|
Public Types |
| typedef NTL_ZZRandIter | RandIter |
| typedef NTL::ZZ | Element |
Public Methods |
| | NTL_ZZ (int p=0, int exp=1) |
| integer & | cardinality (integer &c) const |
| integer & | characteristic (integer &c) const |
| std::ostream & | write (std::ostream &out) const |
| std::istream & | read (std::istream &in) const |
| template<class Element2> Element & | init (Element &x, const Element2 &y) const |
| | Init x from y.
|
| Element & | init (Element &x, const Element &y) const |
| | Init from a NTL::ZZ.
|
| Element & | init (Element &x, const int64 &y) const |
| | Init from an int64.
|
| Element & | init (Element &x, const uint64 &y) const |
| | Init from a uint64.
|
| Element & | init (Element &x, const integer &y) const |
| | I don't know how to init from integer efficiently.
|
| Element & | assign (Element &x, const Element &y) const |
| | x = y.
|
| bool | areEqual (const Element &x,const Element &y) const |
| | Test if x == y.
|
| bool | isZero (const Element &x) const |
| | Test if x == 0.
|
| bool | isOne (const Element &x) const |
| | Test if x == 1.
|
| Element & | add (Element &x, const Element &y, const Element &z) const |
| | return x = y + z
|
| Element & | sub (Element &x, const Element &y, const Element &z) const |
| | return x = y - z
|
| template<class Int> Element & | mul (Element &x, const Element &y, const Int &z) const |
| | return x = y * z
|
| Element & | div (Element &x, const Element &y, const Element &z) const |
| | If z divides y, return x = y / z, otherwise, throw an exception.
|
| Element & | inv (Element &x, const Element &y) const |
| | If y is a unit, return x = 1 / y, otherwsie, throw an exception.
|
| Element & | neg (Element &x, const Element &y) const |
| | return x = -y;
|
| template<class Int> Element & | axpy (Element &r, const Element &a, const Int &x, const Element &y) const |
| | return r = a x + y
|
| Element & | addin (Element &x, const Element &y) const |
| | return x += y;
|
| Element & | subin (Element &x, const Element &y) const |
| | return x -= y;
|
| template<class Int> Element & | mulin (Element &x, const Int &y) const |
| | return x *= y;
|
| Element & | divin (Element &x, const Element &y) const |
| | If y divides x, return x /= y, otherwise throw an exception.
|
| Element & | invin (Element &x) |
| | If x is a unit, x = 1 / x, otherwise, throw an exception.
|
| Element & | negin (Element &x) const |
| | return x = -x;
|
| template<class Int> Element & | axpyin (Element &r, const Element &a, const Int &x) const |
| | return r += a x
|
| std::ostream & | write (std::ostream &out, const Element &y) const |
| | out << y;
|
| std::istream & | read (std::istream &in, Element &x) const |
| | read x from istream in
|
| bool | isUnit (const Element &x) const |
| | Test if x is a unit.
|
| Element & | gcd (Element &g, const Element &a, const Element &b) const |
| | return g = gcd (a, b)
|
| Element & | gcdin (Element &g, const Element &b) const |
| | return g = gcd (g, b)
|
| Element & | xgcd (Element &g, Element &s, Element &t, const Element &a, const Element &b) const |
| | g = gcd(a, b) = a*s + b*t. The coefficients s and t are defined according to the standard Euclidean algorithm applied to |a| and |b|, with the signs then adjusted according to the signs of a and b.
|
| Element & | lcm (Element &c, const Element &a, const Element &b) const |
| | c = lcm (a, b)
|
| Element & | lcmin (Element &l, const Element &b) const |
| | l = lcm (l, b)
|
| Element & | sqrt (Element &x, const Element &y) const |
| | x = floor ( sqrt(y)).
|
| long | reconstructRational (Element &a, Element &b, const Element &x, const Element &m, const Element &a_bound, const Element &b_bound) const |
| | Requires 0 <= x < m, m > 2 * a_bound * b_bound, a_bound >= 0, b_bound > 0 This routine either returns 0, leaving a and b unchanged, or returns 1 and sets a and b so that (1) a = b x (mod m), (2) |a| <= a_bound, 0 < b <= b_bound, and (3) gcd(m, b) = gcd(a, b).
|
| Element & | quo (Element &q, const Element &a, const Element &b) const |
| | q = floor (x/y);
|
| Element & | rem (Element &r, const Element &a, const Element &b) const |
| | r = remindar of a / b
|
| Element & | quoin (Element &a, const Element &b) const |
| | a = quotient (a, b)
|
| Element & | remin (Element &x, const Element &y) const |
| | a = quotient (a, b)
|
| void | quoRem (Element &q, Element &r, const Element &a, const Element &b) const |
| | q = [a/b], r = a - b*q |r| < |b|, and if r != 0, sign(r) = sign(b)
|
| bool | isDivisor (const Element &a, const Element &b) const |
| | Test if b | a.
|
| long | compare (const Element &a, const Element &b) const |
| Element & | abs (Element &x, const Element &a) const |
Static Public Methods |
| integer & | convert (integer &x, const Element &y) |
| | Convert y to an Element.
|
| double & | convert (double &x, const Element &y) |
| int | getMaxModulus () |