ_pE &a) const
template<> integerUnparametricField< NTL::ZZ_pE >::convert (integer &c, const NTL::ZZ_pE &e) const
template<> integerUnparametricField< NTL::ZZ_pE >::characteristic (integer &c) const
template<> integerUnparametricField< NTL::ZZ_pE >::cardinality (integer &c) const
NTL::ZZ_pE & UnparametricField< NTL::ZZ_pE >::inv (NTL::ZZ_pE &x, const NTL::ZZ_pE &y) const
NTL::ZZ_pE & UnparametricField< NTL::ZZ_pE >::invin (NTL::ZZ_pE &x) const
template<> std::istream & UnparametricField< NTL::ZZ_pE >::read (std::istream &is, NTL::ZZ_pE &x) const
int operator!= (const integer &a, const integer &b)
int operator!= (int l, const integer &n)
int operator!= (long l, const integer &n)
int operator== (const integer &a, const integer &b)
int operator== (int l, const integer &n)
int operator== (long l, const integer &n)
int operator== (const integer &n, int l)
int operator== (const integer &n, long l)
int operator< (const integer &a, const integer &b)
int operator< (const int l, const integer &n)
int operator< (const long l, const integer &n)
int operator> (const integer &a, const integer &b)
int operator> (int l, const integer &n)
int operator> (long l, const integer &n)
int operator<= (const integer &a, const integer &b)
int operator<= (const integer &n, int l)
int operator<= (const integer &n, long l)
int operator<= (int l, const integer &n)
int operator<= (long l, const integer &n)
int operator>= (const integer &a, const integer &b)
int operator>= (int l, const integer &n)
int operator>= (long l, const integer &n)
int operator>= (const integer &n, int l)
int operator>= (const integer &n, long l)
integer operator+ (const int l, const integer &n)
integer operator+ (const unsigned int l, const integer &n)
integer operator+ (const long l, const integer &n)
integer operator+ (const unsigned long l, const integer &n)
integer operator+ (const integer &n, const int l)
integer operator+ (const integer &n, const unsigned int l)
integeroperator+= (integer &n, const int l)
integeroperator+= (integer &n, const unsigned int l)
integer operator- (const int l, const integer &n)
integer operator- (const unsigned int l, const integer &n)
integer operator- (const long l, const integer &n)
integer operator- (const unsigned long l, const integer &n)
integer operator- (const integer &n, const int l)
integer operator- (const integer &n, const unsigned int l)
integeroperator-= (integer &n, const int l)
integeroperator-= (integer &n, const unsigned int l)
integer operator * (const int l, const integer &n)
integer operator * (const unsigned int l, const integer &n)
integer operator * (const long l, const integer &n)
integer operator * (const unsigned long l, const integer &n)
integer operator * (const integer &n, const int l)
integer operator * (const integer &n, const unsigned int l)
integeroperator *= (integer &n, const int l)
integeroperator *= (integer &n, const unsigned int l)
integer operator/ (const int l, const integer &n)
integer operator/ (const long l, const integer &n)
integer operator/ (const integer &n, const int l)
integer operator/ (const integer &n, const unsigned int l)
integeroperator/= (integer &n, const int l)
integeroperator/= (integer &n, const long l)
integeroperator/= (integer &n, const unsigned int l)
integer operator% (const int l, const integer &n)
integer operator% (const long l, const integer &n)
integer operator% (const integer &n, const int l)
integer operator% (const integer &n, const unsigned int l)
integeroperator%= (integer &n, const int l)
integeroperator%= (integer &n, const unsigned int l)
int isone (const integer &a)
int iszero (const integer &a)
int iszero (const short int a)
int iszero (const int a)
int iszero (const long a)
int iszero (const unsigned short int a)
int iszero (const unsigned int a)
int iszero (const unsigned long a)
int sign (const integer &a)
unsigned long length (const integer &a)
integer abs (const integer &n)
integer operator<<= (integer &n, unsigned int l)
integer operator<<= (integer &n, unsigned long l)
integer operator>>= (integer &n, unsigned int l)
integer operator>>= (integer &n, unsigned long l)
ostream & operator<< (ostream &o, const integer &a)
template<class Element, class Row> std::ostream & operator<< (std::ostream &os, const SparseMatrixBase< Element, Row > &A)
template<class Element, class Row> std::istream & operator>> (std::istream &is, SparseMatrixBase< Element, Row > &A)
template<class Field> std::ostream & SparseMatrixWriteHelper< Element, Row, VectorCategories::SparseParallelVectorTag >::write (const SparseMatrixBase< Element, Row > &A, std::ostream &os, const Field &F, FileFormatTag format)
template<class Element, class Row> void SparseMatrixBase< Element, Row, VectorCategories::SparseSequenceVectorTag >::setEntry (size_t i, size_t j, const Element &value)
template<class Element, class Row> ElementSparseMatrixBase< Element, Row, VectorCategories::SparseSequenceVectorTag >::refEntry (size_t i, size_t j)
template<class Element, class Row> const ElementSparseMatrixBase< Element, Row, VectorCategories::SparseSequenceVectorTag >::getEntry (size_t i, size_t j) const
template<class Element, class Row> const ElementSparseMatrixBase< Element, Row, VectorCategories::SparseAssociativeVectorTag >::getEntry (size_t i, size_t j) const
template<class Element, class Row> void SparseMatrixBase< Element, Row, VectorCategories::SparseParallelVectorTag >::setEntry (size_t i, size_t j, const Element &value)
template<class Element, class Row> ElementSparseMatrixBase< Element, Row, VectorCategories::SparseParallelVectorTag >::refEntry (size_t i, size_t j)
template<class Element, class Row> const ElementSparseMatrixBase< Element, Row, VectorCategories::SparseParallelVectorTag >::getEntry (size_t i, size_t j) const
template<class Vector> VectorSparseMatrixBase< Element, Row, VectorCategories::SparseSequenceVectorTag >::columnDensity (Vector &v) const
template<class Vector> VectorSparseMatrixBase< Element, Row, VectorCategories::SparseParallelVectorTag >::columnDensity (Vector &v) const
template<class Vector> VectorSparseMatrixBase< Element, Row, VectorCategories::SparseAssociativeVectorTag >::columnDensity (Vector &v) const
template<class Element, class Row> SparseMatrixBase< Element,
Row, VectorCategories::SparseSequenceVectorTag > & 
SparseMatrixBase< Element, Row, VectorCategories::SparseSequenceVectorTag >::transpose (SparseMatrixBase &AT) const
template<class Element, class Row> SparseMatrixBase< Element,
Row, VectorCategories::SparseAssociativeVectorTag > & 
SparseMatrixBase< Element, Row, VectorCategories::SparseAssociativeVectorTag >::transpose (SparseMatrixBase &AT) const
template<class Element, class Row> SparseMatrixBase< Element,
Row, VectorCategories::SparseParallelVectorTag > & 
SparseMatrixBase< Element, Row, VectorCategories::SparseParallelVectorTag >::transpose (SparseMatrixBase &AT) const
template<class Blackbox, class Polynomial, class DomainCategory, class MyMethod> Polynomialcharpoly (Polynomial &P, const Blackbox &A, const DomainCategory &tag, const MyMethod &M)
template<class Blackbox, class Polynomial, class MyMethod> Polynomialcharpoly (Polynomial &P, const Blackbox &A, const MyMethod &M)
 ...using an optional Method parameter

template<class Polynomial, class Blackbox> Polynomialcharpoly (Polynomial &P, const Blackbox &A)
 ...using default Method

template<class Polynomial, class Blackbox> Polynomialcharpoly (Polynomial &P, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::Hybrid &M)
template<class Polynomial, class Field> Polynomialcharpoly (Polynomial &P, const DenseMatrix< Field > &A, const RingCategories::ModularTag &tag, const Method::Hybrid &M)
template<class Polynomial, class Blackbox> Polynomialcharpoly (Polynomial &P, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::Elimination &M)
template<class Polynomial, class Blackbox> Polynomialcharpoly (Polynomial &P, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::BlasElimination &M)
template<class Polynomial, class Blackbox> Polynomialcharpoly (Polynomial &P, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::Blackbox &M)
template<class Polynomial, class Blackbox> Polynomialcharpoly (Polynomial &P, const Blackbox &A, RingCategories::ModularTag tag, const Method::Wiedemann &M=Method::Wiedemann())
template<class Polynomial, class Blackbox, class MyMethod> Polynomialcharpoly (Polynomial &P, const Blackbox &A, const RingCategories::IntegerTag &tag, const MyMethod &M)
template<class Blackbox, class DetMethod, class DomainCategory> Blackbox::Field::Elementdet (typename Blackbox::Field::Element &d, const Blackbox &A, const DomainCategory &tag, const DetMethod &M)
template<class Blackbox, class MyMethod> Blackbox::Field::Elementdet (typename Blackbox::Field::Element &d, const Blackbox &A, const MyMethod &M)
template<class Blackbox> Blackbox::Field::Elementdet (typename Blackbox::Field::Element &d, const Blackbox &A)
template<class Blackbox> Blackbox::Field::Elementdet (typename Blackbox::Field::Element &d, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::Hybrid &M)
template<class Field> Field::Elementdet (typename Field::Element &d, const DenseMatrix< Field > &A, const RingCategories::ModularTag &tag, const Method::Hybrid &M)
template<class Blackbox> Blackbox::Field::Elementdet (typename Blackbox::Field::Element &d, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::Elimination &M)
template<class Blackbox> Blackbox::Field::Elementdet (typename Blackbox::Field::Element &d, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::Blackbox &M)
template<class Blackbox> Blackbox::Field::Elementdet (typename Blackbox::Field::Element &d, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::Wiedemann &M)
template<class Blackbox> Blackbox::Field::Elementdet (typename Blackbox::Field::Element &d, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::BlasElimination &M)
template<class Field> Field::Elementdetin (typename Field::Element &d, BlasBlackbox< Field > &A)
 A will be modified.

template<class Blackbox, class MyMethod> Blackbox::Field::Elementdet (typename Blackbox::Field::Element &d, const Blackbox &A, const RingCategories::IntegerTag &tag, const MyMethod &M)
template<class Matrix, class Method> bool isPosDef (Matrix &A, Method m)
template<class Matrix> bool isPosDef (Matrix &A)
template<class Matrix> bool isPosDef (Matrix &A, BLAS_LPM_Method m)
template<class Matrix> bool isPosDef (Matrix &A, Minpoly_Method m)
template<class Matrix, class Method> bool isPosSemidef (Matrix &A, Method m)
template<class Matrix> bool isPosSemidef (Matrix &A)
template<class Matrix> bool isPosSemidef (Matrix &A, BLAS_LPM_Method m)
template<class Matrix> bool isPosSemidef (Matrix &A, Minpoly_Method m)
template<class Blackbox, class isPositiveDefiniteMethod, class DomainCategory> bool isPositiveDefinite (const Blackbox &A, const DomainCategory &tag, const isPositiveDefiniteMethod &M)
template<class Blackbox, class MyMethod> bool isPositiveDefinite (const Blackbox &A, const MyMethod &M)
template<class Blackbox> bool isPositiveDefinite (const Blackbox &A)
template<class Blackbox, class MyMethod> bool isPositiveDefinite (const Blackbox &A, const RingCategories::ModularTag &tag, const MyMethod &M)
template<class Field> void LU (DenseMatrix< Field > &M)
template<class Field> void LU (Submatrix< DenseMatrix< Field > > &M)
template<class Matrix> void LL_MULIN (Matrix &M, const Matrix &L)
template<class Matrix> void RU_MULIN (Matrix &R, const Matrix &U)
template<class Matrix> void AXMYIN (Matrix &, const Matrix &, const Matrix &)
template<class BB> bool useBB (const BB &A)
template<class Field> bool useBB (const DenseMatrix< Field > &A)
template<class Blackbox, class Polynomial, class DomainCategory, class MyMethod> Polynomialminpoly (Polynomial &P, const Blackbox &A, const DomainCategory &tag, const MyMethod &M)
template<class Blackbox, class Polynomial, class MyMethod> Polynomialminpoly (Polynomial &P, const Blackbox &A, const MyMethod &M)
 ...using an optional Method parameter

template<class Polynomial, class Blackbox> Polynomialminpoly (Polynomial &P, const Blackbox &A)
 ...using default Method

template<class Polynomial, class Blackbox> Polynomialminpoly (Polynomial &P, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::Hybrid &M)
template<class Polynomial, class Field> Polynomialminpoly (Polynomial &P, const DenseMatrix< Field > &A, const RingCategories::ModularTag &tag, const Method::Hybrid &M)
template<class Polynomial, class Blackbox> Polynomialminpoly (Polynomial &P, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::Elimination &M)
template<class Polynomial, class Blackbox> Polynomialminpoly (Polynomial &P, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::BlasElimination &M)
template<class Polynomial, class Blackbox> Polynomialminpoly (Polynomial &P, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::Blackbox &M)
template<class Polynomial, class Blackbox> Polynomialminpoly (Polynomial &P, const Blackbox &A, RingCategories::ModularTag tag, const Method::Wiedemann &M=Method::Wiedemann())
template<class Polynomial, class Blackbox, class MyMethod> Polynomialminpoly (Polynomial &P, const Blackbox &A, const RingCategories::IntegerTag &tag, const MyMethod &M)
template<class Field, class Blackbox> Field::Elementdet (typename Field::Element &res, const Blackbox &A, const Field &F, const MethodTrait::Wiedemann &M=MethodTrait::Wiedemann())
template<class Blackbox, class Field> integerdet (integer &res, BlackboxFactory< Field, Blackbox > &factory)
template<class Field, class Blackbox, class Polynomial, class FieldCategoryTag> Polynomialminpoly (Polynomial &P, const Blackbox &A, const Field &F, const FieldCategoryTag &tag, const MethodTrait::Wiedemann &M=MethodTrait::Wiedemann())
template<class Blackbox, class Polynomial> Polynomialminpoly (Polynomial &P, const Blackbox &A, const MethodTrait::Wiedemann &M=MethodTrait::Wiedemann())
template<class Field, class Blackbox, class Polynomial> Polynomialminpoly (Polynomial &P, const Blackbox &A, const Field &F, RingCategories::IntegerTag tag, const MethodTrait::Wiedemann &M=MethodTrait::Wiedemann())
template<class Field, class Blackbox, class Polynomial, class FieldCategoryTag> PolynomialminpolySymmetric (Polynomial &P, const Blackbox &A, const Field &F, FieldCategoryTag tag, const MethodTrait::Wiedemann &M=MethodTrait::Wiedemann())
template<class Field, class Blackbox, class Polynomial> PolynomialminpolySymmetric (Polynomial &P, const Blackbox &A, const Field &F, const MethodTrait::Wiedemann &M=MethodTrait::Wiedemann())
template<class Field, class Blackbox, class Polynomial> PolynomialminpolySymmetric (Polynomial &P, const Blackbox &A, const Field &F, RingCategories::IntegerTag tag, const MethodTrait::Wiedemann &M=MethodTrait::Wiedemann())
template<class Field, class Blackbox, class Polynomial> Polynomialminpoly (Polynomial &P, const Blackbox &A, const Field &F, RingCategories::ModularTag tag, const MethodTrait::Wiedemann &M=MethodTrait::Wiedemann()) >>>>>>> 1.19
template<class Blackbox, class Polynomial> PolynomialminpolySymmetrize (Polynomial &P, const Blackbox &A, const MethodTrait::Wiedemann &M=MethodTrait::Wiedemann())
template<class Blackbox, class Polynomial> Polynomialminpoly (Polynomial &P, const Blackbox &A, const CRA_MethodTrait< IntegerRing > &M=CRA_MethodTrait< IntegerRing >())
template<class Blackbox> unsigned long & rank (unsigned long &r, const Blackbox &A)
template<class Matrix> unsigned long & rankin (unsigned long &r, Matrix &A)
template<class Blackbox> unsigned long & rank (unsigned long &r, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::Hybrid &m)
template<class Blackbox> unsigned long & rank (unsigned long &r, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::Elimination &m)
template<class Field, class Vector> unsigned long & rank (unsigned long &r, const SparseMatrix< Field, Vector > &A, const RingCategories::ModularTag &tag, const Method::Elimination &m)
template<class Blackbox> unsigned long & rank (unsigned long &r, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::NonBlasElimination &m)
template<class Blackbox> unsigned long & rank (unsigned long &r, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::Blackbox &m)
template<class Blackbox, class Method> unsigned long & rank (unsigned long &r, const Blackbox &A, const Method &M)
template<class Blackbox> unsigned long & rank (unsigned long &res, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::Wiedemann &M)
 M may be Method::Wiedemann().

template<class T, template< class T > class Container> std::ostream & operator<< (std::ostream &o, const Container< T > &C)
template<class Field> unsigned long & rank (unsigned long &r, const SparseMatrix< Field, typename LinBox::Vector< Field >::SparseSeq > &A, const RingCategories::ModularTag &tag, const Method::SparseElimination &M)
 M may be Method::SparseElimination().

template<class Field> unsigned long & rankin (unsigned long &r, SparseMatrix< Field, typename LinBox::Vector< Field >::SparseSeq > &A, const RingCategories::ModularTag &tag, const Method::SparseElimination &M)
 M may be Method::SparseElimination().

template<class Blackbox> unsigned long & rank (unsigned long &r, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::SparseElimination &M)
 Change of representation to be able to call the sparse elimination.

template<class Blackbox> unsigned long & rank (unsigned long &r, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::BlasElimination &M)
 M may be Method::BlasElimination().

template<class Matrix> unsigned long & rankin (unsigned long &r, Matrix &A, const RingCategories::ModularTag &tag, const Method::SparseElimination &M)
 A is modified.

template<class Field> unsigned long & rankin (unsigned long &r, BlasBlackbox< Field > &A, const RingCategories::ModularTag &tag, const Method::BlasElimination &M)
 A is modified.

template<class Blackbox, class MyMethod> unsigned long & rank (unsigned long &r, const Blackbox &A, const RingCategories::IntegerTag &tag, const MyMethod &M)
template<class Vector> long degree (const Vector &v)
template<class Poly, class Realring> size_t alternations (const Poly &p, const Realring &R)
template<class Symmbox> Signaturesignature (Signature &s, Symmbox &A, LPM_Method M=LPM_Method())
template<class Symmbox> Signaturesignature (Signature &s, Symmbox &A, MinpolyMethod M)
template<class Blackbox, class SolutionMethod, class DomainCategory> BOUTPUT & SOLUTION (BOUTPUT &r, const Blackbox &A, const DomainCategory &tag, const SolutionMethod &M)
template<class Blackbox, class MyMethod> BOUTPUT & SOLUTION (BOUTPUT &r, const Blackbox &A, const MyMethod &M)
template<class Blackbox> BOUTPUT & SOLUTION (BOUTPUT &r, const Blackbox &A)
template<class Blackbox> BOUTPUT & SOLUTION (BOUTPUT &r, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::Hybrid &M)
template<class Field> FOUTPUT & SOLUTION (FOUTPUT &r, const DenseMatrix< Field > &A, const RingCategories::ModularTag &tag, const Method::Hybrid &M)
template<class Blackbox> BOUTPUT & SOLUTION (BOUTPUT &r, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::Elimination &M)
template<class Blackbox> BOUTPUT & SOLUTION (BOUTPUT &r, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::Blackbox &M)
template<class Blackbox> BOUTPUT & SOLUTION (BOUTPUT &r, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::Wiedemann &M)
template<class Blackbox> BOUTPUT & SOLUTION (BOUTPUT &r, const Blackbox &A, const RingCategories::ModularTag &tag, const Method::BlasElimination &M)
template<class Blackbox, class MyMethod> BOUTPUT & SOLUTION (BOUTPUT &r, const Blackbox &A, const RingCategories::IntegerTag &tag, const MyMethod &M)
template<class Vector, class BB> Vectorsolve (Vector &x, const BB &A, const Vector &b)
template<class Vector, class BB> Vectorsolve (Vector &x, const BB &A, const Vector &b, const Method::Hybrid &m)
template<class Vector, class BB> Vectorsolve (Vector &x, const BB &A, const Vector &b, const Method::Blackbox &m)
template<class Vector, class BB> Vectorsolve (Vector &x, const BB &A, const Vector &b, const Method::Elimination &m)
template<class Vector, class BB> Vectorsolve (Vector &x, const BB &A, const Vector &b, const RingCategories::ModularTag tag, const Method::BlasElimination &m)
template<class Vector, class Field> Vectorsolve (Vector &x, const DenseMatrix< Field > &A, const Vector &b, const RingCategories::ModularTag tag, const Method::BlasElimination &m)
template<class Vector, class BB> Vectorsolve (Vector &x, const BB &A, const Vector &b, const RingCategories::IntegerTag tag, const Method::BlasElimination &m)
template<class Vector, class Field> Vectorsolve (Vector &x, const DenseMatrix< Field > &A, const Vector &b, const RingCategories::IntegerTag tag, const Method::BlasElimination &m)
template<class Vector, class Field> Vectorsolve (Vector &x, const DenseMatrix< Field > &A, const Vector &b, const RingCategories::IntegerTag tag, const BlasEliminationCRASpecifier &m)
template<class Vector, class BB> Vectorsolve (Vector &x, const BB &A, const Vector &b, const RingCategories::ModularTag tag, const Method::NonBlasElimination &m)
template<class Vector, class Field> Vectorsolve (Vector &x, const DenseMatrix< Field > &A, const Vector &b, const RingCategories::ModularTag tag, const Method::NonBlasElimination &m)
template<class Vector, class BB> Vectorsolve (Vector &x, const BB &A, const Vector &b, const RingCategories::ModularTag tag, const Method::Wiedemann &m)
template<class Vector, class BB> Vectorsolve (Vector &x, const BB &A, const Vector &b, const RingCategories::IntegerTag tag, const Method::Wiedemann &m)
template<class BB> BB::Field::Elementtrace (typename BB::Field::Element &t, const BB &A)
 sum of eigenvalues

template<class BB> BB::Field::Elementtrace (typename BB::Field::Element &t, const BB &A, const Method::Hybrid &m)
 our best guess

template<class Field> Field::Elementtrace (typename Field::Element &t, const DenseMatrix< Field > &A, const Method::Hybrid &m)
template<class Field> Field::Elementtrace (typename Field::Element &t, const SparseMatrix< Field > &A, const Method::Hybrid &m)
template<class Field> Field::Elementtrace (typename Field::Element &t, const ScalarMatrix< Field > &A, const Method::Hybrid &m)
template<class BB> BB::Field::Elementtrace (typename BB::Field::Element &t, const BB &A, const Method::Elimination &m)
 our elimination (a fake in this case)

template<class Blackbox> Blackbox::Field::Elementtrace (typename Blackbox::Field::Element &res, const Blackbox &A, const Method::Blackbox &m)
double nroot (double a, long r, double precision)
long isnpower (long &l, long a)
std::ostream & operator<< (std::ostream &o, const LinboxError &E)
bool equalCaseInsensitive (const string s1, const char *s2)
std::ostream & operator<< (std::ostream &o, const BaseTimer &BT)
std::ostream & operator<< (std::ostream &o, const Timer &T)
std::istream & operator>> (std::istream &is, BitVector::reference &a)
std::ostream & operator<< (std::ostream &os, BitVector::reference &a)
std::ostream & operator<< (std::ostream &os, BitVector::const_reference &a)
template<class Field, class Vector> Vector randomVector (Field &F, size_t n, typename Field::RandIter &r)
template<class Field, class Vector, class VectorTrait> Vector randomVector (Field &F, size_t n, typename Field::RandIter &r, VectorCategories::DenseVectorTag< VectorTrait > tag)
template<class Field, class Vector, class VectorTrait> Vector randomVector (Field &F, size_t n, typename Field::RandIter &r, VectorCategories::SparseSequenceVectorTag< VectorTrait > tag)
template<class Field, class Vector, class VectorTrait> Vector randomVector (Field &F, size_t n, typename Field::RandIter &r, VectorCategories::SparseAssociativeVectorTag< VectorTrait > tag)
template<class Element> Elementnoop (Element &a, const Element &b)
template<class Field> void fieldTest (const Field &f, double *array, long iter=1000000)
int64 getOps (int &a, float &b)
template<class Field> bool LU_MUL_TEST (const DenseMatrix< Field > &M, const DenseMatrix< Field > &L, const DenseMatrix< Field > &U)

Variables

const char * solverReturnString [] = {"OK", "FAILED", "SINGULAR", "INCONSISTENT", "BAD_PRECONDITIONER", "BAD_PRIME"}
const long _DEGINFTY_ = -1
const int BlasBound = 1 << 26
Commentator commentator


Typedef Documentation

typedef std::vector<BBBase*> BB_list
 

typedef std::map<const std::type_info*, BB_list, LessTypeInfo> BB_list_list
 

typedef ParamFuzzy DoubleRealApproximation
 

typedef UnparametricField<integer> GMP_Integers
 

typedef signed __LINBOX_INT16 int16
 

typedef signed __LINBOX_INT32 int32
 

typedef signed __LINBOX_INT64 int64
 

typedef signed __LINBOX_INT8 int8
 

typedef Integer integer
 

@memo This is a representation of arbitrary integers. @doc It is a wrapper of GMP integers. Arithmetic operations are via C++ infix operator forms (eg. a*b) . It is for ``casual'' uses such as characteristics and cardinalities and when initializing field elements. For the integers as a LinBox ring for use in integer matrix computation, see gmp-rational.h or ntl-ZZ.h.

typedef GMPRationalElement rational
 

typedef unsigned __LINBOX_INT16 uint16
 

typedef unsigned __LINBOX_INT32 uint32
 

typedef unsigned __LINBOX_INT64 uint64
 

typedef unsigned __LINBOX_INT8 uint8
 


Enumeration Type Documentation

enum FileFormatTag
 

tags for SparseMatrixBase::read() and write()

Enumeration values:
FORMAT_DETECT 
FORMAT_GUILLAUME 
FORMAT_TURNER 
FORMAT_MATLAB 
FORMAT_MAPLE 
FORMAT_PRETTY 
FORMAT_MAGMACPT 

enum MatrixStreamError
 

Enumeration values:
AMBIGUOUS_FORMAT 
GOOD 
END_OF_MATRIX 
END_OF_FILE 
BAD_FORMAT 
NO_FORMAT 

enum SolverLevel
 

Enumeration values:
SL_MONTECARLO 
SL_LASVEGAS 
SL_CERTIFIED 

enum SolverReturnStatus
 

Enumeration values:
SS_OK 
SS_FAILED 
SS_SINGULAR 
SS_INCONSISTENT 
SS_BAD_PRECONDITIONER 


Function Documentation

integer abs const integer   n [inline]
 

T abs const T &    a
 

size_t alternations const Poly &    p,
const Realring &    R
 

OutV& apply OutV &    y,
const Matrix &    A,
const InV &    x
[inline]
 

void ApplyBound const Ring &    R,
typename Ring::Element   bound_A,
const ItMatrix &    A
 

ApplyBound: computes bound_A <- max_i(max(sum_{j|a_ij > 0} a_ij, sum_{j|a_ij < 0} |a_ij|)) this is useful because for all u, v >= 0: [b has all entries in -u..v] => [each entry of A.b is at most (u+v)*bound_A in absolute value]

OutV& applyTranspose OutV &    y,
const Matrix &    A,
const InV &    x
[inline]
 

void AXMYIN Matrix &   ,
const Matrix &   ,
const Matrix &   
 

void bitonicMerge Iterator    begin,
Iterator    end,
const Comparator   comparator = Comparator()
 

void bitonicSort Iterator    begin,
Iterator    end,
const Comparator   comparator = Comparator()
 

Out& BlackboxParallel Out &    out,
const Matrix &    m,
const In &    in,
BBBase::BBType    type
 

This is a matrix representation supporting a parallel matrix vector product.

void BLTraceReport std::ostream &    out,
Domain &    D,
const char *    text,
size_t    iter,
const Object &    obj
[inline]
 

size_t bound const long long    pi
 

size_t bound_compute const long long    pi
 

size_t bound_compute_centered const long long    pi
 

void BoundBlackbox const Ring &    R,
typename Ring::Element   H_col_sqr,
typename Ring::Element   short_col_sqr,
const Transpose< Matrix > &    A
 

void BoundBlackbox const Ring &    R,
typename Ring::Element   H_col_sqr,
typename Ring::Element   short_col_sqr,
const Compose< Matrix1, Matrix2 > &    A
 

void BoundBlackbox const Ring &    R,
typename Ring::Element   H_col_sqr,
typename Ring::Element   short_col_sqr,
const SparseMatrix< Ring > &    A
 

void BoundBlackbox const Ring &    R,
typename Ring::Element   H_col_sqr,
typename Ring::Element   short_col_sqr,
const DenseSubmatrix< typename Ring::Element > &    A
 

void BoundBlackbox const Ring &    R,
typename Ring::Element   H_col_sqr,
typename Ring::Element   short_col_sqr,
const DenseMatrixBase< typename Ring::Element > &    A
 

Polynomial& charpoly Polynomial   P,
const Blackbox   A,
const RingCategories::IntegerTag   tag,
const MyMethod &    M
 

Polynomial& charpoly Polynomial   P,
const Blackbox   A,
RingCategories::ModularTag    tag,
const Method::Wiedemann   M = Method::Wiedemann ()
 

Polynomial& charpoly Polynomial   P,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::Blackbox   M
 

Polynomial& charpoly Polynomial   P,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::BlasElimination   M
 

Polynomial& charpoly Polynomial   P,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::Elimination   M
 

Polynomial& charpoly Polynomial   P,
const DenseMatrix< Field > &    A,
const RingCategories::ModularTag   tag,
const Method::Hybrid   M
 

Todo:
a real hybrid for charpoly

Polynomial& charpoly Polynomial   P,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::Hybrid   M
 

Polynomial& charpoly Polynomial   P,
const Blackbox   A
 

...using default Method

Polynomial& charpoly Polynomial   P,
const Blackbox   A,
const MyMethod &    M
 

...using an optional Method parameter

ameter P - the output characteristic polynomial. If the polynomial is
of degree d, this random access container has size d+1, the 0-th entry is the constant coefficient and the d-th is 1 since the charpoly is monic.
ameter A - a blackbox matrix
Optional
ameter M - the method object. Generally, the default
object suffices and the algorithm used is determined by the class of M. Basic methods are Method::Blackbox, Method::Elimination, and Method::Hybrid (the default). See methods.h for more options.
Returns:
a reference to P.

Polynomial& charpoly Polynomial   P,
const Blackbox   A,
const DomainCategory &    tag,
const MyMethod &    M
 

void checkAConjugacy const MatrixDomain< Field > &    MD,
const Matrix &    AV,
const Matrix &    V,
Matrix &    T,
size_t    AV_iter,
size_t    V_iter
[inline]
 

void create_padic_chunk const Domain &    D,
const IMatrix &    M,
double *    chunks,
size_t    num_chunks
 

split an integer matrix into a padic chunk representation

BBThread<Matrix, Out, In>* createBBThread const Matrix *    m,
Out *    out,
const In *    in
 

long degree const Vector   v
 

long density const Vector   v,
VectorCategories::DenseVectorTag   
[inline]
 

long density const Vector  ,
VectorCategory   
[inline]
 

long density const Vector   v [inline]
 

Estimate nonzero entries in a vector, used in parallel elimination.

integer& det integer   res,
BlackboxFactory< Field, Blackbox > &    factory
 

Compute the determinant over {\bf Z} or {\bf Q}

Compute the determinant of a matrix, represented via a \ref{BlackboxFactory}. Perform the necessary modular reductions and reconstruct the result via Chinese remaindering or rational number reconstruction.

Parameters:
res  Element into which to store the result
factory  \ref{BlacboxFactory} that represents the matrix

Field::Element& det typename Field::Element   res,
const Blackbox   A,
const Field   F,
const MethodTrait::Wiedemann &    M = MethodTrait::Wiedemann ()
 

Compute the determinant over a field.

The determinant of a linear operator A, represented as a black box, is computed over the ring or field F.

This implementation is essentially direct, in that it does not perform any modular reduction and reconstruction. Thus, it is not recommended that one use this function to compute the determinant of an integer or rational matrix. One should instead use the version indicated below that uses \ref{BlackboxFactory}.

Parameters:
res  Field element into which to store the result
A  Black box of which to compute the determinant
F  Field over which to compute the determinant
M  Method traits

Blackbox::Field::Element& det typename Blackbox::Field::Element   d,
const Blackbox   A,
const RingCategories::IntegerTag   tag,
const MyMethod &    M
 

Blackbox::Field::Element& det typename Blackbox::Field::Element   d,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::BlasElimination   M
 

Blackbox::Field::Element& det typename Blackbox::Field::Element   d,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::Wiedemann   M
 

Blackbox::Field::Element& det typename Blackbox::Field::Element   d,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::Blackbox   M
 

Blackbox::Field::Element& det typename Blackbox::Field::Element   d,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::Elimination   M
 

Field::Element& det typename Field::Element   d,
const DenseMatrix< Field > &    A,
const RingCategories::ModularTag   tag,
const Method::Hybrid   M
 

Blackbox::Field::Element& det typename Blackbox::Field::Element   d,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::Hybrid   M
 

Blackbox::Field::Element& det typename Blackbox::Field::Element   d,
const Blackbox   A
 

Blackbox::Field::Element& det typename Blackbox::Field::Element   d,
const Blackbox   A,
const DomainCategory &    tag,
const DetMethod &    M
 

integer& det_cra integer   res,
const Blackbox   A,
const MethodTraits &    M
 

Compute the determinant over {\bf Z}

Compute the determinant of a matrix. Perform the necessary modular reductions and reconstruct the result via Chinese remaindering

Parameters:
res  Element into which to store the result
factory  \ref{BlacboxFactory} that represents the matrix

Diagonal< _Field, VectorCategories::DenseVectorTag >::Diagonal const Field    F,
const size_t    n
[inline]
 

OutVector& Diagonal< Field, VectorCategories::DenseVectorTag >::apply OutVector &    y,
const InVector &    x
const [inline]
 

Diagonal< Field, VectorCategories::DenseVectorTag >::Diagonal const Field    F,
const size_t    n,
typename Field::RandIter   iter
[inline]
 

Diagonal< Field, VectorCategories::DenseVectorTag >::Diagonal const Field    F,
const std::vector< typename Field::Element > &    v
[inline]
 

OutVector& Diagonal< Field, VectorCategories::SparseAssociativeVectorTag >::apply OutVector &    y,
const InVector &    x
const [inline]
 

Diagonal< Field, VectorCategories::SparseAssociativeVectorTag >::Diagonal const Field    F,
const std::vector< typename Field::Element > &    v
[inline]
 

OutVector& Diagonal< Field, VectorCategories::SparseSequenceVectorTag >::apply OutVector &    y,
const InVector &    x
const [inline]
 

Diagonal< Field, VectorCategories::SparseSequenceVectorTag >::Diagonal const Field    F,
const std::vector< typename Field::Element > &    v
[inline]
 

bool equalCaseInsensitive const string    s1,
const char *    s2
 

void fieldTest const Field   f,
double *    array,
long    iter = 1000000
 

int64 getOps int &    a,
float &    b
 

OutVector& Hilbert< Field, VectorCategories::DenseVectorTag >::apply OutVector &    y,
const InVector &    x
const [inline]
 

Hilbert< Field, VectorCategories::DenseVectorTag >::Hilbert Field    F,
size_t    n
[inline]
 

OutVector& Hilbert< Field, VectorCategories::SparseAssociativeVectorTag >::apply OutVector &    y,
const InVector &    x
const [inline]
 

Hilbert< Field, VectorCategories::SparseAssociativeVectorTag >::Hilbert Field    F,
size_t    n
[inline]
 

OutVector& Hilbert< Field, VectorCategories::SparseSequenceVectorTag >::apply OutVector &    y,
const InVector &    x
const [inline]
 

Hilbert< Field, VectorCategories::SparseSequenceVectorTag >::Hilbert Field    F,
size_t    n
[inline]
 

long isnpower long &    l,
long    a
 

int isone const integer   a [inline]
 

bool isPosDef Matrix &    A,
Minpoly_Method    m
 

bool isPosDef Matrix &    A,
BLAS_LPM_Method    m
 

bool isPosDef Matrix &    A
 

bool isPosDef Matrix &    A,
Method    m
 

this is for integer and rational matrices only

bool isPositiveDefinite const Blackbox   A,
const RingCategories::ModularTag   tag,
const MyMethod &    M
 

bool isPositiveDefinite const Blackbox   A
 

bool isPositiveDefinite const Blackbox   A,
const MyMethod &    M
 

Compute the isPositiveDefinite of A

The isPositiveDefinite of a linear operator A, represented as a black box, is computed over the ring or field of A.

Parameters:
r  OUTPUT instance into which to store the result r
A  Black box of which to compute the isPositiveDefinite
M  may be a Method::Hybrid (default), Method::Blackbox, Method::Elimination, or of other method type.

bool isPositiveDefinite const Blackbox   A,
const DomainCategory &    tag,
const isPositiveDefiniteMethod &    M
 

bool isPosSemidef Matrix &    A,
Minpoly_Method    m
 

bool isPosSemidef Matrix &    A,
BLAS_LPM_Method    m
 

bool isPosSemidef Matrix &    A
 

bool isPosSemidef Matrix &    A,
Method    m
 

this is for integer and rational matrices only

int iszero const unsigned long    a [inline]
 

int iszero const unsigned int    a [inline]
 

int iszero const unsigned short int    a [inline]
 

int iszero const long    a [inline]
 

int iszero const int    a [inline]
 

int iszero const short int    a [inline]
 

int iszero const integer   a [inline]
 

void LABLReportPriorityIndices std::ostream &   ,
std::list< size_t > &   ,
const char *   
 

void LABLTraceReport std::ostream &    out,
Domain &    D,
const char *    text,
size_t    iter,
const Object &    obj
[inline]
 

unsigned long length const integer   a [inline]
 

void LL_MULIN Matrix &    M,
const Matrix &    L
 

void LU Submatrix< DenseMatrix< Field > > &    M
 

void LU DenseMatrix< Field > &    M
 

M <-- the LU decomposition of M.

Parameters:
M  is a dense matrix on input. require all principle minor are non-singular. Every leading principal minor must be nonzero. M is modified to represent the LU decomposition of the original M. L is unit lower triangular and occupies the strictly lower triangular part of M. The diagonal one's are implicit. U is upper triangular and occupies the rest of M.

bool LU_MUL_TEST const DenseMatrix< Field > &    M,
const DenseMatrix< Field > &    L,
const DenseMatrix< Field > &    U
 

void MGBLTraceReport std::ostream &    out,
Domain &    D,
const char *    text,
size_t    iter,
const Object &    obj
[inline]
 

Polynomial& minpoly Polynomial   P,
const Blackbox   A,
const CRA_MethodTrait< IntegerRing > &    M = CRA_MethodTrait<IntegerRing>()
 

Polynomial& minpoly Polynomial   P,
const Blackbox   A,
const Field   F,
RingCategories::ModularTag    tag,
const MethodTrait::Wiedemann &    M = MethodTrait::Wiedemann ()
 

Polynomial& minpoly Polynomial   P,
const Blackbox   A,
const Field   F,
RingCategories::IntegerTag    tag,
const MethodTrait::Wiedemann &    M = MethodTrait::Wiedemann ()
 

Polynomial& minpoly Polynomial   P,
const Blackbox   A,
const MethodTrait::Wiedemann &    M = MethodTrait::Wiedemann ()
 

Polynomial& minpoly Polynomial   P,
const Blackbox   A,
const Field   F,
const FieldCategoryTag &    tag,
const MethodTrait::Wiedemann &    M = MethodTrait::Wiedemann()
 

@memo Minimal polynomial of a blackbox linear operator A. @doc The resulting polynomial is a vector of coefficients. Somewhere we should document our handling of polys.

Polynomial& minpoly Polynomial   P,
const Blackbox   A,
const RingCategories::IntegerTag   tag,
const MyMethod &    M
 

Polynomial& minpoly Polynomial   P,
const Blackbox   A,
RingCategories::ModularTag    tag,
const Method::Wiedemann   M = Method::Wiedemann ()
 

Polynomial& minpoly Polynomial   P,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::Blackbox   M
 

Polynomial& minpoly Polynomial   P,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::BlasElimination   M
 

Polynomial& minpoly Polynomial   P,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::Elimination   M
 

Polynomial& minpoly Polynomial   P,
const DenseMatrix< Field > &    A,
const RingCategories::ModularTag   tag,
const Method::Hybrid   M
 

Polynomial& minpoly Polynomial   P,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::Hybrid   M
 

Polynomial& minpoly Polynomial   P,
const Blackbox   A
 

...using default Method

Polynomial& minpoly Polynomial   P,
const Blackbox   A,
const MyMethod &    M
 

...using an optional Method parameter

ameter P - the output minimal polynomial. If the polynomial is
of degree d, this random access container has size d+1, the 0-th entry is the constant coefficient and the d-th is 1 since the minpoly is monic.
ameter A - a blackbox matrix
Optional
ameter M - the method object. Generally, the default
object suffices and the algorithm used is determined by the class of M. Basic methods are Method::Blackbox, Method::Elimination, and Method::Hybrid (the default). See methods.h for more options.
Returns:
a reference to P.

Polynomial& minpoly Polynomial   P,
const Blackbox   A,
const DomainCategory &    tag,
const MyMethod &    M
 

Polynomial& minpolySymmetric Polynomial   P,
const Blackbox   A,
const Field   F,
RingCategories::IntegerTag    tag,
const MethodTrait::Wiedemann &    M = MethodTrait::Wiedemann ()
 

Polynomial& minpolySymmetric Polynomial   P,
const Blackbox   A,
const Field   F,
const MethodTrait::Wiedemann &    M = MethodTrait::Wiedemann ()
 

Polynomial& minpolySymmetric Polynomial   P,
const Blackbox   A,
const Field   F,
FieldCategoryTag    tag,
const MethodTrait::Wiedemann &    M = MethodTrait::Wiedemann()
 

Polynomial& minpolySymmetrize Polynomial   P,
const Blackbox   A,
const MethodTrait::Wiedemann &    M = MethodTrait::Wiedemann ()
 

size_t mul_bound const long long    pi
 

size_t mul_bound_compute const long long    pi
 

Element& noop Element   a,
const Element   b
 

double nroot double    a,
long    r,
double    precision
 

integer operator * const integer   n,
const unsigned int    l
[inline]
 

integer operator * const integer   n,
const int    l
[inline]
 

integer operator * const unsigned long    l,
const integer   n
[inline]
 

integer operator * const long    l,
const integer   n
[inline]
 

integer operator * const unsigned int    l,
const integer   n
[inline]
 

integer operator * const int    l,
const integer   n
[inline]
 

integer& operator *= integer   n,
const unsigned int    l
[inline]
 

integer& operator *= integer   n,
const int    l
[inline]
 

int operator!= long    l,
const integer   n
[inline]
 

int operator!= int    l,
const integer   n
[inline]
 

int operator!= const integer   a,
const integer   b
[inline]
 

integer operator% const integer   n,
const unsigned int    l
[inline]
 

integer operator% const integer   n,
const int    l
[inline]
 

integer operator% const long    l,
const integer   n
[inline]
 

integer operator% const int    l,
const integer   n
[inline]
 

integer& operator%= integer   n,
const unsigned int    l
[inline]
 

integer& operator%= integer   n,
const int    l
[inline]
 

integer operator+ const integer   n,
const unsigned int    l
[inline]
 

integer operator+ const integer   n,
const int    l
[inline]
 

integer operator+ const unsigned long    l,
const integer   n
[inline]
 

integer operator+ const long    l,
const integer   n
[inline]
 

integer operator+ const unsigned int    l,
const integer   n
[inline]
 

integer operator+ const int    l,
const integer   n
[inline]
 

integer& operator+= integer   n,
const unsigned int    l
[inline]
 

integer& operator+= integer   n,
const int    l
[inline]
 

integer operator- const integer   n,
const unsigned int    l
[inline]
 

integer operator- const integer   n,
const int    l
[inline]
 

integer operator- const unsigned long    l,
const integer   n
[inline]
 

integer operator- const long    l,
const integer   n
[inline]
 

integer operator- const unsigned int    l,
const integer   n
[inline]
 

integer operator- const int    l,
const integer   n
[inline]
 

integer& operator-= integer   n,
const unsigned int    l
[inline]
 

integer& operator-= integer   n,
const int    l
[inline]
 

integer operator/ const integer   n,
const unsigned int    l
[inline]
 

integer operator/ const integer   n,
const int    l
[inline]
 

integer operator/ const long    l,
const integer   n
[inline]
 

integer operator/ const int    l,
const integer   n
[inline]
 

integer& operator/= integer   n,
const unsigned int    l
[inline]
 

integer& operator/= integer   n,
const long    l
[inline]
 

integer& operator/= integer   n,
const int    l
[inline]
 

int operator< const long    l,
const integer   n
[inline]
 

int operator< const int    l,
const integer   n
[inline]
 

int operator< const integer   a,
const integer   b
[inline]
 

std::ostream& operator<< std::ostream &    os,
BitVector::const_reference   a
 

std::ostream& operator<< std::ostream &    os,
BitVector::reference   a
 

std::ostream& operator<< std::ostream &    o,
const Timer   T
[inline]
 

std::ostream& operator<< std::ostream &    o,
const BaseTimer   BT
[inline]
 

std::ostream& operator<< std::ostream &    o,
const LinboxError   E
 

std::ostream& operator<< std::ostream &    o,
const Container< T > &    C
 

std::ostream& operator<< std::ostream &    os,
const SparseMatrixBase< Element, Row > &    A
 

ostream& operator<< ostream &    o,
const integer   a
[inline]
 

std::ostream& operator<< std::ostream &    os,
GMPRationalElement   elt
 

integer operator<<= integer   n,
unsigned long    l
[inline]
 

integer operator<<= integer   n,
unsigned int    l
[inline]
 

int operator<= long    l,
const integer   n
[inline]
 

int operator<= int    l,
const integer   n
[inline]
 

int operator<= const integer   n,
long    l
[inline]
 

int operator<= const integer   n,
int    l
[inline]
 

int operator<= const integer   a,
const integer   b
[inline]
 

int operator== const integer   n,
long    l
[inline]
 

int operator== const integer   n,
int    l
[inline]
 

int operator== long    l,
const integer   n
[inline]
 

int operator== int    l,
const integer   n
[inline]
 

int operator== const integer   a,
const integer   b
[inline]
 

int operator> long    l,
const integer   n
[inline]
 

int operator> int    l,
const integer   n
[inline]
 

int operator> const integer   a,
const integer   b
[inline]
 

int operator>= const integer   n,
long    l
[inline]
 

int operator>= const integer   n,
int    l
[inline]
 

int operator>= long    l,
const integer   n
[inline]
 

int operator>= int    l,
const integer   n
[inline]
 

int operator>= const integer   a,
const integer   b
[inline]
 

std::istream& operator>> std::istream &    is,
BitVector::reference   a
 

std::istream& operator>> std::istream &    is,
SparseMatrixBase< Element, Row > &    A
 

std::istream& operator>> std::istream &    is,
GMPRationalElement   elt
 

integer operator>>= integer   n,
unsigned long    l
[inline]
 

integer operator>>= integer   n,
unsigned int    l
[inline]
 

Vector randomVector Field   F,
size_t    n,
typename Field::RandIter   r,
VectorCategories::SparseAssociativeVectorTag< VectorTrait >    tag
[inline]
 

Vector randomVector Field   F,
size_t    n,
typename Field::RandIter   r,
VectorCategories::SparseSequenceVectorTag< VectorTrait >    tag
[inline]
 

Vector randomVector Field   F,
size_t    n,
typename Field::RandIter   r,
VectorCategories::DenseVectorTag< VectorTrait >    tag
[inline]
 

Vector randomVector Field   F,
size_t    n,
typename Field::RandIter   r
[inline]
 

Random vector generator This templated function takes a field and a random field element generator and returns a vector of random field elements. The vector is dense in the field elements, even if the vector is a sparse LinBox vector. The funtion is templatized by the field and the vector types being used. This function calls another function by the same name with an additional parameter of the vector category of the vector it is called with. This mechanism is used because functions cannot have partial template specializations like classes can. This new, extended function can be specialized for specific fields and vectors to allow for better performance.

Returns:
v vector of random field elements
Parameters:
F  Field in which arithmetic is done
n  integer number of elements in vector
r  Random field element generator

unsigned long& rank unsigned long &    r,
const Blackbox   A,
const RingCategories::IntegerTag   tag,
const MyMethod &    M
 

unsigned long& rank unsigned long &    r,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::BlasElimination   M
 

M may be Method::BlasElimination().

unsigned long& rank unsigned long &    r,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::SparseElimination   M
 

Change of representation to be able to call the sparse elimination.

unsigned long& rank unsigned long &    r,
const SparseMatrix< Field, typename LinBox::Vector< Field >::SparseSeq > &    A,
const RingCategories::ModularTag   tag,
const Method::SparseElimination   M
 

M may be Method::SparseElimination().

unsigned long& rank unsigned long &    res,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::Wiedemann   M
 

M may be Method::Wiedemann().

unsigned long& rank unsigned long &    r,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::Blackbox   m
 

unsigned long& rank unsigned long &    r,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::NonBlasElimination   m
 

unsigned long& rank unsigned long &    r,
const SparseMatrix< Field, Vector > &    A,
const RingCategories::ModularTag   tag,
const Method::Elimination   m
 

unsigned long& rank unsigned long &    r,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::Elimination   m
 

unsigned long& rank unsigned long &    r,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::Hybrid   m
 

unsigned long& rankin unsigned long &    r,
BlasBlackbox< Field > &    A,
const RingCategories::ModularTag   tag,
const Method::BlasElimination   M
 

A is modified.

unsigned long& rankin unsigned long &    r,
Matrix &    A,
const RingCategories::ModularTag   tag,
const Method::SparseElimination   M
 

A is modified.

unsigned long& rankin unsigned long &    r,
SparseMatrix< Field, typename LinBox::Vector< Field >::SparseSeq > &    A,
const RingCategories::ModularTag   tag,
const Method::SparseElimination   M
 

M may be Method::SparseElimination().

unsigned long& rankin unsigned long &    r,
Matrix &    A
 

int rational_reconstruction integer   a,
integer   b,
const integer   n0,
const integer   d0,
const integer   B
 

void reduceIn Domain &    D,
std::pair< typename Domain::Element, typename Domain::Element > &    frac
 

utility function to reduce a rational pair to lowest form

std::ostream& reportPermutation std::ostream &    out,
const std::vector< std::pair< unsigned int, unsigned int > > &    P
 

void reportS std::ostream &    out,
const std::vector< bool > &    S,
size_t    iter
 

void RU_MULIN Matrix &    R,
const Matrix &    U
 

void* runThread void *    arg
 

std::vector<bool> setButterfly const std::vector< bool > &    x,
size_t    j = 0
 

A function used with Butterfly Blackbox Matrices. This function takes an STL vector x of booleans, and returns a vector y of booleans such that setting the switches marked by true flags in y to be on (or to swap elements) the true elements x will be switched to a given contiguous block through the use of a Butterfly switching network. The integer parameter j marks where this block is to begin. If x has r true elements, the Butterfly switching network will place these elements in a contiguous block starting at j and ending at j + r - 1. Wrap around shall be considered to preserve contiguity. The value of j is defaulted to be zero, and it is only allowed to be non-zero is the size of x is a power of 2.

Returns:
vector of booleans for setting switches
Parameters:
x  vector of booleans marking elements to switch into contiguous block
j  offset of contiguous block
log  reference to ostream for logging

int sign const integer   a [inline]
 

Signature& signature Signature   s,
Symmbox &    A,
MinpolyMethod    M
 

Signature& signature Signature   s,
Symmbox &    A,
LPM_Method    M = LPM_Method()
 

BOUTPUT& SOLUTION BOUTPUT &    r,
const Blackbox   A,
const RingCategories::IntegerTag   tag,
const MyMethod &    M
 

BOUTPUT& SOLUTION BOUTPUT &    r,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::BlasElimination   M
 

BOUTPUT& SOLUTION BOUTPUT &    r,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::Wiedemann   M
 

BOUTPUT& SOLUTION BOUTPUT &    r,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::Blackbox   M
 

BOUTPUT& SOLUTION BOUTPUT &    r,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::Elimination   M
 

FOUTPUT& SOLUTION FOUTPUT &    r,
const DenseMatrix< Field > &    A,
const RingCategories::ModularTag   tag,
const Method::Hybrid   M
 

BOUTPUT& SOLUTION BOUTPUT &    r,
const Blackbox   A,
const RingCategories::ModularTag   tag,
const Method::Hybrid   M
 

BOUTPUT& SOLUTION BOUTPUT &    r,
const Blackbox   A
 

BOUTPUT& SOLUTION BOUTPUT &    r,
const Blackbox   A,
const DomainCategory &    tag,
const SolutionMethod &    M
 

Vector& solve Vector   x,
const BB &    A,
const Vector   b,
const RingCategories::IntegerTag    tag,
const Method::Wiedemann   m
 

Vector& solve Vector   x,
const BB &    A,
const Vector   b,
const RingCategories::ModularTag    tag,
const Method::Wiedemann   m
 

Vector& solve Vector   x,
const DenseMatrix< Field > &    A,
const Vector   b,
const RingCategories::ModularTag    tag,
const Method::NonBlasElimination   m
 

Vector& solve Vector   x,
const BB &    A,
const Vector   b,
const RingCategories::ModularTag    tag,
const Method::NonBlasElimination   m
 

Vector& solve Vector   x,
const DenseMatrix< Field > &    A,
const Vector   b,
const RingCategories::IntegerTag    tag,
const BlasEliminationCRASpecifier &    m
 

Vector& solve Vector   x,
const DenseMatrix< Field > &    A,
const Vector   b,
const RingCategories::IntegerTag    tag,
const Method::BlasElimination   m
 

Vector& solve Vector   x,
const BB &    A,
const Vector   b,
const RingCategories::IntegerTag    tag,
const Method::BlasElimination   m
 

Vector& solve Vector   x,
const DenseMatrix< Field > &    A,
const Vector   b,
const RingCategories::ModularTag    tag,
const Method::BlasElimination   m
 

Vector& solve Vector   x,
const BB &    A,
const Vector   b,
const RingCategories::ModularTag    tag,
const Method::BlasElimination   m
 

Vector& solve Vector   x,
const BB &    A,
const Vector   b,
const Method::Elimination   m
 

Vector& solve Vector   x,
const BB &    A,
const Vector   b,
const Method::Blackbox   m
 

Vector& solve Vector   x,
const BB &    A,
const Vector   b,
const Method::Hybrid   m
 

Vector& solve Vector   x,
const BB &    A,
const Vector   b
 

Vector& SparseMatrixBase< Element, Row, VectorCategories::SparseAssociativeVectorTag >::columnDensity Vector   v const
 

const Element& SparseMatrixBase< Element, Row, VectorCategories::SparseAssociativeVectorTag >::getEntry size_t    i,
size_t    j
const
 

SparseMatrixBase<Element, Row, VectorCategories::SparseAssociativeVectorTag >& SparseMatrixBase< Element, Row, VectorCategories::SparseAssociativeVectorTag >::transpose SparseMatrixBase   AT const
 

Vector& SparseMatrixBase< Element, Row, VectorCategories::SparseParallelVectorTag >::columnDensity Vector   v const
 

const Element& SparseMatrixBase< Element, Row, VectorCategories::SparseParallelVectorTag >::getEntry size_t    i,
size_t    j
const
 

Element& SparseMatrixBase< Element, Row, VectorCategories::SparseParallelVectorTag >::refEntry size_t    i,
size_t    j
 

void SparseMatrixBase< Element, Row, VectorCategories::SparseParallelVectorTag >::setEntry size_t    i,
size_t    j,
const Element   value
 

SparseMatrixBase<Element, Row, VectorCategories::SparseParallelVectorTag >& SparseMatrixBase< Element, Row, VectorCategories::SparseParallelVectorTag >::transpose SparseMatrixBase   AT const
 

Vector& SparseMatrixBase< Element, Row, VectorCategories::SparseSequenceVectorTag >::columnDensity Vector   v const
 

const Element& SparseMatrixBase< Element, Row, VectorCategories::SparseSequenceVectorTag >::getEntry size_t    i,
size_t    j
const
 

Element& SparseMatrixBase< Element, Row, VectorCategories::SparseSequenceVectorTag >::refEntry size_t    i,
size_t    j
 

void SparseMatrixBase< Element, Row, VectorCategories::SparseSequenceVectorTag >::setEntry size_t    i,
size_t    j,
const Element   value
 

SparseMatrixBase<Element, Row, VectorCategories::SparseSequenceVectorTag >& SparseMatrixBase< Element, Row, VectorCategories::SparseSequenceVectorTag >::transpose SparseMatrixBase   AT const
 

std::ostream& SparseMatrixWriteHelper< Element, Row, VectorCategories::SparseParallelVectorTag >::write const SparseMatrixBase< Element, Row > &    A,
std::ostream &    os,
const Field   F,
FileFormatTag    format
 

void SpecialBound const Ring &    R,
typename Ring::Element   H_col_sqr,
typename Ring::Element   short_col_sqr,
const ItMatrix &    A
 

BoundBlackbox: Sets H_col_sqr <- H_col(A)^2, short_col_sqr <- short_col(A)^2 where H_col(A) is prod_j sqrt(sum_i a_ij^2) ('Hadamard column bound') short_col(A) is min_j sqrt(sum_i a_ij^2) ('shortest column')

note: H_col is not actually a norm! but it is what we need for lifting bound computation

Blackbox::Field::Element& trace typename Blackbox::Field::Element   res,
const Blackbox   A,
const Method::Blackbox   m
 

Compute the trace of a linear operator A, represented as a black box. This class is parameterized by the black box type so that it can be specialized for different black boxes.

BB::Field::Element& trace typename BB::Field::Element   t,
const BB &    A,
const Method::Elimination   m
 

our elimination (a fake in this case)

Elimination method will go to blackbox.

Field::Element& trace typename Field::Element   t,
const ScalarMatrix< Field > &    A,
const Method::Hybrid   m
 

Field::Element& trace typename Field::Element   t,
const SparseMatrix< Field > &    A,
const Method::Hybrid   m
 

Field::Element& trace typename Field::Element   t,
const DenseMatrix< Field > &    A,
const Method::Hybrid   m
 

BB::Field::Element& trace typename BB::Field::Element   t,
const BB &    A,
const Method::Hybrid   m
 

our best guess

Hybrid method will choose based on matrix size and type

BB::Field::Element& trace typename BB::Field::Element   t,
const BB &    A
 

sum of eigenvalues

Also sum of diagonal entries. This is the generic one.

testing multiple doc comments.

void traceReport std::ostream &    out,
const Field   F,
const char *    text,
size_t    iter,
const typename Field::Element   a
 

void traceReport std::ostream &    out,
VectorDomain< Field > &    VD,
const char *    text,
size_t    iter,
const Vector   v
[inline]
 

integer& UnparametricField< NTL::GF2E >::cardinality integer   c const
 

integer& UnparametricField< NTL::GF2E >::characteristic integer   c const
 

integer& UnparametricField< NTL::GF2E >::convert integer   x,
const NTL::GF2E &    y
const
 

NTL::GF2E& UnparametricField< NTL::GF2E >::init NTL::GF2E &    x,
const integer   y
const
 

NTL::GF2E& UnparametricField< NTL::GF2E >::inv NTL::GF2E &    x,
const NTL::GF2E &    y
const
 

NTL::GF2E& UnparametricField< NTL::GF2E >::invin NTL::GF2E &    x const
 

bool UnparametricField< NTL::GF2E >::isOne const NTL::GF2E &    a const
 

bool UnparametricField< NTL::GF2E >::isZero const NTL::GF2E &    a const
 

std::istream& UnparametricField< NTL::GF2E >::read std::istream &    is,
NTL::GF2E &    x
const
 

integer& UnparametricField< NTL::RR >::convert integer   x,
const NTL::RR &    y
const
 

Conversion of field element to an integer. This function assumes the output field element x has already been constructed, but that it is not already initialized. For now, this is done by converting the element type to a C++ long and then to the integer type through the use of static cast and NTL's to_long function. This, of course, assumes such static casts are possible. This function should be changed in the future to avoid using long.

Returns:
reference to integer.
Parameters:
x  reference to integer to contain output (reference returned).
y  constant reference to field element.

NTL::RR& UnparametricField< NTL::RR >::init NTL::RR &    x,
const integer   y
const
 

Initialization of field element from an integer. Behaves like C++ allocator construct. This function assumes the output field element x has already been constructed, but that it is not already initialized. For now, this is done by converting the integer type to a C++ long and then to the element type through the use of static cast and NTL's to_RR function. This, of course, assumes such static casts are possible. This function should be changed in the future to avoid using long.

Returns:
reference to field element.
Parameters:
x  field element to contain output (reference returned).
y  integer.

NTL::RR& UnparametricField< NTL::RR >::inv NTL::RR &    x,
const NTL::RR &    y
const
 

Multiplicative Inverse. x = 1 / y This function assumes both field elements have already been constructed and initialized.

Returns:
reference to x.
Parameters:
x  field element (reference returned).
y  field element.

NTL::RR& UnparametricField< NTL::RR >::invin NTL::RR &    x const
 

Inplace Multiplicative Inverse. x = 1 / x This function assumes both field elements have already been constructed and initialized.

Returns:
reference to x.
Parameters:
x  field element (reference returned).

bool UnparametricField< NTL::RR >::isOne const NTL::RR &    x const
 

One equality. Test if field element is equal to one. This function assumes the field element has already been constructed and initialized. In this specialization, NTL's IsOne function is called.

Returns:
boolean true if equals one, false if not.
Parameters:
x  field element.

bool UnparametricField< NTL::RR >::isZero const NTL::RR &    x const
 

Zero equality. Test if field element is equal to zero. This function assumes the field element has already been constructed and initialized. In this specialization, NTL's IsZero function is called.

Returns:
boolean true if equals zero, false if not.
Parameters:
x  field element.

std::ostream& UnparametricField< NTL::RR >::write std::ostream &    os const
 

Print field.

Returns:
output stream to which field is written.
Parameters:
os  output stream to which field is written.

integer& UnparametricField< NTL::ZZ_p >::cardinality integer   c const
 

Cardinality. Return integer representing cardinality of the field. Returns the modulus of the field, which should be prime.

Returns:
integer representing cardinality of the field

integer& UnparametricField< NTL::zz_p >::cardinality integer   c const
 

Cardinality. Return integer representing cardinality of the field. Returns the modulus of the field, which should be prime.

Returns:
integer representing cardinality of the field

integer& UnparametricField< NTL::ZZ_p >::characteristic integer   c const
 

Characteristic. Return integer representing characteristic of the field. Returns the modulus of the field, which should be prime.

Returns:
integer representing characteristic of the field.

integer& UnparametricField< NTL::zz_p >::characteristic integer   c const
 

Characteristic. Return integer representing characteristic of the field. Returns the modulus of the field, which should be prime.

Returns:
integer representing characteristic of the field.

double& UnparametricField< NTL::ZZ_p >::convert double &    x,
const NTL::ZZ_p &    y
const
 

integer& UnparametricField< NTL::ZZ_p >::convert integer   x,
const NTL::ZZ_p &    y
const
 

Conversion of field element to an integer. This function assumes the output field element x has already been constructed, but that it is not already initialized. This done by converting to a string : inefficient but correct.

Returns:
reference to integer.
Parameters:
x  reference to integer to contain output (reference returned).
y  constant reference to field element.

integer& UnparametricField< NTL::zz_p >::convert integer   x,
const NTL::zz_p &    y
const
 

Conversion of field element to an integer. This function assumes the output field element x has already been constructed, but that it is not already initialized. For now, this is done by converting the element type to a C++ long and then to the integer type through the use of static cast and NTL's to_long function. This, of course, assumes such static casts are possible. This function should be changed in the future to avoid using long.

Returns:
reference to integer.
Parameters:
x  reference to integer to contain output (reference returned).
y  constant reference to field element.

NTL::ZZ_p& UnparametricField< NTL::ZZ_p >::init NTL::ZZ_p &    x,
const integer   y
const
 

Initialization of field element from an integer. Behaves like C++ allocator construct. This function assumes the output field element x has already been constructed, but that it is not already initialized. This done by converting to a string : inefficient but correct.

Returns:
reference to field element.
Parameters:
x  field element to contain output (reference returned).
y  integer.

NTL::zz_p& UnparametricField< NTL::zz_p >::init NTL::zz_p &    x,
const integer   y
const
 

Initialization of field element from an integer. This Uses NTL's {\tt to\_zz\_p} function.

Returns:
reference to field element.
Parameters:
x  field element to contain output (reference returned).
y  integer.

NTL::ZZ_p& UnparametricField< NTL::ZZ_p >::inv NTL::ZZ_p &    x,
const NTL::ZZ_p &    y
const
 

Multiplicative Inverse. x = 1 / y This function assumes both field elements have already been constructed and initialized.

Returns:
reference to x.
Parameters:
x  field element (reference returned).
y  field element.

NTL::zz_p& UnparametricField< NTL::zz_p >::inv NTL::zz_p &    x,
const NTL::zz_p &    y
const
 

Multiplicative Inverse. x = 1 / y This function assumes both field elements have already been constructed and initialized.

Returns:
reference to x.
Parameters:
x  field element (reference returned).
y  field element.

NTL::ZZ_p& UnparametricField< NTL::ZZ_p >::invin NTL::ZZ_p &    x const
 

Inplace Multiplicative Inverse. x = 1 / x This function assumes both field elements have already been constructed and initialized.

Returns:
reference to x.
Parameters:
x  field element (reference returned).

NTL::zz_p& UnparametricField< NTL::zz_p >::invin NTL::zz_p &    x const
 

Inplace Multiplicative Inverse. x = 1 / x This function assumes both field elements have already been constructed and initialized.

Returns:
reference to x.
Parameters:
x  field element (reference returned).

bool UnparametricField< NTL::ZZ_p >::isOne const NTL::ZZ_p &    x const
 

One equality. Test if field element is equal to one. This function assumes the field element has already been constructed and initialized. In this specialization, NTL's IsOne function is called.

Returns:
boolean true if equals one, false if not.
Parameters:
x  field element.

bool UnparametricField< NTL::zz_p >::isOne const NTL::zz_p &    x const
 

One equality. Test if field element is equal to one. This function assumes the field element has already been constructed and initialized. In this specialization, NTL's IsOne function is called.

Returns:
boolean true if equals one, false if not.
Parameters:
x  field element.

bool UnparametricField< NTL::ZZ_p >::isZero const NTL::ZZ_p &    x const
 

Zero equality. Test if field element is equal to zero. This function assumes the field element has already been constructed and initialized. In this specialization, NTL's IsZero function is called.

Returns:
boolean true if equals zero, false if not.
Parameters:
x  field element.

bool UnparametricField< NTL::zz_p >::isZero const NTL::zz_p &    x const
 

Zero equality. Test if field element is equal to zero. This function assumes the field element has already been constructed and initialized. In this specialization, NTL's IsZero function is called.

Returns:
boolean true if equals zero, false if not.
Parameters:
x  field element.

doc of NTL_ZZ_p UnparametricField< NTL::ZZ_p >::UnparametricField integer    q,
size_t    e
 

UnparametricField< NTL::zz_p >::UnparametricField integer    q,
size_t    e
 

std::ostream& UnparametricField< NTL::ZZ_p >::write std::ostream &    os const
 

Print field.

Returns:
output stream to which field is written.
Parameters:
os  output stream to which field is written.

std::ostream& UnparametricField< NTL::zz_p >::write std::ostream &    os const
 

Print field.

Returns:
output stream to which field is written.
Parameters:
os  output stream to which field is written.

integer& UnparametricField< NTL::ZZ_pE >::cardinality integer   c const
 

integer& UnparametricField< NTL::zz_pE >::cardinality integer   c const
 

integer& UnparametricField< NTL::ZZ_pE >::characteristic integer   c const
 

integer& UnparametricField< NTL::zz_pE >::characteristic integer   c const
 

integer& UnparametricField< NTL::ZZ_pE >::convert integer   c,
const NTL::ZZ_pE &    e
const
 

integer& UnparametricField< NTL::zz_pE >::convert integer   x,
const NTL::zz_pE &    y
const
 

NTL::ZZ_pE& UnparametricField< NTL::ZZ_pE >::init NTL::ZZ_pE &    x,
const integer   y
const
 

NTL::zz_pE& UnparametricField< NTL::zz_pE >::init NTL::zz_pE &    x,
const integer   y
const
 

NTL::ZZ_pE& UnparametricField< NTL::ZZ_pE >::inv NTL::ZZ_pE &    x,
const NTL::ZZ_pE &    y
const
 

NTL::zz_pE& UnparametricField< NTL::zz_pE >::inv NTL::zz_pE &    x,
const NTL::zz_pE &    y
const
 

NTL::ZZ_pE& UnparametricField< NTL::ZZ_pE >::invin NTL::ZZ_pE &    x const
 

NTL::zz_pE& UnparametricField< NTL::zz_pE >::invin NTL::zz_pE &    x const
 

bool UnparametricField< NTL::ZZ_pE >::isOne const NTL::ZZ_pE &    a const
 

bool UnparametricField< NTL::zz_pE >::isOne const NTL::zz_pE &    a const
 

bool UnparametricField< NTL::ZZ_pE >::isZero const NTL::ZZ_pE &    a const
 

bool UnparametricField< NTL::zz_pE >::isZero const NTL::zz_pE &    a const
 

std::istream& UnparametricField< NTL::ZZ_pE >::read std::istream &    is,
NTL::ZZ_pE &    x
const
 

std::istream& UnparametricField< NTL::zz_pE >::read std::istream &    is,
NTL::zz_pE &    x
const
 

NTL::RR& UnparametricRandIter< NTL::RR >::random NTL::RR &    elt const
 

Random field element creator. This returns a random field element from the information supplied at the creation of the generator. This generator uses the built-in C++ random number generator instead of NTL's random function because the NTL function does not allow as much control over the sampling size as the generic LinBox template. This specialization is included only to allow conversion to an NTL object.

Returns:
random field element

NTL::ZZ_p& UnparametricRandIter< NTL::ZZ_p >::random NTL::ZZ_p &    x const
 

Random field element creator.

NTL::zz_p& UnparametricRandIter< NTL::zz_p >::random NTL::zz_p &    x const
 

Random field element creator.

UnparametricRandIter< NTL::ZZ_p >::UnparametricRandIter< NTL::ZZ_p > const UnparametricField< NTL::ZZ_p > &    F,
const integer   size,
const integer   seed
 

Constructor for random field element generator.

UnparametricRandIter< NTL::zz_p >::UnparametricRandIter< NTL::zz_p > const UnparametricField< NTL::zz_p > &    F,
const integer   size,
const integer   seed
 

Constructor for random field element generator.

bool useBB const DenseMatrix< Field > &    A
 

bool useBB const BB &    A
 

Domain::Element vectorGcd Domain &    D,
Vector   v
 

utility function, returns gcd of a vector of elements over a domain

void vectorGcdIn typename Domain::Element   result,
Domain &    D,
Vector   v
 

utility function to gcd-in a vector of elements over a domain


Variable Documentation

const long _DEGINFTY_ = -1
 

const int BlasBound = 1 << 26
 

Commentator commentator
 

const char* solverReturnString[] = {"OK", "FAILED", "SINGULAR", "INCONSISTENT", "BAD_PRECONDITIONER", "BAD_PRIME"}
 


Generated on Mon Jun 20 09:16:51 2005 for linbox by doxygen1.2.18