
Noname manuscript No.
(will be inserted by the editor)

Racking Focus and Tracking Focus on Live Video Streams: A
Stereo Solution

Zhan Yu · Xuan Yu · Christopher Thorpe · Scott Grauer-Gray ·

Feng Li · Jingyi Yu

Received: date / Accepted: date

Abstract The ability to produce dynamic Depth of
Field effects in live video streams was until recently

a quality unique to movie cameras. In this paper, we

present a computational camera solution coupled with

real-time GPU processing to produce runtime dynamic

Depth of Field effects. We first construct a hybrid-
resolution stereo camera with a high-res/low-res camera

pair. We recover a low-res disparity map of the scene

using GPU-based Belief Propagation and subsequently

upsample it via fast Cross/Joint Bilateral Upsampling.
With the recovered high-resolution disparity map, we

warp the high-resolution video stream to nearby view-

points to synthesize a light field towards the scene. We

exploit parallel processing and atomic operations on the

GPU to resolve visibility when multiple pixels warp to
the same image location. Finally, we generate racking

focus and tracking focus effects from the synthesized

light field rendering. All processing stages are mapped

onto NVIDIA’s CUDA architecture. Our system can
produce racking and tracking focus effects for the reso-

lution of 640×480 at 15 fps.

Keywords Dynamic Depth of Field · Racking Focus ·

Tracking Focus · Belief Propagation · Cross Bilateral
Filtering · Light Field · CUDA

1 Introduction

Depth of field (DoF) effects are a useful tool in photog-

raphy and cinematography because of their aesthetic

value. In photography, they have been used to empha-

size objects by creating a shallow plane of focus around

University of Delaware
Newark, DE, 19716
E-mail: {zyu,xyu,thorpe,grauerg,feli,yu}@cis.udel.edu

Fig. 1 Depth of Field effect on a parking car scene using our
system.

the subject while blurring the rest of the scene. In cin-

ematography, movie cameras use dynamic DoF effects
to shift the viewer’s attention from the foreground to

the background or vice versa. Producing a high quality

DoF, however, requires dedicated and often expensive

lens systems. Commodity lenses such as the low cost

Canon EF 50mm f/1.4 use a small number of aperture
blades and produce blur artifacts caused by the polygon

shaped apertures.

Varying the DoF effect and displaying the results in

real-time was until recently a quality unique to movie
cameras. For example, classical digital SLRs, while ca-

pable of modifying the DoF effect from shot to shot, can

only produce static images. Of late, high-end DSLRs

can stream video, but this capability comes at increased
cost to the consumer and still yields a non-ideal video

platform. Additionally, current DSLRs adjust focus us-

ing a ring on the lenses and DoF adjustments tend

2 Zhan Yu et al.

Low Resolution

Stream

High Resolution

Stream

Low Resolution

Depth Map

High Resolution

Depth Map
Light Field

Depth Map
Estimation

Bilateral
Upsampling Synthesis

Light Field
RenderingRendering

DoF

Fig. 2 The imaging hardware and the processing pipeline of our dynamic DoF video acquisition system. All processing modules
are implemented on NVIDIA’s CUDA to achieve real-time performance.

to produce momentary tilting of the captured video.

Movie cameras, while capable of runtime dynamic DoF
effects, tend to be bulky and unwieldy in order to ac-

commodate complex corrective lenses arrays and stor-

age media. Further, fully servoed studio lenses such as

the Canon DIGI SUPER 25 XS can cost tens of thou-
sands of dollars.

Our work is inspired by the recent light field imag-

ing systems [27,11,21,22,9]. The Stanford light field
camera array [23,24,19,20] is a two dimensional grid

composed of 128 1.3 megapixel firewire cameras which

stream live video to a stripped disk array. The large

volume of data generated by this array forces the DoF

effect to be rendered in post processing rather than in
real-time. Furthermore, the system infrastructure such

as the camera grid, interconnects, and workstations are

bulky, making it less suitable for on-site tasks. The MIT

light field camera array [25] uses a smaller grid of 64
1.3 megapixel usb webcams instead of firewire cameras

and is capable of synthesizing real-time dynamic DoF

effects. Both systems, however, still suffer from spatial

aliasing because of the baseline between neighboring

cameras. The camera spacing creates appreciable dif-
ferences between the pixel locations of the same scene

point in neighboring cameras producing an aliasing ef-

fect at the DoF boundary when their images are fused.

In an attempt to reduce aliasing artifacts in light-

field based solutions, Ng [13] designed a light field cam-

era that combines a single DSLR with a microlenslet

array. Each lenslet captures the scene from a differ-

ent viewpoint and the lenslet array effectively emulates
a camera array. By using a large number of densely

packed lenslets, one can significantly reduce the spatial

aliasing artifacts. It also, however, comes at the cost of

reduced resolution for each light field view. A light field
camera is typically paired with an ultra-high-resolution

static DSLR and is therefore not applicable to video

streaming.

Instead of using either a camera array or a mi-

crolenslet array, we develop a novel hybrid stereo-lightfield
solution. Our goal is to first recover a high-resolution

disparity map of the scene and then synthesize a vir-

tual light field for producing dynamic DoF effects. De-

spite recent advances in stereo matching, recovering
high-resolution depth/disparity maps from images is

still too expensive to perform in real-time. We, there-

fore, construct a hybrid-resolution stereo camera sys-

tem by coupling a high-res/low-res camera pair. We

recover a low-res disparity map and subsequently up-
sample it via fast cross bilateral filters. We then use the

recovered high-resolution disparity map and its corre-

sponding video frame to synthesize a light field. We

implement a GPU-based disparity warping scheme and
exploit atomic operations to resolve visibility. To re-

duce aliasing, we present an image-space filtering tech-

nique that compensates for spatial undersampling using

MIPMAPPING. Finally, we generate racking focus and

tracking focus effects using light field rendering. The
complete processing pipeline is shown in Figure 2.

We map all processing stages onto NVIDIA’s CUDA

architecture. Our system can produce racking focus and

tracking focus effects with arbitrary aperture sizes and
focal depths for the resolution of 640 × 480 at 15 fps,

as shown in the gsupplementary video. This indicates

that if we capture the video streams at the same frame

rate, we can display the refocused stream simultane-

ously. Our system thus provides a low-cost, computa-
tional imaging solution for runtime refocusing, an effect

that is usually the domain of expensive movie cameras

with servo-controlled lenses. Experiments on both in-

door and outdoor scenes show that our framework can
robustly handle complex, dynamic scenes and produce

high quality results. Figure 1 shows the result of our

system on a parking lot scene.

Racking Focus and Tracking Focus on Live Video Streams: A Stereo Solution 3

High-Frequency Processing Module

Mid/Low Frequency

Disparity Map

Mid Res.

Disparity Map
Mid Res.

Image

High Res.

Image

Low Res.

Disparity Map

High Res.

Disparity Map

Edge

Map

Edge

Disparity Map

High Pass Filtering

Downsampling
Cross Bilateral

Filtering

Cross Bilateral

Filtering

Upsampling

Replacing

Mid- and Low- Frequency Processing Module

Fig. 3 Our fast cross bilateral upsampling scheme synthesizes a high-resolution disparity map from the low-resolution BP
stereo matching result on CUDA.

2 Hybrid-Resolution Stereo Camera

We first construct a hybrid stereo camera for recov-
ering high-resolution disparity map in real-time. Our

system uses the Pointgrey Flea2 camera pair to pro-

duce one high-resolution color video stream and one

low-resolution gray-scale video stream. We synchronize
frame capture to within 125µs by using the Pointgrey

camera synchronization package. A unique feature of

our approach is coupling our Hybrid-Resolution Stereo

Camera with a CUDA processing pipeline for real-time

DoF synthesis. Sawhney et al. proposed a hybrid stereo
camera for synthesis of very high resolution stereoscopic

image sequences [15]. Li et al. also proposed a hybrid

camera for motion deblurring and depth map super-

resolution [10]. Our configurations, however, have many
more advantages. First and foremost, it provides a multi-

resolution stereo matching solution that can achieve

real-time performance (Section 3). Second, the lower

bandwidth requirement also allows our system to be

implemented for less expense on a greater number of
platforms. Stereo systems that stream two videos at 15

fps and 640 × 480 resolution can produce up to 27.6

MB of data per second. By comparison, our hybrid-

resolution stereo camera only produces slightly more
than half that rate of data. Although our current im-

plementation uses Firewire cameras, the low bandwidth

demands of our solution make it possible to use a less

expensive and more common alternative like USB 2.0,

even for streaming higher resolutions such as 1024×768.
Finally, compared to off-the-shelf stereo cameras such

as Pointgrey’s Bumblebee, our system has several ad-

vantages in terms of image quality, cost, and flexibility.

For example, the form factor of the Bumblebee forces
its lenses to be small and it produces image with se-

vere radial distortion. Our system is also less expensive

($1500 vs. $4000), and our setup allows us to dynam-

ically adjust the camera baseline to best fit different
types of scenes unlike the Bumblebee. We calibrate the

stereo pair using a planar checker board pattern the al-

gorithm outlined by Zhang [28]. It is not necessary, how-

ever, that the calibration be absolutely accurate as the

disparity map is recovered from a severely downsampled
image pair. Our experiments have shown that dispar-

ity map recovery using belief propagation on the low-

resolution image pair is not affected by slight changes in

the camera pair geometry. The intensity calibration on
the camera pair is performed prior to capture via his-

togram equalization. The mappings for these processes

are retained and applied to each incoming frame prior

to stereo matching.

3 Real-time Stereo Matching

In order to efficiently generate a high-resolution dispar-

ity map from the input low-res/high-res image pairs,

we implement a GPU-based stereo matching algorithm
on CUDA.

3.1 CUDA Belief Propagation

Stereo matching is a long standing problem in computer

vision [16]. Global methods based on belief propagation
(BP) [18] and graph-cut [5,1] have been known to pro-

duce highly reliable and accurate results. These meth-

ods, however, are more expensive when compared to

local optimization methods such as dynamic program-
ming. Fortunately, BP lends itself well to parallelism

on the GPU [2,4], where the core computations can be

performed at every image pixel in parallel on the device.

We utilize the methods presented by Felzenwalb [3]

to speed up our implementation without affecting the

4 Zhan Yu et al.

Fig. 4 Comparison of the result with(right) and with-
out(left) high frequency compensation.

accuracy: we use a hierarchical implementation to de-
crease the number of iterations needed for message value

convergence; we apply a checkerboard scheme to split

the pixels when passing messages in order to reduce

the number of necessary operations and halve the mem-

ory requirements; and we utilize a two-pass algorithm
to reduce the running time to generate each message

from O(n2) to O(n) using the truncated linear model

for data/smoothness costs.

Our CUDA BP implementation uses five separate
kernels, whereas the CPU only calls the appropriate

kernels and adjusts the current parameters/variables.

A kernel is used to perform each of the following steps

in parallel, with each thread mapping to computations

at a distinct pixel:

1. Compute the data costs for each pixel at each pos-

sible disparity at the bottom level.
2. Iteratively compute the data cost for each pixel at

each succeeding level by aggregating the appropriate

data costs at the proceeding level.

3. For each level of the implementation:

(a) Compute the message values at the current ‘checker-
board’ set of pixels and pass the values to the al-

ternative set. Repeat for i iterations, alternating

between the two sets.

(b) If not at the bottom level, copy message values
at each pixel to corresponding pixels of the suc-

ceeding level.

4. Compute the disparity estimate at each pixel us-

ing the data cost and current message values corre-

sponding to each disparity.

Table 1 shows the performance of our algorithm on

some of the Middlebury datasets at different resolu-

tions. Despite the acceleration on the GPU, we find
that it is necessary to use the lower resolution images

(320 × 240 or lower) as inputs to our stereo algorithm

in order to achieve real-time performance.

In our experiments described in the rest of the pa-
per, we first smooth these low-resolution image pairs

using a Gaussian filter where σ equals 1.0, then process

them using our implementation with a disparity range

Ground Truth Bicubic Gaussian Ours

Fig. 5 Comparison of our method and other upsampling
schemes on synthesize data. Both patches in the disparity
map are upsampled from a resolution of 30×25 to 450×375.

from 0 to 35, maximum data cost and smoothness costs
of 15.0 and 1.7, respectively, a data cost weight of 0.7 in

relation to the smoothness cost, with 5 levels of belief

propagation and 10 iterations per level. Each kernel is

processed on the GPU using thread block dimensions

of 32× 4.

3.2 Fast Cross Bilateral Upsampling

Given a low-resolution disparity map D′ and a high-

resolution image I, we intend to recover a high-resolution

disparity map D using cross bilateral filters [26], where
we apply a spatial Gaussian filter to D′ and a color-

space Gaussian filter to I. Assuming p and q are two

pixels in I; W is the filter window size; Ip and Iq are the

color of p and q in I; and q′ is the corresponding pixel

coordinate of q in D′. We also use σc and σd as con-
stants to threshold the color difference and filter size.

We compute the disparity of pixel Dp as:

Dp =

∑
q∈W Gd(p, q)Gc(p, q)D

′
q

Kp

, (1)

whereKp =
∑

q∈W Gd(p, q)Gc(p, q),Gd(p, q) = exp(−||p−q||
σd

),

and Gc(p, q) = exp(
−||Ip−Iq||

σc
).

The complexity of cross bilateral upsampling (CBU)

is O(NW) where N is the output image size and W is

the filter window size. Therefore the dominating factor

to the processing time is the number of pixels that need

Data sets
Resolutions

128 × 96 320 × 240 640 × 480
Teddy 13ms 78 ms 446 ms

Tsukuba 8ms 55ms 357 ms
Cones 11ms 69 ms 424 ms

Table 1 Performance of our CUDA stereo matching at dif-
ferent resolutions. Note that the number of disparity levels
is proportionally scaled to the resolution. The levels of belief
propagation are all set to 5 and iterations per level are all set
to 10.

Racking Focus and Tracking Focus on Live Video Streams: A Stereo Solution 5

(a) (b) (c)

Fig. 6 Comparison of three results using different number of
refining iterations. Result (a), (b), (c) are using 0, 3, and 10
iterations respectively.

to be upsampled, i.e., the resolution of the high-res im-

age in the brute-force implementation.

To accelerate our algorithm, we implement a fast

CBU scheme that effectively reduces the pixels to be

upsampled. Paris et al. [14] have shown that the mid
and low frequency components of an image remain ap-

proximately the same when downsampled. We there-

fore treat the high-frequency and the mid- and low-

frequency components separately. Our method first ap-

plies a Gaussian high-pass filter to identify the pixels
of high frequency in I and then uses a standard cross

bilateral filter to estimate the disparity values at only

these pixels. We store the resulting disparity map as

Dhigh. We call this step the high-frequency processing
module. In parallel, we downsample the color image to

mid-resolution Imid, apply CBU between D′ and Imid

to obtain the mid-res disparity map Dmid; and subse-

quently upsample Dmid to Dhigh using standard bilin-

ear upsampling. We call this step the mid- and low- fre-
quency processing module. Finally, we perform high fre-

quency compensation by replacing the disparity value

at the identified high frequency pixels Ĩ with Dhigh.

Figure 3 shows the complete processing pipeline of our
algorithm. Compared with standard CBU, our scheme

only needs to upsample a small portion of the pixels

and hence is much faster.

We also added a refining stage for sharpening the

boundary regions and smoothing the surface regions

with a cross bilateral filter, after the unsampling is
done. The stage is basically the same as the upsamling

stage except the input disparity map is the same size as

the color image. Since the output disparity map could

Bicubic Color ImageOur Approach

Fig. 7 Comparison between our method and bicubic upsam-
pling on real scenes. The disparity map is upsampled from
320 × 240 to 640 × 480. Our method preserves sharp edges
and maintains smoothness, which is critical to reliable DoF
synthesis.

be treated as the input of another stage, this refining

stage can be performed iteratively.

As shown in Figure 6, if the refining stage is not

performed, the edges and surfaces of the disparity map
looks noisy due to the imperfection of the low resolu-

tion disparity map and the textures in the color image.

However, if the refining stage contains too many iter-

ations, then the disparities of one side of edges starts

to bleed into the other side, which is the effect of over-
smoothing. Therefore, a compromise number of itera-

tions must be chosen at run time, using our interactive

parameter interface (Section 6).

Note that the upsampled depth edges may not be
consistent with the depth edges compute using the high

frequency map. Here we experimented with the follow-

ing solutions: 1) Use the unsampled depth edges. 2)

Use the high frequency depth edges. 3) Blend the two

results. We found out that we can preserve more accu-
rate edges and render better results using the second

way.

3.3 CUDA Implementation.

We developed a GPU implementation of our algorithm
on the CUDA architecture to tightly integrate with our

CUDA BP stereo mapping algorithm. In our experi-

ments, we found that it is most efficient to assign one

thread to upsample each pixel in the disparity map. To
further evaluate the throughput of our implementation,

we upsampled 128×128 disparity maps with 1280×1280

color images. Our implementation achieves a processing

speed of 22 ms per frame or 14 ms per megapixel with

a 5×5 filter window, a significant speedup to the CPU-
based scheme [6] (which was 2 seconds per megapixel).

To measure the accuracy of our scheme, we per-

formed experiments using various stereo data sets. In

Figure 4, we show using the Teddy data set that reintro-
ducing high frequency compensation produces sharper

edges and smoother surfaces. Figure 5 illustrates our re-

sults in three regions on the Teddy data set. They are

6 Zhan Yu et al.

upsampled from 30 × 25 to 450× 375. Compared with

standard bicubic or Gaussian upsampling, our method

preserves fine details near the edges. It is important to

note that preserving edges while removing noise in the

disparity map is crucial to our DoF synthesis as DoF
effects are most apparent near the occlusion bound-

aries. Figure 7 gives the results on an indoor scene using

bicubic upsampling and our method. To further mea-

sure the accuracy, we compared our estimation with
the ground truth by computing the mean squared er-

rors over all pixels. Table 2 compares the error incurred

by our method under different upsampling scales on a

variety of Middlebury stereo data sets, and the results

show that our method is reliable and accurate even with
very high upsampling scales.

In our indoor and outdoor experiments, good results

of disparity maps can be achieved when there are 10

iterations in refining stage. Since the system runs at in-
teractive speed, it is impossible to use standard CBU to

upsample the low resolution disparity because it would

take 0.1 second (10 frame per second) to compute a

single frame of resolution 640× 480 with CUDA imple-

mentation. However with our fast CBU framework, the
speed quickly goes up to 40 frame per second with the

downsampling factor 2× 2.

Data sets
Upsampling Scales

20 × 20 10× 10 5 × 5 2× 2
Teddy 10.41% 3.56% 1.71% 0.52%
Plastic 8.36% 4.23% 2.05% 0.91%

Monopoly 11.76% 5.35% 2.96% 1.14%
Books 9.28% 6.12% 2.63% 1.02%
Baby2 5.76% 2.38% 1.61% 0.69%
Aloe 15.12% 7.83% 3.40% 1.17%
Cones 11.51% 5.87% 3.25% 1.28%
Art 13.47% 7.15% 3.43% 1.41%

Table 2 Pixels with disparity error larger than 1 under dif-
ferent upsampling factors on the Middlebury data sets.

4 Real Time DoF Synthesis

Once we obtain the high-resolution disparity map, we

set out to synthesize dynamic DoF effects. Previous sin-

gle image based DoF synthesis algorithms attempt to

estimate the circle of confusion at every pixel and then
apply the spatially varying blurs on the image. These

methods produce strong bleeding artifacts at the oc-

clusion boundaries, as shown in Figure 8. In computer

graphics, the distributed ray tracing and the accumula-
tion buffer techniques have long served as the rendering

method for dynamic DoF. Both approaches are compu-

tationally expensive as they either require tracing out

(a) (b)

(c) (d)

Fig. 8 Comparing results generated by image space blurring
(a, c) and our light field synthesis method (b, d). Our ap-
proach effectively reduces both the intensity leakage (a) and
boundary discontinuity (c) artifacts.

a large number of rays or repeated rasterization of the
scene. Furthermore, to apply ray-tracing or accumula-

tion buffer in our application requires constructing a

triangulation of the scene from the depth map, which

would incur additional computational cost.

In this paper, we adopt a similar approach to [27]

by dynamically generating a light field from the high-

resolution video stream and its depth stream, as shown

in Figure 9. Our technique, however, differs in that we
directly use the disparity map for warping and filtering

whereas [27] builds upon the depth map. As follows, we

briefly reiterate the main steps of this light-field based

DoF rendering technique.

4.1 The Lens Light Field

The light field is a well known image based render-
ing technique. It uses a set of rays commonly stored

in a 2D array of images to represent a scene. Each ray

in the light field can be indexed by an integer 4-tuple

(s, t, u, v), where (s, t) is the image index and (u, v) is
the pixel index within a image.

Our first step generates a light field from the stereo

pair. The high resolution camera in our stereo pair is

used as the reference camera R00.

To synthesize the light field, we use the high-resolution

camera in our stereo pair as the reference camera R00

(i.e., (s, t) = (0, 0)). We can then easily find all rays
that pass through a 3D point A in terms of its dispar-

ity γ from the reference view. Assuming A’s image is at

pixel (u0, v0) in the reference camera, we can compute

Racking Focus and Tracking Focus on Live Video Streams: A Stereo Solution 7

XY

Plane

ST

Plane

UV

Plane

Focal

Plane

(u0, v0)
p(x, y)

Color Disparity

Dynamic Light Field Generation

Fig. 9 We synthesize an in-lens light field (left) from the
recovered high-resolution color image and disparity map
(right).

its image (pixel coordinate) in any light field camera

Rst as:

(u, v) = (u0, v0) + (s, t) · γ (2)

We use Lout(s, t, u, v) to represent the out-of-lens

light field and Lin(x, y, s, t) to represent the in-camera

light field. The image formed by a thin lens is propor-
tional to the irradiance at a pixel a [17], which can be

computed as a weighted integral of the incoming radi-

ance through the lens:

a(x, y) ≈
∑

(s,t)

Lin(x, y, s, t)cos
4φ (3)

To map the in-lens light field to the out-of-lens light
field, it is easy to verify that pixel a(x, y) on the sensor

maps to pixel (u0, v0) = (w − x, h − y) in R00. There-

fore, if we want to focus at the scene depth whose cor-

responding disparity is γf , we can find the pixel index
in camera Rst using Equation 2. The irradiance at a

can be approximated as:

a(x, y) =
∑

(s,t)

Lout(s, t, u0 + s · γf , v0 + t · γf) · cos
4φ

To estimate the attenuation cos4 φ term, we can directly
compute cos4 φ for each ray (s, t, u, v). Notice that the

ray has direction (s, t, 1). Therefore, we can compute

cos4 φ = 1
(s2+t2+1)2 .

4.2 CUDA Implementation

To synthesize the light field from the reference cam-

era R00 and its disparity map, we warp it onto the

rest light field cameras using Equation 2. Note that in-

verse warping is impractical here because the disparity
maps of target light field cameras are unknown. There-

fore we choose to forwardly constructing those cam-

eras. A naive approach would be to directly warp the

RGB color of each pixel a(u0, v0) in R00 onto other light

field cameras. Specifically, using a’s disparity value, we

can directly compute its target pixel coordinate in cam-

era Rst using Equation 2. Since the CUDA architecture

supports parallel write, we can simultaneously warp all
pixels in R00 onto other light field cameras.

Although the warping process is straight forward,

attention needs to be paid to the correctness of the

light field. Since multiple pixels in R00 may warp to
the same pixel a in the light field camera Rst, a depth

comparison is necessary to ensure the correct visibil-

ity. Thus each light field camera requires an additional

depth buffer. To avoid write-write conflicts in the warp-

ing process, we use atomic operations. However, current
graphics hardware cannot handle atomic operations on

both color and depth values at the same time. To re-

solve this issue, we only choose to warp the disparity

value. We can easily index the RGB value for each light
field ray using the stored disparity value and the camera

parameters. This solution requires less video memory as

the RGB value does not need to be stored in the light

field.

Due to speed requirements, we can only render a
small light field with 36 to 48 cameras at a 640 × 480

image resolution. The low spatial resolution leads to

strong aliasing artifacts due to undersampling. Since

our reference view does not contain information from
the occluded regions, the warped light field camera im-

ages will contain holes.

To reduce the image artifacts caused by undersam-

pling and occlusions, we develop a simple technique

similar to the cone tracing method to pre-filter the ref-
erence view [7]. Our method is based on the observation

that out-of-focus regions exhibit most severe aliasing

artifacts and occlusion artifacts since they blend rays

corresponding to different 3D points. Our method com-
pensates for undersampling by first blurring the out-of-

focus rays and then blending them. A similar concept

has been used in the Fourier slicing photography tech-

nique for generating a band-limited light field [12].

To simulate low-pass filtering in light field render-
ing, we first generate a Mipmap from the reference im-

age using a 3× 3 Gaussian kernel [8].

Gaussian Mipmaps eliminate the ringing artifacts

and produce smoother filtering results than the regular
box-filters . We then integrate the Gaussian Mipmap

into the light field ray querying process.

Assume the scene is focused at depth df . For a ray

(u, v) in camera Rst that has depth value dr, we have

a similitude relationship:

Clens/Cblurdisk = df/(dr − df) = (γr − γf)/γf (4)

whereClens is the diameter of the aperture and Cblurdisk

is the size of the blur disk in world space. The MipMap

8 Zhan Yu et al.

Focus at

Foreground

Lens

Kernels

Ground

Truth
Ours

Image

Space

Lens

Focus at

Background

Ground

Truth
Ours

Image

Space

Ab Ab

Fig. 10 Illustrations of two types of boundary artifacts. See
Section 4.3 for details.

level for the ray can be calculates as:

l = log2(γr · Cblurdisk/N)

= log2(γr · (Clens · γf/(γrL− γf)) /N)

= log2(Clens · (γf − γr)/(B ·N)) (5)

where N is the number of samples, γr gives the pixel

per length ratio which transform the size of the ray

cone Cblurdisk/N into number of pixels on the image.

4.3 Our Technique vs. Single-Image Blurring

Compared with single-image methods that apply spa-

tially varying blurs, our light field based DoF synthesis

technique significantly reduces two types of boundary

artifacts. In instances where the camera focuses at the
foreground, the ground truth result should blend points

on the background. Conversely, single-image filtering

techniques use a large kernel to blend the foreground

and background pixels and hence, produce the inten-

sity leakage artifact. Consider a point Ab lying on the
background near the boundary, as shown in Figure 10.

Our method attempts to blend rays originating from

the background. Although our technique can only ac-

cess a portion of them Due to occlusions, it still pro-
duces reasonable approximations.

In instances where the camera focuses on the back-

ground, the ground truth result should blend both the

foreground and background points. Single-image filter-

ing techniques, however, would consider Ab in focus and
hence directly use its color as the pixel’s color. In this

case, the transition from the foreground to the back-

ground appears abrupt, causing the boundary disconti-

nuity artifacts. Consider a point Ab on the background
near the occlusion boundary in the image as shown in

Figure 10. Since rays originating from both the fore-

ground and background are captured by our synthe-

(a) (b)

(c) (d)

Fig. 11 Results of synthesizing changing aperture sizes. The
aperture size gradually decreases from (a) to (d).

sized light field, our technique will produce the correct

result.

Figure 8 compares the rendering results using our

method and the single-image filtering approach on an

indoor scene. Our technique exhibits fewer visual arti-

facts compared to the single-image filtering method, es-
pecially near the boundary of the girl. When examining

the boundary of the sweater, the single-image method

blurs the black sweater regions into the background and

thus causes color bleeding, whereas our technique pre-

vents such leakage. When focusing at the background,
the single-image method exhibits discontinuous transi-

tions from the girl to the background while our method

preserves the smooth transition.

Our method also correctly preserves the boundaries

between the in-focus and out-of-focus regions when syn-
thesizing changing aperture sizes. As shown in Figure

11, we fix the focus at the woman. With the aperture

fully open in (a), the blur level decreases as we decrease

the aperture size.

5 Tracking and Auto-Refocusing with a Stereo

Pair

One challenging task for shooting a dynamic scene with
movie cameras is that it is hard to focus exactly on

moving objects. Since the resolution of movie camera’s

viewfinder is relatively small, it is hard to tell whether

the object of interest is sharp or blurry until postpro-
cessing stage. To resolve this issue, we implemented a

tracking and auto-refocusing functionality in our sys-

tem.

Racking Focus and Tracking Focus on Live Video Streams: A Stereo Solution 9

(e) (f) (g)

(a) (b) (c) (d)

(h)

Fig. 12 Results using our tracking algorithm. Notice that with the auto-refocusing functionality, the cat on the right hand
side of the girl is becoming sharper as the toy car moves closer to its plane.

5.1 Tracking

Like all the other classic tracking algorithms, we model

our problem by reasoning probabilistically about the

world based on Bayes’s theorem. Since we have two

images as the input, the posterior probability can be

represented as

p(W |I1, I2) =
p(I1, I2|W)p(W)

p(I1, I2)
,

where W is the latent scene, p(I1, I2) is treated as nor-

malizing constant, I1 and I2 are the images seen, and

p(I1, I2|W) = p(I1|I2,W)p(I2|W)p(W),

Here we use the maximum a posteriori estimate to find

the result. Since the underline scene W does not change

during one shot, p(I1|I2,W) could be interpreted as the

warping result from one of the images using the dispar-
ity map. Therefore, instead of dealing with multiple im-

ages, we are use both images and a disparity map as in-

puts. The result is estimated by argmaxW p(W |I1, I2).

We use Sum of Squared Differences (SSD) as the

error function in our calculation. The estimated loca-
tion of object in frame i is computed using the following

algorithm:

With the additional disparity information, the track-

ing result becomes very stable even though the object

of interest and the background have similar colors, as
shown in Row 1 of Figure 12. The search of tracking

position is also parallelized with CUDA, so the compu-

tation overhead of this step is negligible.

Algorithm 1 Compute current tracking postion
if i = 0 then

pos[i]← pos[i]
else

MinError← INFINITE
while p← nextposition do

n← 0
for j = i→ max(i−MaxLength, 0) do

e ← e + DisparitySSD(p,pos[i]) ×
ColorSSD(p, pos[i])
n← n+ 1

end for

e← e/n
if e < MinError then

MinError← e
pos[i]← p

end if

end while

end if

5.2 Auto-Refocusing

With the object of interest being estimated on certain

frame i, we assume that all pixels pij around pixel j

inside the object should have the same disparity. A

straight forward approach will be calculating the fo-
cusing disparity value Disp by averaging all disparity

values in this region. The result, however, is subject

to noise and not robust to pixels which are incorrectly

marked as the object. To overcome these problems, we
first assign different weights for pixels. Therefore, Disp

is computed by

Disp =

∑
j Dijwij∑

j wij

,

10 Zhan Yu et al.

Fig. 13 The real time DoF effects (middle) and disparity map (right) given by our system after fine tuning the parameters
using our interface (left).

where Dij is the disparity of pixel pij on frame i and

wij is the weight for pixel pij . The straight forward ap-

proach is assigning constant weights for all pixels. Note

that user is defining the object of interest by a rectan-
gle, pixels with different disparities or even occlusions

may appear on the boundary when shooting the video.

To make our disparity computation robust, here we use

Gaussian weight. For each pixel in the object, we keep

track of the previous assigned disparity. Since our sys-
tem runs at interactive speed, we can safely assume

that large disparity jumps do not occur on any pixel. If

the difference between the previous and current dispar-

ities is larger than a certain threshold, we claim that
this pixel is noisy and do not use it in the computa-

tion of current focused disparity Disp. Row 2 of Figure

12 shows results of our auto-refocusing algorithm. The

moving car stays in focus while the out of focus re-

gions are getting sharper, such as the girl and the cat,
or more blurry, such as the tablecloth in the front, as

the car moves closer or further away to their planes,

respectively.

6 Results and Discussions

Our hybrid-resolution stereo system is connected to a

work station through a single PCI-E Firewire card. The

workstation is equipped with a 3.2GHz Intel Core i7
970 CPU, 4GB memory and an NVIDIA Geforce GTX

480 Graphic Card with 1.5GB memory. We implement

all three processing modules (the disparity map estima-

tion, fast CBU, dynamic DoF rendering) using NVIDIA’s
CUDA 3.1 with compute capability 2.0. Our system

runs at the resolution of 640 × 480 with 15 fps. Com-

pared with a equivalent CPU implementation at 0.2 fps,

the overall speed up is over ×30. Table 3 gives detailed

speed up of each component in our system.

A crucial step in our real-time stereo matching mod-
ule is choosing the proper parameters (e.g., the weight

for the smooth/compatible terms of the energy func-

tion) to fit different types of scenes (indoor vs. outdoor).

We have developed an interface to dynamically change

the parameters, As shown in Figure 13.

We have conducted extensive experiments on both

indoor and outdoor scenes. We first demonstrate our

system on indoor scenes with controlled lighting. Figure
14 row 1 shows four frames captured by our system of

a girl drinking coffee while reading. The coffee cup in

the scene is textureless and very smooth. Our fast CBU

scheme, however, still preserves the disparity edges, as

shown in Figure 14 row 1. We then dynamically change
the depth of the focal plane: column (a) and column

(d) focus on the front of the table, column (b) focuses

on the girl, and column (c) focuses on the background.

Notice how the blur varies and the in-focus regions fade
into the out-of-focus regions.

Figure 14 row 2 displays a scene of a girl moving

a toy car on a table. The surface of the car is spec-

ular, and the background and car have similar colors,

making it challenging to prevent the disparity of the
background from merging with the disparity of the car.

Moreover, the motion of the car is towards the camera,

causing the body of the car to have several different

disparities. This makes labeling each pixel using stereo

correspondence methods even more difficult. Neverthe-
less, our algorithm preserves the edges of the car when

it is in focus and correctly blurs portions of the scene

outside of the focal plane. Our system performs well in-

doors because the background distance is often limited,
therefore allowing one baseline to produce accurate dis-

parity labels for the entire scene. In addition, artificially

lit indoor scenes with diffuse walls and surfaces tend to

have moderate dynamic range and have few poorly lit

or saturated regions.

Component CPU GPU
Depth Estimation 200 ms 30 - 50 ms

Bilateral Upsampling 100 ms 5 ms
Light Field Rendering 200 ms 15 ms

Table 3 Speed up of each component in the system.

Racking Focus and Tracking Focus on Live Video Streams: A Stereo Solution 11

(a) (b) (c) (d)

Fig. 14 Screen captures of live video streams produced by our system on both indoor (top two rows) and outdoor (bottom
row) scenes.

Indoor scenes undoubtedly aid the performance of
our system. Our experiments on outdoor scenes, how-

ever, show promising results as well. Row 3 of Figure 14

shows an outdoor sequence with a distant background

under dynamically varying lighting conditions. Notice
that in column (a), the image is brighter than the rest of

the frames in the sequence and the background contains

noticeable shadows. In addition to incoherent illumina-

tion, large portions of the scene such as the sky and the

ground are textureless, making it difficult to achieve
robust stereo matching. Since our system allows us to

dynamically change the camera baseline, we use its real-

time feedback to tune the parameters and increase the

camera baseline to obtain a satisfactory disparity map,
as shown in the supplementary video. The use of large

baseline may lead to holes near the occlusion bound-

aries on full-resolution images. These holes are, how-

ever, less significant in low-resolution stereo pairs and

our upsampling scheme is able to borrow information
from the color image to fill in the holes. The extracted

frames show that we are able to correctly change the

focus between the moving targets in both foreground

and background.

7 Limitations

Since our system is dealing with a wide variety of in-
door and outdoor scenes, it is reasonable to analyze the

limitations of our frameworks and algorithms.

7.1 Scene Colors

It is well known that regions without any texture cause
problems when computing disparity maps. Since our

system starts with a disparity matching component us-

ing Belief Propagation, visual artifacts usually show up

in these regions, especially for outdoor scenes when sky
is visible in the background.

Our proposed bilateral upsampling algorithm as-

sumes that adjacent boundary regions of different depth

should have different colors, in order to filter out sharp
edges. If a big filer kernel is used and some parts of two

or more adjacent depths happen to have similar colors,

boundary bleeding artifacts will occur.

7.2 Occlusions

Occlusions on the boundaries of objects not only cause

problems at the stereo matching stage, but also give

unreal visual effects on the boundary regions when the

12 Zhan Yu et al.

Fig. 15 Observed artifacts (high lighted with red rectangle)
at specular regions on a computed disparity map.

Depth of Field is synthesized. This is because it is im-

possible to correctly recover the information of the oc-

cluded regions when the different views in the light field

are warped from a single view with its disparity map,

as mentioned in 4.3. Therefore the light field rendering
results on these regions is computed simply by blend-

ing the visible rays in the light field. These regions will

look different if compared with the result from a optical

lens.

7.3 Specular Highlights

Specular highlights also introduce artifacts. As shown

in Figure 15. First, the disparity of this region is dif-

ferent from the neighboring regions because the high

lighted portion on each object depends on the both po-
sition of the object and the light source in the scene.

Second, the color of the highlight region is lost.

7.4 Translucent Regions

It is impossible to compute disparity for a fuzzy re-
gion such as the hair of a person using classical stereo

matching algorithms. The reason is because the model

of these algorithms assume that each pixel on the im-

age has only a single disparity, which is not the case
when the region is translucent, meaning rays of multi-

ple objects are captured by the same pixel, causing the

translucent effect. For example a single hair fiber or the

boundary of a human face. As shown in Figure 16. To

resolve this issue, Matting needs to be performed first
to separate each layer out. Then the disparity of each

layer could be estimated correctly. But this method is

computationally too expensive for our system.

8 Conclusion and Future Work

We have presented an affordable stereo solution for pro-

ducing high quality live DoF effects. Our system shows

promising results on indoor and outdoor scenes although

Fig. 16 Observed artifacts at translucent regions.

it still has several limitations. First, 15 fps is a low frame

rate and our resolution of 640× 480 precludes our sys-
tem from immediately being used in high quality HD

video applications. Using multiple GPUs may address

this problem as they allow greater exploitation of in-

herent parallelism in our computational pipeline. Sec-

ond, although the high quality sensor and lens system
on our camera pair significantly reduces image noise

and optical distortions, this comes with a higher price.

While less expensive than existing commercial movie

cameras, our system is still twice the cost of most base
level video cameras. Integrating existing real-time tech-

niques to correct optical distortions and sensor noise

into our pipeline would make it feasible to use lower

cost webcams instead of the firewire Flea cameras.

Our future efforts include adapting our system to

functional applications such as privacy protected surveil-

lance. We plan to demonstrate the usefulness of our
system in urban spaces to limit the focal plane to pub-

lic areas, e.g., the sidewalks, while blurring more dis-

tant private areas like the interior of homes. Current

urban surveillance networks are augmented with real-

time recognition algorithms to detect illegal activity.
When illegal activity is detected, our system could pro-

vide more information to law enforcement by removing

the DoF effect using the stored disparity map stream for

subsequent scene reconstruction. We can also leverage
future gains in ubiquitous computing to produce a truly

mobile platform which utilizes, for example, two camera

phones for producing DSLR quality imagery. On the al-

gorithm side, instead of performing a straight forward

high-pass Gaussian filter to acquire high frequency in-
formation in the image, we can also perform other so-

phisticated frequency decomposition method such as

wavelet transform.

9 Acknowledgement

This project was partially supported by the National
Science Foundation under grants IIS-CAREER-0845268

and IIS-RI-1016395, and by the Air Force Office of Sci-

entific Research under the YIP Award.

Racking Focus and Tracking Focus on Live Video Streams: A Stereo Solution 13

References

1. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate en-
ergy minimization via graph cuts. PAMI, IEEE Transac-
tions on 23(11), 1222 –1239 (2001)

2. Brunton, A., Shu, C., Roth, G.: Belief propagation on the
gpu for stereo vision. In: Computer and Robot Vision,
The 3rd Canadian Conference on (2006)

3. Felzenszwalb, P., Huttenlocher, D.: Efficient belief prop-
agation for early vision. In: CVPR (2004)

4. Grauer-Gray, S., Kambhamettu, C., Palaniappan, K.:
Gpu implementation of belief propagation using cuda for
cloud tracking and reconstruction. In: Pattern Recogni-
tion in Remote Sensing (PRRS 2008), 2008 IAPR Work-
shop on, pp. 1 –4 (2008)

5. Kolmogorov, V., Zabin, R.: What energy functions can
be minimized via graph cuts? PAMI, IEEE Transactions
on 26(2), 147 –159 (2004)

6. Kopf, J., Cohen, M.F., Lischinski, D., Uyttendaele, M.:
Joint bilateral upsampling. In: SIGGRAPH (2007)

7. Lee, S., Eisemann, E., Seidel, H.P.: Depth-of-field ren-
dering with multiview synthesis. In: SIGGRAPH Asia
(2009)

8. Lee, S., Kim, G.J., Choi, S.: Real-time depth-of-field ren-
dering using anisotropically filtered mipmap interpola-
tion. IEEE Transactions on Visualization and Computer
Graphics 15(3), 453–464 (2009)

9. Levin, A., Hasinoff, S.W., Green, P., Durand, F., Free-
man, W.T.: 4d frequency analysis of computational cam-
eras for depth of field extension. ACM Trans. Graph. 28
(2009)

10. Li, F., Yu, J., Chai, J.: A hybrid camera for motion de-
blurring and depth map super-resolution. In: Computer
Vision and Pattern Recognition,CVPR 2008. IEEE Con-
ference on (2008)

11. Mcmillan, L., Yang, J.C., Yang, J.C.: A light field camera
for image based rendering (2000)

12. Ng, R.: Fourier slice photography. In: SIGGRAPH (2005)
13. Ng, R., Levoy, M., Brdif, M., Duval, G., Horowitz, M.,

Hanrahan, P.: Stanford tech report ctsr 2005-02 light field
photography with a hand-held plenoptic camera

14. Paris, S., Durand, F.: A fast approximation of the bi-
lateral filter using a signal processing approach. Int. J.
Comput. Vision 81(1), 24–52 (2009)

15. Sawhney, H.S., Guo, Y., Hanna, K., Kumar, R.: Hybrid
stereo camera: an ibr approach for synthesis of very high
resolution stereoscopic image sequences. In: SIGGRAPH,
pp. 451–460 (2001)

16. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. Int.
J. Comput. Vision 47, 7–42 (2002)

17. Stroebel, L., Compton, J., Current, I., Zakia, R.: Photo-
graphic Materials and Processes (1986)

18. Sun, J., Zheng, N.N., Shum, H.Y.: Stereo matching using
belief propagation. PAMI, IEEE Transactions on 25(7),
787 – 800 (2003)

19. Vaish, V., Levoy, M., Szeliski, R., Zitnick, C., Kang, S.B.:
Reconstructing occluded surfaces using synthetic aper-
tures: Stereo, focus and robust measures. In: CVPR
(2006)

20. Vaish, V., Wilburn, B., Joshi, N., Levoy, M.: Using plane
+ parallax for calibrating dense camera arrays. In: CVPR
(2004)

21. Wang, H., Sun, M., Yang, R.: Space-time light field ren-
dering. IEEE Transactions on Visualization and Com-
puter Graphics 13, 697–710 (2007)

22. Wang, H., Yang, R.: Towards space: time light field ren-
dering. In: I3D (2005)

23. Wilburn, B., Joshi, N., Vaish, V., Levoy, M., Horowitz,
M.: High-speed videography using a dense camera array.
In: CVPR (2004)

24. Wilburn, B., Joshi, N., Vaish, V., Talvala, E.V., Antunez,
E., Barth, A., Adams, A., Horowitz, M., Levoy, M.: High
performance imaging using large camera arrays. ACM
Trans. Graph. 24, 765–776 (2005)

25. Yang, J.C., Everett, M., Buehler, C., McMillan, L.: A
real-time distributed light field camera. In: Proceedings
of the 13th Eurographics workshop on Rendering, EGRW
’02, pp. 77–86 (2002)

26. Yang, Q., Yang, R., Davis, J., Nister, D.: Spatial-depth
super resolution for range images. In: CVPR (2007)

27. Yu, X., Wang, R., Yu, J.: Real-time depth of field ren-
dering via dynamic light field generation and filtering.
Comput. Graph. Forum 29(7), 2099–2107 (2010)

28. Zhang, Z.: A flexible new technique for camera calibra-
tion. PAMI, IEEE Transactions on 22(11), 1330 – 1334
(2000)

