References and Partial Bibliography
Note: Some of these documents are personal communication. Others with incomplete citation were obtained via Google. In most cases the document online ID is shown.
Web tutorials
Rocket and Space Technology: Orbital Mechanics
General
[MIL 04] Mills, D.L., and H. Harish. Timekeeping in the Interplanetary internet. (letter report, 2004) [ipin.fm]
Orbit Mechanics and Relativity
[BAT 71] Bate, R.R., et al. Fundamentals of Astrodynamics. Dover Publications, Inc., 1971, 426 pp.
[NEL 07] Nelson, R.A. Relativistic time transfer in the solar system." Proc. IEEE 2007 Intenational Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum (May 2007), 1278-1283.
[PET 05] Petit, G., and P. Wolf. Relativistic theory for time comparisons: a review. IOP Metrologia 42 (June 2005), 138-144.
Spacecraft and Spacecraft Clocks
[KIL 02] Killough, R. Integrating CCSDS and MIL-STD-1553: what you should know. Proc. IEEE 2002 Conference on Aerospace, Vol. 4, 1917-1926. [01036904.pdf]
[MIL 78] Military Standard. Aircraft Internal Time Division Command/Response Multiplex Data Bus MIL STD 1553. Department of Defense, Washington DC, September 1978, 34 pp..
[PAR 05] Parkes, S. CCSDS time critical onboard network service. (June 2005). [55932.ppt]
[PLU 02] Plummer, C., et al, Standardising spacecraft onboard interfaces – the CCSDS SOIF activity. (August 2002), 1-10.
[SCH 06] Schnurr, R., CCSDS standard on-board interfaces (SOIS). Proc. MAPLD International Conference (September 2006). [20.ppt]
Protocols
[BAR 05] Barbieri, A. Development and flight performance of CCSDS Proximity-1 on Odyssey and the Mars Exploration Rovers. Proc. IEEE 2005 Aerospace Conference (March 2005), 1444-1454. [01559435.pdf]
[CHO 99] Choi, K., et al. The implementation and validation of the new standard CCSDS file delivery protocol for multi-hopped space file transfer. Proc. IEEE 1999 Aerospace Conference, Vol. 5 (March 1999), p 153-163. [0079018.pdf]
[KAZ xx] Kazz, G., and E. Greenberg. Mars relay operations: application of the CCSDS Proximity-1 space data link protocol. (undated) [spaceops02_p_t5_08.pdf]
Electra and Advanced Transponder
[COO 04]Cook, B., et al. Development of the advanced deep space transponder. IPN Progress Report 42-156 (February 2004).
[EDW 03] Edwards, C.D., et al. The Electra Proximity link payload for Mars relay telecommunications and navigation. Proc. 54th International Astronautical Congress (September 2003). [032150.pdf]
[JED 02] Jedrey, T., and C, Edwards. Using Reed-Solomon on Electra/MRO. JPL Interoffice Memo (March 2002).
[KUH 05] Kuhn, W. A low-volume, low-mass, low-power UHF Proximity micro-transceiver for Mars exploration. Proc. 12th NASA Symposium on VLSI Design, (October 2005), 1-5.
[HAM 06] Autonomous Software-Defined Radio Receivers for Deep Space Applications, Chapter 2: The Electra Radio, J. Hamkins and M.K. Simon, Ed., JPL Deep-Space Communications and Navigation Series, 2006. [descan09_02(electra)-1.pdf]
Two-Way Time and Frequency Transfer
[DAV xx] Davis, J.A., et al. European two-way satellite time transfer experiment using the INTELSAT (VA-FW) satellite at 307 deg E. (undated) [00333317.pdf]
[HAN 89] Hanson, D.W. Fundamentals of two-way time transfer by satellite. Proc. 43rd Annual Symposium on Frequency Control (May 1989), 174-178.
[KIR 91] Kirchner, D. Two-way time transfer via communication satellites. Proc. IEEE 1991 79, 7 (July 1991), 983-990.
[LAN 92] Landis, P., and I. Galysh. NRL/USNO two-way time transfer modem design and test results. Proc. 1992 IEEE Frequency Control Symposium (May 1992), 317-326.] Landis, P., and I. Galysh. NRL/USNO two-way time transfer modem design and test results. Proc. 1992 IEEE Frequency Control Symposium (May 1992), 317-326.
[CHI 79] Chi, A.R. Satellite time transfer via TDRSS and applications. Proc. 11th Precise Time and Time Interval Appl. and Planning Meeting (December 1979,. 45-64.
[GIF 05] Gifford, A., et al. Solar system navigation time. SCAWAG F2F (15 December 2005). [solar system time transfer 121505 f2f rev4.ppt]
[GIF 06] Gifford, A., et al. Time dissemination alternatives for future
NASA.
Proc. 38th Precise Time and Time Interval Meeting (December 2006),
319-328.
[HOG 06] Hogie, K., and E. Criscuolo. Time transfer issues over space Links. (19 November 2006). [ntp-issues-draft.ppt]
[MIL 07] Miller, J., et al. NASA architecture for solar system time distribution. Proc. IEEE 2007 Frequency Control Symposium (May 2007), 1299-1303.
[TIM 06] Time Team. Issues in defining a NASA time architecture, interim report. (August 2006). [time team interim report rev081606-1.pdf]
[TOR xx] Torgerson, L. Network time protocols. (undated). [spacentp.ppt]
Deep Space Network
[GAT xx] Gatti, M. The Deep Space Network array technology progress, recent results,and future plans. DSN Array Project (briefing slides, no date). [06-0711.pdf]
[GEL 03] Geldzahler, B. Deep Space Network spectrum management issues. Presentation to the NRC Committee on Radio Frequencies [CORF], May 2003. CORF_0503-geldzahler.pdf]
[JAM 00] James, M.L., et al. An autonomous diagnostic and prognostic monitoring system for NASA's Deep Space Network. Proc. IEEE 2000 Aerospace Conference , Vol. 2 (March 2000), 403-414. [00878428.pdf]
Navigation
[BER 02] Berner, J.B., and S.H. Bryant. Operations comparison of deep space ranging types: Sequential tone vs. pseudo-noise. Proc. 2002 IEEE Aerospace Conference, (March 2002). [01035264.pdf] briefing slides [DS ranging type comparison2001-11-03.pdf]
[BRY ] Bryant, S. Using digital signal processor technology
to simplify deep space ranging.
[KIM 03] Kinman, P.W. Pseudo-noise and regenerative ranging. Proc. 54th International Astronautical Congress (September 2003).
[KIN 04] Kinman, P.W. Pseudo-noise and regenerative ranging. In: DSMS Telecommunications Link Design Handbook, Jet Propolsion Laboratory, Change 1, March 31, 2004.
[MAR 06] Martin-Mur, T.J.., et al.The JPL Roadmap for for Deep Space Navigation. JPL Technical Report 06-0150, AAS/AIAA SpaceFlight Mechanics Meeting, Tampa, Florida, January 22-26, 2006.
[SHE 66] Sherman, J.B. A Laser Radar Ranging System
Using Pseudo-Random-Code Modulation. Proc. IEEE 1966 Trans.
on Education, e-9, 1 (March 2006), 2-6.
[THO 05] Thornton, C.L., and J.S. Border. Radiometric Tracking Techniques for Deep-Space Navigation. JPL Deep-Space Communications and Navigation Series, January 2005.
[WEL 07] Welch, B.W. Orbit determination analysis utilizing radiometric and laser ranging measurements for GPS orbit. NASA Technical Report NASA/TM—2007-214679, February 2007, 31 pp.
[1] S. Bhaskaran et al., “In-flight Performance Evaluation of the
Deep Space 1
Autonomous Navigation System,” MS00/53, Proceedings of the International
Symposium on Spaceflight Dynamics, Biarritz, France, June 26–30,
2000.
[2] J. E. Riedel et al., “Using Autonomous Navigation for Interplanetary
Missions:
The Validation of Deep Space 1 Autonav,” IAA-L-0807, Fourth
International Conference on Low-Cost Planetary Missions, Laurel,
Maryland,
May 2–5, 2000.
PN Correlation Techniques
[BUD 89] Budisin, S.Z., Fast PN sequence correlation by using FWT. Proc. IEEE 1989 Mediterranean Electrotechnical Conference MELECON, (April 1989), 513-515.
[FUX 90] Fuxjaeger, A.W., and R.A. Iltis. Acquisition of timing and Doppler-shift in a direct-sequence spread spectrum system. Proc. IEEE 1990 Military Communications Conference MILCOM, vol. 3 (September 1990), 1285-1289.
[GOY] Goisner, A., and M.K. Susti. Spread spectrum commuications using CMOS digital correlators.
[KAY] Kayani, J.K. A computationally efficient correlator for pseudo-random
correlation systems.
Networks
[EDW 04] Edwards, C.D., et al. A Martian telecommunications network: UHF relay support of the Mars Exploration Rovers by the Mars Global Surveyor, Mars Odyssey, and Mars Express Orbiters. Proc. 55th International Astronautical Congress (October 2004). [04-2490.pdf]
[EDW 06] Edwards, C.D. Relay communications strategies for Mars exploration through 2020. Acta Astronautica 59, 1-5 (July-September 2006), 310-318
[EDW 07] Edwards, C.D., et al. An assessment of the scientific potential and operational feasibility of Mars crosslink radio science observations. Proc. Seventh International Conference on Mars (July 2007). [3259.pdf]
[GUI 04] Guinn, J., and T. Ely. Preliminary results of Mars exploration rover in-situ radio navigation. Proc. 14th AAS/AIAA Spaceflight Mechangics Meeting (February 2004). [03-2442.pdf]
[RAS 00] Rash, J. Internet Access to Spacecraft. Technical Report SSC00-IX-1, NASA Goddard Space Flight Center, April 2000, 42 pp.
[MARS 2002] Marsal, O., et al. The NetLander geophysical network
on the surface of Mars: general mission description and
technical design status. Acta Astronautica 51 (1-9) (2002)
379–386.
[STA 02] Stadter, P.A., et al. Confluence of navigation, communication, and control in distributed spacecraft systems. IEEE Aerospace and Electronic Systems Magazine 17, 5 (May 2002), 26-32.
[STA 05] Stadter, P.A., et al. A scalable small-spacecraft navigation and communication infrastructure for lunar operations. Proc. IEEE 2005 Aerospace Conference (March 2005). 595-600, 5-12.
[TAI 06] Tai, W. Interoperability for Mars exploration - NASA missions and communications. (October 2006) [mars%20interop%20(tai).pdf]
[TAI 07] Tai, W. Status of NASA Mars exploration. (June, 2007). [ioag11%20nasa%mars$20exploration%20(tai).pdf]
[WEB 06] Weber, W.J., et al. Transforming the deep space network into the Interplanetary Network. Acta Astronautica 58, 8 (April 2006), 411-421
Misc
[MEY 05] Meyer-Baese, U., et al. Cost-effective Hogenauer cascaded integrator comb decimator filter design for custom ICs. Electronic Letters 41, 3 (February 3, 2005).
[MIL 95] Mileant, A., et al. The performance of the all-digital data transition tracking loop using nonlinear analysis. Proc. IEEE Transactions on Communications, 43, 2/3/4 (Febuary/March/April 1995), 1202-1215.
[NEL 01] Nelson, R.A., et al. The leap second: its history and possible
future. Metrologia 38 (2001), 509-529.
[TUG 06] Tugnawat, Y., and W. Kuhn. Low temperature performance of COTS electronic components for Martian surface applications. Proc. IEEE 2006 Aerospace Conference (July 2006). [01655981.pdf]
Devices
(CIN xx) Cincinnati Electronics datasheet. C/TT-505 TT/C SOS UHF Transceiver
[AD 54] Analog Devices datasheet. AD9854: CMOS 300 MSPS quadrature complete DDS.
[MIT 96] Mitel Semiconductors datasheet. MS13196: Local time management system.
[MIT 44] Mitel Semiconductors datasheet. MS13544: Reed-Solomon and Convolutional encoder (RESCUE).
Consultive Committee on Space Data Systems (CCSDS)
CSDS 130.0-G-2 Overview of Space Communications Protocols. Green Book. Issue 2. December 2007.
CCSDS 131.0-B-1 TM Synchronization and Channel Coding. Blue Book. Issue 1. September 2003.
CCSDS 132.0-B-1 TM Space Data Link Protocol. Blue Book. Issue 1. September 2003.
CCSDS 133.0-B-1 Space Packet Protocol. Blue Book. Issue 1. September 2003.
CCSDS 210.0-G-1 Proximity-1 Space Link Protocol--Rationale, Architecture, and Scenarios. Green Book. Issue 1. August 2007.
CCSDS 211.0-B-4 Proximity-1 Space Link Protocol--Data Link Layer. Blue Book. Issue 4. July 2006.
CCSDS 211.1-B-3 Proximity-1 Space Link Protocol-Physical Layer. Blue Book. Issue 3. March 2006.
CCSDS 211.2-B-1 Proximity-1 Space Link Protocol - Coding and Synchronization Sublayer. Blue Book. Issue 1. April 2003.
CCSDS 231.0-B-1 TC Synchronization and Channel Coding. Blue Book. Issue 1. September 2003.
CCSDS 232.0-B-1 TC Space Data Link Protocol. Blue Book. Issue 1. September 2003.
CCSDS 301.0-B-3 Time Code Formats. Blue Book. Issue 3. January 2002.
CCSDS 720.1-G-3 CCSDS File Delivery Protocol (CFDP)--Part 1: Introduction and Overview. Green Book. Issue 3. April 2007.
CCSDS 727.0-B-4 CCSDS File Delivery Protocol (CFDP). Blue Book. Issue 4. January 2007.
Precision
Elson, J., L. Girod, and D. Estrin. Fine-grained
network time synchronization using reference braodcasts.
Technical Report UCLA-CS-020008, University
of California, Los Angeles, May 2002.
Laio, C., M. Mantonosi and D. Clark, Experience with an adaptive globally-synchronizing clock algorithm. Proc. ACM 11th Symposium on Parallel Algorithms and Architectures (1999), 106-114.