Time Synchronization for Space Data Links

gif

from Pogo, Walt Kelly

Turtle wins the race.

NOTE: This page is under extensive revision.

References and Partial Bibliography

Note: Some of these documents are personal communication. Others with incomplete citation were obtained via Google. In most cases the document online ID is shown.

Web tutorials

Basics of Space Flight

Rocket and Space Technology: Orbital Mechanics

General

[MIL 04] Mills, D.L., and H. Harish. Timekeeping in the Interplanetary internet. (letter report, 2004) [ipin.fm]

Orbit Mechanics and Relativity

[BAT 71] Bate, R.R., et al. Fundamentals of Astrodynamics. Dover Publications, Inc., 1971, 426 pp.

[NEL 07] Nelson, R.A. Relativistic time transfer in the solar system." Proc. IEEE 2007 Intenational Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum (May 2007), 1278-1283.

[PET 05] Petit, G., and P. Wolf. Relativistic theory for time comparisons: a review. IOP Metrologia 42 (June 2005), 138-144.

Spacecraft and Spacecraft Clocks

[KIL 02] Killough, R. Integrating CCSDS and MIL-STD-1553: what you should know. Proc. IEEE 2002 Conference on Aerospace, Vol. 4, 1917-1926. [01036904.pdf]

[MIL 78] Military Standard. Aircraft Internal Time Division Command/Response Multiplex Data Bus MIL STD 1553. Department of Defense, Washington DC, September 1978, 34 pp..

[PAR 05] Parkes, S. CCSDS time critical onboard network service. (June 2005). [55932.ppt]

[PLU 02] Plummer, C., et al, Standardising spacecraft onboard interfaces – the CCSDS SOIF activity. (August 2002), 1-10.

[SCH 06] Schnurr, R., CCSDS standard on-board interfaces (SOIS). Proc. MAPLD International Conference (September 2006). [20.ppt]

Protocols

[BAR 05] Barbieri, A. Development and flight performance of CCSDS Proximity-1 on Odyssey and the Mars Exploration Rovers. Proc. IEEE 2005 Aerospace Conference (March 2005), 1444-1454. [01559435.pdf]

[CHO 99] Choi, K., et al. The implementation and validation of the new standard CCSDS file delivery protocol for multi-hopped space file transfer. Proc. IEEE 1999 Aerospace Conference, Vol. 5 (March 1999), p 153-163. [0079018.pdf]

[KAZ xx] Kazz, G., and E. Greenberg. Mars relay operations: application of the CCSDS Proximity-1 space data link protocol. (undated) [spaceops02_p_t5_08.pdf]

Electra and Advanced Transponder

[COO 04]Cook, B., et al. Development of the advanced deep space transponder. IPN Progress Report 42-156 (February 2004).

[EDW 03] Edwards, C.D., et al. The Electra Proximity link payload for Mars relay telecommunications and navigation. Proc. 54th International Astronautical Congress (September 2003). [032150.pdf]

[JED 02] Jedrey, T., and C, Edwards. Using Reed-Solomon on Electra/MRO. JPL Interoffice Memo (March 2002).

[KUH 05] Kuhn, W. A low-volume, low-mass, low-power UHF Proximity micro-transceiver for Mars exploration. Proc. 12th NASA Symposium on VLSI Design, (October 2005), 1-5.

[HAM 06] Autonomous Software-Defined Radio Receivers for Deep Space Applications, Chapter 2: The Electra Radio, J. Hamkins and M.K. Simon, Ed., JPL Deep-Space Communications and Navigation Series, 2006. [descan09_02(electra)-1.pdf]

Two-Way Time and Frequency Transfer

[DAV xx] Davis, J.A., et al. European two-way satellite time transfer experiment using the INTELSAT (VA-FW) satellite at 307 deg E. (undated) [00333317.pdf]

[HAN 89] Hanson, D.W. Fundamentals of two-way time transfer by satellite. Proc. 43rd Annual Symposium on Frequency Control (May 1989), 174-178.

[KIR 91] Kirchner, D. Two-way time transfer via communication satellites. Proc. IEEE 1991 79, 7 (July 1991), 983-990.

[LAN 92] Landis, P., and I. Galysh. NRL/USNO two-way time transfer modem design and test results. Proc. 1992 IEEE Frequency Control Symposium (May 1992), 317-326.] Landis, P., and I. Galysh. NRL/USNO two-way time transfer modem design and test results. Proc. 1992 IEEE Frequency Control Symposium (May 1992), 317-326.

[CHI 79] Chi, A.R. Satellite time transfer via TDRSS and applications. Proc. 11th Precise Time and Time Interval Appl. and Planning Meeting (December 1979,. 45-64.

[GIF 05] Gifford, A., et al. Solar system navigation time. SCAWAG F2F (15 December 2005). [solar system time transfer 121505 f2f rev4.ppt]

[GIF 06] Gifford, A., et al. Time dissemination alternatives for future NASA. Proc. 38th Precise Time and Time Interval Meeting (December 2006), 319-328.

[HOG 06] Hogie, K., and E. Criscuolo. Time transfer issues over space Links. (19 November 2006). [ntp-issues-draft.ppt]

[MIL 07] Miller, J., et al. NASA architecture for solar system time distribution. Proc. IEEE 2007 Frequency Control Symposium (May 2007), 1299-1303.

[TIM 06] Time Team. Issues in defining a NASA time architecture, interim report. (August 2006). [time team interim report rev081606-1.pdf]

[TOR xx] Torgerson, L. Network time protocols. (undated). [spacentp.ppt]

Deep Space Network

[GAT xx] Gatti, M. The Deep Space Network array technology progress, recent results,and future plans. DSN Array Project (briefing slides, no date). [06-0711.pdf]

[GEL 03] Geldzahler, B. Deep Space Network spectrum management issues. Presentation to the NRC Committee on Radio Frequencies [CORF], May 2003. CORF_0503-geldzahler.pdf]

[JAM 00] James, M.L., et al. An autonomous diagnostic and prognostic monitoring system for NASA's Deep Space Network. Proc. IEEE 2000 Aerospace Conference , Vol. 2 (March 2000), 403-414. [00878428.pdf]

Navigation

[BER 02] Berner, J.B., and S.H. Bryant. Operations comparison of deep space ranging types: Sequential tone vs. pseudo-noise. Proc. 2002 IEEE Aerospace Conference, (March 2002). [01035264.pdf] briefing slides [DS ranging type comparison2001-11-03.pdf]

[BRY ] Bryant, S. Using digital signal processor technology
to simplify deep space ranging.

[KIM 03] Kinman, P.W. Pseudo-noise and regenerative ranging. Proc. 54th International Astronautical Congress (September 2003).

[KIN 04] Kinman, P.W. Pseudo-noise and regenerative ranging. In: DSMS Telecommunications Link Design Handbook, Jet Propolsion Laboratory, Change 1, March 31, 2004.

[MAR 06] Martin-Mur, T.J.., et al.The JPL Roadmap for for Deep Space Navigation. JPL Technical Report 06-0150, AAS/AIAA SpaceFlight Mechanics Meeting, Tampa, Florida, January 22-26, 2006.

[SHE 66] Sherman, J.B. A Laser Radar Ranging System Using Pseudo-Random-Code Modulation. Proc. IEEE 1966 Trans. on Education, e-9, 1 (March 2006), 2-6.

[THO 05] Thornton, C.L., and J.S. Border. Radiometric Tracking Techniques for Deep-Space Navigation. JPL Deep-Space Communications and Navigation Series, January 2005.

[WEL 07] Welch, B.W. Orbit determination analysis utilizing radiometric and laser ranging measurements for GPS orbit. NASA Technical Report NASA/TM—2007-214679, February 2007, 31 pp.

[1] S. Bhaskaran et al., “In-flight Performance Evaluation of the Deep Space 1
Autonomous Navigation System,” MS00/53, Proceedings of the International
Symposium on Spaceflight Dynamics, Biarritz, France, June 26–30,
2000.
[2] J. E. Riedel et al., “Using Autonomous Navigation for Interplanetary Missions:
The Validation of Deep Space 1 Autonav,” IAA-L-0807, Fourth
International Conference on Low-Cost Planetary Missions, Laurel, Maryland,
May 2–5, 2000.

PN Correlation Techniques

[BUD 89] Budisin, S.Z., Fast PN sequence correlation by using FWT. Proc. IEEE 1989 Mediterranean Electrotechnical Conference MELECON, (April 1989), 513-515.

[FUX 90] Fuxjaeger, A.W., and R.A. Iltis. Acquisition of timing and Doppler-shift in a direct-sequence spread spectrum system. Proc. IEEE 1990 Military Communications Conference MILCOM, vol. 3 (September 1990), 1285-1289.

[GOY] Goisner, A., and M.K. Susti. Spread spectrum commuications using CMOS digital correlators.

[KAY] Kayani, J.K. A computationally efficient correlator for pseudo-random correlation systems.

Networks

[EDW 04] Edwards, C.D., et al. A Martian telecommunications network: UHF relay support of the Mars Exploration Rovers by the Mars Global Surveyor, Mars Odyssey, and Mars Express Orbiters. Proc. 55th International Astronautical Congress (October 2004). [04-2490.pdf]

[EDW 06] Edwards, C.D. Relay communications strategies for Mars exploration through 2020. Acta Astronautica 59, 1-5 (July-September 2006), 310-318

[EDW 07] Edwards, C.D., et al. An assessment of the scientific potential and operational feasibility of Mars crosslink radio science observations. Proc. Seventh International Conference on Mars (July 2007). [3259.pdf]

[GUI 04] Guinn, J., and T. Ely. Preliminary results of Mars exploration rover in-situ radio navigation. Proc. 14th AAS/AIAA Spaceflight Mechangics Meeting (February 2004). [03-2442.pdf]

[RAS 00] Rash, J. Internet Access to Spacecraft. Technical Report SSC00-IX-1, NASA Goddard Space Flight Center, April 2000, 42 pp.

[MARS 2002] Marsal, O., et al. The NetLander geophysical network
on the surface of Mars: general mission description and
technical design status. Acta Astronautica 51 (1-9) (2002)
379–386.

[STA 02] Stadter, P.A., et al. Confluence of navigation, communication, and control in distributed spacecraft systems. IEEE Aerospace and Electronic Systems Magazine 17, 5 (May 2002), 26-32.

[STA 05] Stadter, P.A., et al. A scalable small-spacecraft navigation and communication infrastructure for lunar operations. Proc. IEEE 2005 Aerospace Conference (March 2005). 595-600, 5-12.

[TAI 06] Tai, W. Interoperability for Mars exploration - NASA missions and communications. (October 2006) [mars%20interop%20(tai).pdf]

[TAI 07] Tai, W. Status of NASA Mars exploration. (June, 2007). [ioag11%20nasa%mars$20exploration%20(tai).pdf]

[WEB 06] Weber, W.J., et al. Transforming the deep space network into the Interplanetary Network. Acta Astronautica 58, 8 (April 2006), 411-421

Misc

[MEY 05] Meyer-Baese, U., et al. Cost-effective Hogenauer cascaded integrator comb decimator filter design for custom ICs. Electronic Letters 41, 3 (February 3, 2005).

[MIL 95] Mileant, A., et al. The performance of the all-digital data transition tracking loop using nonlinear analysis. Proc. IEEE Transactions on Communications, 43, 2/3/4 (Febuary/March/April 1995), 1202-1215.

[NEL 01] Nelson, R.A., et al. The leap second: its history and possible future. Metrologia 38 (2001), 509-529.

[TUG 06] Tugnawat, Y., and W. Kuhn. Low temperature performance of COTS electronic components for Martian surface applications. Proc. IEEE 2006 Aerospace Conference (July 2006). [01655981.pdf]

Devices

(CIN xx) Cincinnati Electronics datasheet. C/TT-505 TT/C SOS UHF Transceiver

[AD 54] Analog Devices datasheet. AD9854: CMOS 300 MSPS quadrature complete DDS.

[MIT 96] Mitel Semiconductors datasheet. MS13196: Local time management system.

[MIT 44] Mitel Semiconductors datasheet. MS13544: Reed-Solomon and Convolutional encoder (RESCUE).

Consultive Committee on Space Data Systems (CCSDS)

CSDS 130.0-G-2 Overview of Space Communications Protocols. Green Book. Issue 2. December 2007.

CCSDS 131.0-B-1 TM Synchronization and Channel Coding. Blue Book. Issue 1. September 2003.

CCSDS 132.0-B-1 TM Space Data Link Protocol. Blue Book. Issue 1. September 2003.

CCSDS 133.0-B-1 Space Packet Protocol. Blue Book. Issue 1. September 2003.

CCSDS 210.0-G-1 Proximity-1 Space Link Protocol--Rationale, Architecture, and Scenarios. Green Book. Issue 1. August 2007.

CCSDS 211.0-B-4 Proximity-1 Space Link Protocol--Data Link Layer. Blue Book. Issue 4. July 2006.

CCSDS 211.1-B-3 Proximity-1 Space Link Protocol-Physical Layer. Blue Book. Issue 3. March 2006.

CCSDS 211.2-B-1 Proximity-1 Space Link Protocol - Coding and Synchronization Sublayer. Blue Book. Issue 1. April 2003.

CCSDS 231.0-B-1 TC Synchronization and Channel Coding. Blue Book. Issue 1. September 2003.

CCSDS 232.0-B-1 TC Space Data Link Protocol. Blue Book. Issue 1. September 2003.

CCSDS 301.0-B-3 Time Code Formats. Blue Book. Issue 3. January 2002.

CCSDS 720.1-G-3 CCSDS File Delivery Protocol (CFDP)--Part 1: Introduction and Overview. Green Book. Issue 3. April 2007.

CCSDS 727.0-B-4 CCSDS File Delivery Protocol (CFDP). Blue Book. Issue 4. January 2007.

Precision

Elson, J., L. Girod, and D. Estrin. Fine-grained network time synchronization using reference braodcasts. Technical Report UCLA-CS-020008, University of California, Los Angeles, May 2002.

Laio, C., M. Mantonosi and D. Clark, Experience with an adaptive globally-synchronizing clock algorithm. Proc. ACM 11th Symposium on Parallel Algorithms and Architectures (1999), 106-114.