Main Page   Modules   Namespace List   Class Hierarchy   Compound List   File List   Namespace Members   Compound Members   File Members   Related Pages  

linbox Compound List

Here are the classes, structs, unions and interfaces with brief descriptions:
ActivityStateUsed by commentator This stores a snapshot of the state of the commentator's activity stack, so it may be restored after an exception is thrown
Algorithm
Argument
BaseTimer
BasicReader
BB_Symmetric_Container
BBBase
BBThread
BitVector
const_iterator
const_reference
iterator
reference
BlackboxArchetypeShowing the member functions provided by all blackbox matrix classes
BlackboxBlockContainer
BlackboxBlockContainerBaseA base class for BlackboxBlockContainer. The primary member function is begin(). @doc It returns an iterator which after i increments (++) dereferences to $U A^i V$, for $U$ and $V$ determined by the init function. It is designed to be used with implementations of Block Berlekamp-Massey such as BlockMasseyDomain
const_iterator
BlackboxBlockContainerRecord
BlackboxContainerLimited doc so far
BlackboxContainerBaseA base class for BlackboxContainer. The primary member function is begin(). @doc It returns an iterator which after i increments (++) dereferences to $v^T A^i u$, for $v$ and $u$ determined by the form of construction. It is designed to be used with implementations of Berlekamp-Massey such as MasseyDom
const_iterator
BlackboxContainerSymmetricSee base class for doc
BlackboxContainerSymmetrizeSymmetrizing iterator (for rank computations). @doc # //================================================================ // LinBox Project 1999 // Symmetrizing iterator (for rank computations) // Same left and right vector // A is supposed to have tranpose-vector product // the sequence is u^t u, (A u)^t (A u) = u^t (A^t A) u, // (A^t (A u))^t (A^t (A u)) = u^t (A^t A)^2 u , etc. // Time-stamp: <13 Jun 02 18:16:43 Jean-Guillaume.Dumas@imag.fr> // ================================================================ #
BlackboxFactoryA tool for computations with integer and rational matrices. @doc The blackbox factory provides a facility for performing integer or rational computations by reducing modulo one or more primes and recovering the solution with Chinese Remaindering, lifting, or rational reconstruction. It is an interface that provides one method which, given a field, produces a black box representing a particular matrix over that field. The factory object may be passed to various procedures, such as rank, det, and solve, which will perform the required modular reductions to find integer or rational solutions
BlackboxInterface
BlackboxSpecifier
BlackboxSymmetrizeIterator
BlasApply
BlasBlackboxTemplate <class _Field>
rebind
BlasEliminationTraits
BlasMatrix@memo Limited docs so far
BlasMatrixApplyDomain
BlasMatrixDomain
BlasMatrixDomainCharpoly
BlasMatrixDomainCharpoly< Field, Polynomial, Container, BlasMatrix< typename Field::Element > >
BlasMatrixDomainDet
BlasMatrixDomainDet< Field, BlasBlackbox< Field > >
BlasMatrixDomainDet< Field, BlasMatrix< typename Field::Element > >
BlasMatrixDomainInv
BlasMatrixDomainInv< Field, BlasBlackbox< Field > >
BlasMatrixDomainInv< Field, BlasMatrix< typename Field::Element > >
BlasMatrixDomainLeftSolve
BlasMatrixDomainLeftSolve< Field, BlasMatrix< typename Field::Element >, BlasMatrix< typename Field::Element > >
BlasMatrixDomainLeftSolve< Field, BlasMatrix< typename Field::Element >, TriangularBlasMatrix< typename Field::Element > >
BlasMatrixDomainLeftSolve< Field, std::vector< typename Field::Element >, BlasMatrix< typename Field::Element > >
BlasMatrixDomainLeftSolve< Field, std::vector< typename Field::Element >, TriangularBlasMatrix< typename Field::Element > >
BlasMatrixDomainMinpoly
BlasMatrixDomainMinpoly< Field, Polynomial, BlasMatrix< typename Field::Element > >
BlasMatrixDomainMul
BlasMatrixDomainMul< Field, BlasMatrix< typename Field::Element >, BlasMatrix< typename Field::Element >, BlasPermutation >
BlasMatrixDomainMul< Field, BlasMatrix< typename Field::Element >, BlasMatrix< typename Field::Element >, TransposedBlasMatrix< BlasPermutation > >
BlasMatrixDomainMul< Field, BlasMatrix< typename Field::Element >, BlasMatrix< typename Field::Element >, TriangularBlasMatrix< typename Field::Element > >
BlasMatrixDomainMul< Field, BlasMatrix< typename Field::Element >, BlasPermutation, BlasMatrix< typename Field::Element > >
BlasMatrixDomainMul< Field, BlasMatrix< typename Field::Element >, BlasPermutation, TriangularBlasMatrix< typename Field::Element > >
BlasMatrixDomainMul< Field, BlasMatrix< typename Field::Element >, TransposedBlasMatrix< BlasPermutation >, BlasMatrix< typename Field::Element > >
BlasMatrixDomainMul< Field, BlasMatrix< typename Field::Element >, TriangularBlasMatrix< typename Field::Element >, BlasMatrix< typename Field::Element > >
BlasMatrixDomainMul< Field, BlasMatrix< typename Field::Element >, TriangularBlasMatrix< typename Field::Element >, BlasPermutation >
BlasMatrixDomainMul< Field, std::vector< typename Field::Element >, BlasPermutation, std::vector< typename Field::Element > >
BlasMatrixDomainMul< Field, std::vector< typename Field::Element >, std::vector< typename Field::Element >, BlasPermutation >
BlasMatrixDomainMul< Field, std::vector< typename Field::Element >, std::vector< typename Field::Element >, TransposedBlasMatrix< BlasPermutation > >
BlasMatrixDomainMul< Field, std::vector< typename Field::Element >, TransposedBlasMatrix< BlasPermutation >, std::vector< typename Field::Element > >
BlasMatrixDomainMulAdd
BlasMatrixDomainMulAdd< Field, BlasMatrix< typename Field::Element >, BlasMatrix< typename Field::Element >, BlasMatrix< typename Field::Element > >
BlasMatrixDomainMulAdd< Field, std::vector< typename Field::Element >, BlasMatrix< typename Field::Element >, std::vector< typename Field::Element > >
BlasMatrixDomainMulAdd< Field, std::vector< typename Field::Element >, std::vector< typename Field::Element >, BlasMatrix< typename Field::Element > >
BlasMatrixDomainMulin
BlasMatrixDomainMulin< Field, BlasMatrix< typename Field::Element >, BlasPermutation >
BlasMatrixDomainMulin< Field, BlasMatrix< typename Field::Element >, TransposedBlasMatrix< BlasPermutation > >
BlasMatrixDomainMulin< Field, BlasMatrix< typename Field::Element >, TriangularBlasMatrix< typename Field::Element > >
BlasMatrixDomainMulin< Field, std::vector< typename Field::Element >, BlasPermutation >
BlasMatrixDomainMulin< Field, std::vector< typename Field::Element >, TransposedBlasMatrix< BlasPermutation > >
BlasMatrixDomainRank
BlasMatrixDomainRank< Field, BlasBlackbox< Field > >
BlasMatrixDomainRank< Field, BlasMatrix< typename Field::Element > >
BlasMatrixDomainRightSolve
BlasMatrixDomainRightSolve< Field, BlasMatrix< typename Field::Element >, BlasMatrix< typename Field::Element > >
BlasMatrixDomainRightSolve< Field, BlasMatrix< typename Field::Element >, TriangularBlasMatrix< typename Field::Element > >
BlasMatrixDomainRightSolve< Field, std::vector< typename Field::Element >, BlasMatrix< typename Field::Element > >
BlasMatrixDomainRightSolve< Field, std::vector< typename Field::Element >, TriangularBlasMatrix< typename Field::Element > >
BlasPermutation
BlasTag
BlockLanczosSolver
BlockLanczosTraits
BlockMasseyDomainCompute the linear generator of a sequence of matrices @doc Giorgi, Jeannerod Villard algorithm from ISSAC'03 This class encapsulates the functionality required for computing the block minimal polynomial of a matrix
BlockWiedemannLiftingContainer
BlockWiedemannSolver
BlockWiedemannTraits
BooleanSwitch
BooleanSwitchFactory
ButterflyButterfly Switching Network based BlackBox Matrix. A good preconditioner. @doc Implements butterfly switching network on a LinBox vector as a black box matrix through the use of a switch object
rebind
CekstvSwitch
CekstvSwitchFactory
ChineseRemainder
ClassifyRing
ClassifyRing< DoubelFMod >
ClassifyRing< GF2 >
ClassifyRing< GivaroExtension< BaseField > >
ClassifyRing< GivaroGfq >
ClassifyRing< GivaroMontg >
ClassifyRing< GivaroRational >
ClassifyRing< GivaroZpz< Tag > >
ClassifyRing< GMP_Integers >
ClassifyRing< GMPRationalField >
ClassifyRing< LidiaGfq >
ClassifyRing< Local2_32 >
ClassifyRing< Modular< double > >
ClassifyRing< Modular< Element > >
ClassifyRing< Modular< int > >
ClassifyRing< Modular< int32 > >
ClassifyRing< Modular< int8 > >
ClassifyRing< Modular< short > >
ClassifyRing< NTL_PID_zz_p >
ClassifyRing< NTL_ZZ >
ClassifyRing< NTL_zz_p >
ClassifyRing< PID_integer >
ClassifyRIng< PIR_ntl_ZZ_p >
ClassifyRIng< PIRModular< int > >
ClassifyRIng< PIRModular< int32 > >
ClassifyRing< UnparametricField< K > >
ClassifyRing< UnparametricField< NTL::RR > >
ClassifyRing< UnparametricField< NTL::ZZ_p > >
ClassifyRing< UnparametricRandIter< NTL::GF2E > >
ClassifyRing< UnparametricRandIter< NTL::zz_pE > >
ClassifyRing< UnparametricRandIter< NTL::ZZ_pE > >
Command
CompanionCompanion matrix of a monic polynomial
rebind
Comparator
CompareSparseEntries
ComposeGeneral case
rebind
Compose< _Blackbox, _Blackbox >Specialization for _Blackbox1 = _Blackbox2
rebind
ComposeTraits
ComposeTraits< DenseMatrix< Field > >
ConstantVectorStream
CRA
DataNode
DenseContainerLimited doc so far
DenseIntegerMatrix
DenseIntegerVector
DenseMatrixBlackbox interface to dense matrix representation
rebind
DenseMatrixBase
ColIterator
ConstColIterator
ConstRawIndexedIterator
ConstRowIterator
RawIndexedIterator
rebind
RowIterator
DenseMatrixFactory
DenseReader
DenseRowsMatrix
DenseSubmatrix
ConstRawIterator
RawIterator
rebind
DiagonalGeneral diagonal, not be implemented
Diagonal< _Field, VectorCategories::DenseVectorTag >Specialization of Diagonal for application to dense vectors
rebind
Diagonal< Field, VectorCategories::SparseAssociativeVectorTag >Specialization of Diagonal for application to sparse associative vectors
rebind
Diagonal< Field, VectorCategories::SparseSequenceVectorTag >Specialization of Diagonal for application to sparse sequence vectors
rebind
Diagonal< GF2, VectorTraits< Vector< GF2 >::Dense >::VectorCategory >
DifBlackbox of a difference: C := A - B, i.e. Cx = Ax - Bx
rebind
DiophantineSolverDiophantineSolver<QSolver> creates a diophantine solver using a QSolver to generate rational solutions @doc Methods solve, randomSolve just expose functions from underlying rational solver. Method diophantineSolve creates a solution with minimal denominator, and can also create a certificate of minimality (described in 'Certified Dense Linear System Solving' by Mulders+Storjohann) which will be left in the public field lastCertificate
DirectSumIf C = DirectSum(A, B) and y = xA and z = wB, then (y,z) = (x,w)C
rebind
DirectSum< Blackbox, Blackbox >
rebind
DixonLiftingContainer
DixonTraits
DotProductDomain
DotProductDomain< DoubleFmod >
DotProductDomain< GF2 >
DotProductDomain< GivaroZpz< Std16 > >
DotProductDomain< GivaroZpz< Std32 > >
DotProductDomain< Modular< double > >
DotProductDomain< Modular< int > >
DotProductDomain< Modular< int16 > >
DotProductDomain< Modular< int32 > >
DotProductDomain< Modular< int8 > >
DotProductDomain< Modular< uint16 > >
DotProductDomain< Modular< uint32 > >
DotProductDomain< Modular< uint8 > >
DotProductDomain< PIR_ntl_ZZ_p >
DotProductDomain< PIRModular< int > >
DotProductDomain< PIRModular< int32 > >
DoubleFmod
ElementAbstractAbstract element base class, a technicality
ElementArchetypeThis is the Field and Ring element interface specification and archetypical instance class. @doc Element classes must contain public default constructor, copy constructor, assignment operator, and destructor. Note that primitive types such as int and double meet this specification
ElementEnvelopeAdaptor from archetypical interface to abstract interface, a technicality
EliminationSpecifier
Eliminator
Error
FactorizedMatrixLeftLSolve
FactorizedMatrixLeftLSolve< Field, BlasMatrix< typename Field::Element > >
FactorizedMatrixLeftLSolve< Field, std::vector< typename Field::Element > >
FactorizedMatrixLeftSolve
FactorizedMatrixLeftSolve< Field, BlasMatrix< typename Field::Element > >
FactorizedMatrixLeftSolve< Field, std::vector< typename Field::Element > >
FactorizedMatrixLeftUSolve
FactorizedMatrixLeftUSolve< Field, BlasMatrix< typename Field::Element > >
FactorizedMatrixLeftUSolve< Field, std::vector< typename Field::Element > >
FactorizedMatrixRightLSolve
FactorizedMatrixRightLSolve< Field, BlasMatrix< typename Field::Element > >
FactorizedMatrixRightLSolve< Field, std::vector< typename Field::Element > >
FactorizedMatrixRightSolve
FactorizedMatrixRightSolve< Field, BlasMatrix< typename Field::Element > >
FactorizedMatrixRightSolve< Field, std::vector< typename Field::Element > >
FactorizedMatrixRightUSolve
FactorizedMatrixRightUSolve< Field, BlasMatrix< typename Field::Element > >
FactorizedMatrixRightUSolve< Field, std::vector< typename Field::Element > >
FFLASBLAS for matrices over finite fields
FFPACKSet of elimination based routines for dense linear algebra with matrices over finite field
FieldAbstract
FieldArchetype
FieldAXPY
FieldAXPY< DoubleFmod >
FieldAXPY< GivaroZpz< Std16 > >
FieldAXPY< GivaroZpz< Std32 > >
FieldAXPY< Modular< _Element > >
FieldAXPY< Modular< double > >
FieldAXPY< Modular< int > >
FieldAXPY< Modular< int16 > >
FieldAXPY< Modular< int32 > >
FieldAXPY< Modular< int8 > >
FieldAXPY< Modular< uint16 > >
FieldAXPY< Modular< uint32 > >
FieldAXPY< Modular< uint8 > >
FieldAXPY< NTL_ZZ >
FieldAXPY< PIR_ntl_ZZ_p >
FieldAXPY< PIRModular< int > >
FieldAXPY< PIRModular< int32 > >
FieldAXPY< UnparametricField< integer > >
FieldEnvelope
FieldInterfaceThis field base class exists solely to aid documentation organization. @doc For the general field member function documentation consult the FieldArchetype. For specific properties of individual representations consult the specific field classes
FieldIODummy field for conceptually unclear io
FieldReaderAnalyzer
FieldTraits
FieldTraits< GivaroExtension< BaseField > >
foobar
foobar< LinBox::Local2_32 >
FrobeniusTemplate <class _Field>
rebind
GaussDomainRepository of functions for rank by elimination on sparse matrices. @doc Several versions allow for adjustment of the pivoting strategy and for choosing in-place elimination or for not modifying the input matrix. Also an LU interface is offered
GenericRandIter
GenericVector
GF2
GF2RandIter
GivaroExtension
GivaroGfq
GivaroMontg
GivaroRational
GivaroZpz
GivPolynomialRing
GmpRandomPrimeGenerating random prime integers, using the gmp library
GMPRationalElement
GMPRationalField
GMPRationalRandIter
HankelTemplate <class _Field>
rebind
HilbertExample of a blackbox that is space efficient, though not time efficient
rebind
Hilbert< _Field, VectorCategories::DenseVectorTag >
Hilbert< _Field, VectorCategories::SparseAssociativeVectorTag >
Hilbert< _Field, VectorCategories::SparseSequenceVectorTag >
Hom
Hom< Source, Source >
HybridSpecifier
IliopoulosEliminationThis is Iliopoulos' algorithm do diagonalize. @doc Compute Smith Form by elimination modulo m, for some modulus m such as S(n), the last invariant factor. The elimination method is originally described in "Worst Case Complexity Bounds on Algorithms for computing the Canonical Structure of Finite Abelian Groups and the Hermite and Smith Normal Forms of an Integer Matrix", by Costas Iliopoulos
ImageField
InconsistentSystem
indexDomain
InputStorage
Integer
IntegerMatrix
IntegerModularDet
IntegerModularMinpoly
IntegerModularSOLUTION
IntegerVector
InvalidMatrixInput
InverseA Blackbox for the inverse. Not efficient if many applications are used
rebind
iterator_traits< LinBox::BitVector::const_iterator >
iterator_traits< LinBox::BitVector::iterator >
LABlockLanczosSolver
LanczosSolverSolve a linear system using the conjugate Lanczos iteration. @doc Lanczos system solver class. This class encapsulates the functionality required for solving a linear system through the conjugate Lanczos iteration
LanczosTraits
LastInvariantFactorThis is used in a Smith Form algorithm. @doc This computes the last invariant factor of an integer matrix, whether zero or not, by rational solving
LazyProduct
LessThanString
LessTypeInfo
LidiaGfq
LidiaGfqRandIter
LiftingContainer
LiftingContainerBase
const_iterator
LinboxBadFormat
LinboxError
LinboxMathDivZero
LinboxMathError
Local2_32
LocalSmithSmith normal form (invariant factors) of a matrix over a local ring
LocalSmith< Local2_32 >
LPM_Method
LQUPMatrix
MapleDense1Reader
MapleSparse1Reader
MasseyDomainBerlekamp/Massey algorithm. @doc Domain Massey - Computation is stopped when the polynomials remain the same for more than EARLY_TERM_THRESOLD - When minimal polynomial equals characteristic polynomial, 2 additional iterations are needed to compute it (parameter DEFAULT_ADDITIONAL_ITERATION), but those iterations are not needed for the rank
MatrixApplyDomain
MatrixApplyDomain< Domain, BlasBlackbox< Domain > >
MatrixApplyDomain< Domain, BlasMatrix< typename Domain::Element > >
MatrixApplyDomain< Domain, DenseMatrix< Domain > >
MatrixArchetype
MatrixCategoriesFor specializing matrix arithmetic
BlackboxTag
ColMatrixTag
RowColMatrixTag
RowMatrixTag
MatrixContainerCategory
Blackbox
BlasContainer
Container
MatrixContainerTrait
MatrixContainerTrait< BlasBlackbox< Field > >
MatrixContainerTrait< BlasMatrix< typename Field::Element > >
MatrixContainerTrait< const BlasBlackbox< Field > >
MatrixContainerTrait< const BlasMatrix< typename Field::Element > >
MatrixContainerTrait< DenseMatrix< Field > >
MatrixContainerTrait< DenseMatrixBase< typename Field::Element > >
MatrixContainerTrait< SparseMatrix< Field > >
MatrixContainerTrait< SparseMatrixBase< typename Field::Element > >
MatrixDomainClass of matrix arithmetic functions
MatrixDomain< GF2 >
MatrixHomTrait
MatrixHomTrait< BlasBlackbox< Ring >, Field >
MatrixHomTrait< DenseMatrix< Ring >, Field >
MatrixHomTrait< DenseMatrixBase< typename Ring::Element >, Field >
MatrixHomTrait< SparseMatrix< Ring, typename Vector< Ring >::SparseMap >, Field >
MatrixHomTrait< SparseMatrix< Ring, typename Vector< Ring >::SparsePar >, Field >
MatrixHomTrait< SparseMatrix< Ring, typename Vector< Ring >::SparseSeq >, Field >
MatrixInverse
MatrixMarketReader
MatrixRank
MatrixStream
MatrixStreamReader
MatrixTraits
MatrixTraits< BlasBlackbox< Field > >
MatrixTraits< BlasMatrix< Element > >
MatrixTraits< const BlasBlackbox< Field > >
MatrixTraits< const BlasMatrix< Element > >
MatrixTraits< const DenseMatrix< Field > >
MatrixTraits< const DenseMatrixBase< Element > >
MatrixTraits< const SparseMatrix< Field, _Row > >
MatrixTraits< const SparseMatrixBase< Element, Row, Trait > >
MatrixTraits< const TransposeMatrix< Matrix, MatrixCategories::ColMatrixTag > >
MatrixTraits< const TransposeMatrix< Matrix, MatrixCategories::RowColMatrixTag > >
MatrixTraits< const TransposeMatrix< Matrix, MatrixCategories::RowMatrixTag > >
MatrixTraits< DenseMatrix< Field > >
MatrixTraits< DenseMatrixBase< Element > >
MatrixTraits< DenseRowsMatrix< Row > >
MatrixTraits< DenseSubmatrix< Element > >
MatrixTraits< MatrixArchetype< Element > >
MatrixTraits< SparseMatrix< Field, _Row > >
MatrixTraits< SparseMatrixBase< Element, Row, Trait > >
MatrixTraits< TransposeMatrix< Matrix, MatrixCategories::ColMatrixTag > >
MatrixTraits< TransposeMatrix< Matrix, MatrixCategories::RowColMatrixTag > >
MatrixTraits< TransposeMatrix< Matrix, MatrixCategories::RowMatrixTag > >
MersenneTwister
MethodMethod specifiers for controlling algorithm choice
MGBlockLanczosSolverBlock Lanczos iteration
MinPoly
MinPolyBlas
MinpolyMethod
ModularPrime fields of positive characteristic implemented directly in LinBox. @doc This parameterized field can be used to construct prime fields. Typical use would be Modular<integer> for integers modulo a large prime, Modular<uint32>, modular<int>, or modular<double> for integers modulo a wordsize * prime. Each of those has specialized performance features suitable to certain applications
Modular< double >
Modular< int >Specialization of Modular to int element type with efficient dot product. @doc Efficient element operations for dot product, mul, axpy, by using floating point inverse of modulus (borrowed from NTL) and some use of non-normalized intermediate values
Modular< int16 >Specialization of Modular to short element type with efficient dot product. @doc Efficient element operations for dot product, mul, axpy, by using floating point inverse of modulus (borrowed from NTL) and some use of non-normalized intermediate values
Modular< int32 >Specialization of Modular to int32 element type with efficient dot product. @doc Efficient element operations for dot product, mul, axpy, by using floating point inverse of modulus (borrowed from NTL) and some use of non-normalized intermediate values
Modular< int8 >Specialization of Modular to signed 8 bit element type with efficient dot product. @doc Efficient element operations for dot product, mul, axpy, by using floating point inverse of modulus (borrowed from NTL) and some use of non-normalized intermediate values
Modular< uint16 >Specialization of class Modular for uint16 element type
Modular< uint32 >Specialization of class Modular for uint32 element type
Modular< uint8 >Allows compact storage when the modulus is less than 2^8. @doc Requires 1 < the modulus < 2^8, normally prime. See FieldArchetype for member specifications
ModularBase
ModularRandIter
MoorePenroseGeneralized inverse of a blackbox. Efficiency concerns when many applications are used
rebind
MVProductDomainHelper class to allow specializations of certain matrix-vector products
MVProductDomain< Modular< int16 > >
MVProductDomain< Modular< int32 > >
MVProductDomain< Modular< int8 > >
MVProductDomain< Modular< uint16 > >
MVProductDomain< Modular< uint32 > >
MVProductDomain< Modular< uint8 > >
MVProductDomain< PIR_ntl_ZZ_p >
MVProductDomain< PIRModular< int32 > >
MyRandom
MyRank
node
NoFiniteExtendedInLinBox
NoHomErrorError object for attempt to establish a Hom that cannot exist
NonBlasEliminationTraits
NonzeroRandIter
NoTableFiniteInLinBox
NTL_GF2E
NTL_PID_zz_pExtend Wrapper of zz_p from NTL. Add PID functions
NTL_ZZ
NTL_ZZ_p
NTL_zz_p
NTL_ZZ_pE
NTL_zz_pE
NTL_ZZRandIter
NullMatrixThis is a representation of the 0 by 0 empty matrix which does not occupy memory. It has it's uses!
rebind
NumericalTraits
OneInvariantFactorLimited doc so far
PairPair of I and T : struct { column index, value }
ParamFuzzy
ParamFuzzyRandIter
PermutationSize is n
rebind
PID_double
PID_integer
PIR_ntl_ZZ_pExtend Wrapper of ZZ_p from NTL. Add PIR functions
PIRModular< int >
PIRModular< int32 >
PolynomialBBRepresent the matrix P(A) where A is a blackbox and P a polynomial
rebind
PowerOfTwoModular
RandIter
pplt
pplt< LinBox::NTL_PID_zz_p >
PreconditionFailed
PrimeStream
PromiseNode
pwrlist
RandIter
RandIterAbstract
RandIterArchetype
RandIterEnvelope
RandomDenseStream
RandomDenseStream< Field, _Vector, RandIter, VectorCategories::DenseVectorTag >
RandomDenseStreamGF2
RandomMatrix
rebind
RandomMatrixTraits
RandomPrime
RandomSparseStream
RandomSparseStream< Field, _Vector, RandIter, VectorCategories::DenseVectorTag >
RandomSparseStream< Field, _Vector, RandIter, VectorCategories::SparseAssociativeVectorTag >
RandomSparseStream< Field, _Vector, RandIter, VectorCategories::SparseParallelVectorTag >
RandomSparseStream< Field, _Vector, RandIter, VectorCategories::SparseSequenceVectorTag >
RandomSparseStreamGF2
RationalReconstructionLimited doc so far. Used, for instance, after LiftingContainer
RationalSolver
RationalSolver< Ring, Field, RandomPrime, BlockWiedemannTraits >
RationalSolver< Ring, Field, RandomPrime, DixonTraits >
RationalSolver< Ring, Field, RandomPrime, NumericalTraits >
RationalSolver< Ring, Field, RandomPrime, WiedemannTraits >
RationalSolverAdaptive
RawVector
RawVector< bool >
Reader
ReaderBlackBoxFactory
ReaderIterator
ReaderNotAField
RealTimer
Rebind
Rebind< std::map< size_t, T >, U >
Rebind< std::pair< std::vector< size_t >, std::vector< T > >, U >
Rebind< std::vector< std::pair< size_t, T > >, U >
Rebind< std::vector< T >, U >
ReverseVector
RingAbstract
RingArchetype
RingBase
RingCategories
GenericTag
IntegerTag
ModularTag
RationalTag
RingEnvelope
RingInterface
RingSpecific
RingVector
RingVectorBase
ScalarMatrixBlackbox for aI. Use particularly for representing 0 and I
rebind
SCompose
Signature
BLAS_LPM_Method
Minpoly_Method
SingularMatrix
SmithFormCompute Smith form
SmithFormAdaptive
SMSReader
SolveFailed
SolverTraits
Sparse_VectorSparse Vector : vector< Pair<T> > and actualsize
SparseBlackBoxDom
rebind
SparseEliminationTraits
SparseIntegerMatrix
SparseIntegerVector
SparseMatrixVector of sparse rows
rebind
SparseMatrixBase
rebind
SparseMatrixBase< _Element, _Row, VectorCategories::SparseAssociativeVectorTag >
_RawIndexedIterator
_RawIterator
rebind
SparseMatrixBase< _Element, _Row, VectorCategories::SparseParallelVectorTag >
_RawIndexedIterator
_RawIterator
rebind
SparseMatrixBase< _Element, _Row, VectorCategories::SparseSequenceVectorTag >
_RawIndexedIterator
_RawIterator
rebind
SparseMatrixBase< UnparametricField< Ring >::Element, pair< vector< size_t >, vector< Ring > >>
SparseMatrixFactory
SparseMatrixReadWriteHelper
SparseMatrixWriteHelper
NoField
SparseMatrixWriteHelper< _Element, Row, VectorCategories::SparseParallelVectorTag >
NoField
SparseRowReader
SparseSequenceVectorPairLessThan
Specifier
StandardBasisStream
StandardBasisStream< Field, _Vector, VectorCategories::DenseVectorTag >
StandardBasisStream< Field, _Vector, VectorCategories::SparseAssociativeVectorTag >
StandardBasisStream< Field, _Vector, VectorCategories::SparseParallelVectorTag >
StandardBasisStream< Field, _Vector, VectorCategories::SparseSequenceVectorTag >
Subiterator
Submatrix
Submatrix< Blackbox, VectorCategories::DenseVectorTag >
rebind
Submatrix< DenseMatrix< _Field >, VectorCategories::DenseVectorTag >
rebind
SubMatrixTraits< DenseMatrix< Field > >
SubMatrixTraits< Submatrix< DenseMatrix< Field > > >
SubRowMatrix< Matrix, MatrixCategories::RowMatrixTag >
rebind
Subvector
SumBlackbox of a matrix sum without copying
rebind
Sylvester
rebind
SysTimer
TagNode
TagTreeFrame
Thread
Timer
ToeplitzThis is the blackbox representation of a Toeplitz matrix
rebind
TransposeTranspose matrix without copying
rebind
TransposedBlasMatrix
TransposedBlasMatrix< TransposedBlasMatrix< Matrix > >
TransposeMatrix
TransposeMatrix< Matrix, MatrixCategories::ColMatrixTag >
TransposeMatrix< Matrix, MatrixCategories::RowColMatrixTag >
TransposeMatrix< Matrix, MatrixCategories::RowMatrixTag >
TriangularBlasMatrix
TriplesBBWrapper for NAG Sparse Matrix format
rebind
UnparametricField
UnparametricRandIter
UnparametricRandIter< NTL::GF2E >
UnparametricRandIter< NTL::zz_pE >
UnparametricRandIter< NTL::ZZ_pE >
UnSupportedMatrixType
UserTimer
Valence
vector
Vector
rebind
vector< pair< vector< size_t >, RingVector< Ring > >>
VectorBase
VectorCategories
DenseVectorTag
DenseZeroOneVectorTag
GenericVectorTag
SparseAssociativeVectorTag
SparseParallelVectorTag
SparseSequenceVectorTag
SparseZeroOneVectorTag
VectorDomain
VectorDomain< GF2 >
VectorDomainBase
VectorFractionVectorFraction<Domain> is a vector of rational elements with common reduced denominator. @doc Here Domain is a ring supporting the gcd, eg NTL_ZZ or PID_integer For compatability with the return type of rationalSolver, it allows conversion from/to std::vector<std::pair<Domain::Element> >. All functions will return the fraction in reduced form, calling reduce() if necessary
VectorStream
VectorTraits
VectorTraits< BitVector >
VectorTraits< ReverseVector< Vector > >
VectorTraits< std::deque< std::pair< size_t, Element > > >
VectorTraits< std::list< std::pair< size_t, Element > > >
VectorTraits< std::map< size_t, Element > >
VectorTraits< std::pair< std::vector< size_t >, std::vector< Element > > >
VectorTraits< std::vector< Element > >
VectorTraits< std::vector< std::pair< size_t, Element > > >
VectorTraits< Subvector< Iterator, ConstIterator > >
VectorVector
VectorVectorBase
WiedemannLiftingContainer
WiedemannSolverLinear system solvers based on Wiedemann's method. @doc This class encapsulates all of the functionality for linear system solving with Wiedemann's algorithm. It includes the random solution and random nullspace element of Kaltofen and Saunders (1991), as well as the certificate of inconsistency of Giesbrecht, Lobo, and Saunders (1998)
WiedemannTraits
Writer
WriterFrame
XMLTree
ZeroOneTime and space efficient representation of sparse {0,1}-matrices
RawIndexIterator
RawIterator
rebind
ZpzDom

Generated on Mon Jun 20 09:16:51 2005 for linbox by doxygen1.2.18