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Abstract. The depth of field (DoF) effect is a useful tool in photography and cinematography because of its
aesthetic value. However, capturing and displaying dynamic DoF effect were until recently a quality unique
to expensive and bulky movie cameras. A computational approach to generate realistic DoF effects for mobile
devices such as tablets is proposed. We first calibrate the rear-facing stereo cameras and rectify the stereo
image pairs through FCam API, then generate a low-res disparity map using graph cuts stereo matching
and subsequently upsample it via joint bilateral upsampling. Next, we generate a synthetic light field by warping
the raw color image to nearby viewpoints, according to the corresponding values in the upsampled high-res-
olution disparity map. Finally, we render dynamic DoF effect on the tablet screen with light field rendering. The
user can easily capture and generate desired DoF effects with arbitrary aperture sizes or focal depths using the
tablet only, with no additional hardware or software required. The system has been examined in a variety of
environments with satisfactory results, according to the subjective evaluation tests. © 2014 SPIE and IS&T [DOI:

10.1117/1.JEI1.23.2.023009]
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1 Introduction

Dynamic depth of field (DoF) effect is a useful tool in pho-
tography and cinematography because of its aesthetic value.
Capturing and displaying dynamic DoF effect were until
recently a quality unique to expensive and bulky movie cam-
eras. Problems such as radial distortion may also arise if the
lens system is not setup properly.

Recent advances in computational photography enable
the user to refocus an image at any desired depth after it has
been taken. The hand-held plenoptic camera' places a micro-
lens array behind the main lens, so that each microlens image
captures the scene from a slightly different viewpoint. By
fusing these images together, one can generate photographs
focusing at different depths. However, due to the spatial-
angular tradeoff> of the light field camera, the resolution
of the final rendered image is greatly reduced. To overcome
this problem, Georgiev and Lumsdaine® introduced the
focused plenoptic camera and significantly increased spatial
resolution near the main lens focal plane. However, angular
resolution is reduced and may introduce aliasing effects to
the rendered image.

Despite recent advances in computational light field im-
aging, the costs of plenoptic cameras are still high due to the
complicated lens structures. Also, this complicated structure
makes it difficult and expensive to integrate light field cam-
eras into small hand-held devices like smartphones or tablets.
Moreover, the huge amount of data generated by the plenop-
tic camera prohibits it from performing light field rendering
on video streams.

To address this problem, we develop a light field render-
ing algorithm on mobile platforms. Because our algorithm
works on regular stereo camera systems, it can be directly

*Address all correspondence to: Qiaosong Wang, E-mail: giaosong@udel.edu

Journal of Electronic Imaging

023009-1

applied to existing consumer products such as three-dimen-
sional (3-D)-enabled mobile phones, tablets, and portable
game consoles. We also consider the current status of mobile
computing devices in our software system design and make
it less platform dependent by using common libraries such as
OpenCYV, OpenGL ES, and FCam API. We start by using two
cameras provided by the NVIDIA Tegra 3 prototype tablet to
capture stereo image pairs. We subsequently recover the
high-resolution disparity maps of the scene through graph
cuts (GCs)* and then generate a synthesized light field for
dynamic DoF effect rendering. Once the disparity map is
generated, we synthesize a virtual light field by warping
the raw color image to nearby viewpoints. Finally, dynamic
DoF effects are obtained via light field rendering. The overall
pipeline of our system is shown in Fig. 1. We implement our
algorithm on the NVIDIA Tegra 3 prototype tablet under the
FCam architecture.” Experiments show that our system can
successfully handle both indoor and outdoor scenes with
various depth ranges.

2 Related Work

Light field imaging opens up many new possibilities for
computational photography, because it captures full four-
dimensional radiance information about the scene. The cap-
tured light information can later be used for applications like
dynamic DoF rendering and 3-D reconstruction. Since con-
ventional imaging systems are only two-dimensional (2-D),
a variety of methods have been developed for capturing and
storing light fields in a 2-D form. Lippmann® was the first to
propose a prototype camera to capture light fields. The
Stanford multicamera array’ is composed of 128 synchron-
ized CMOS firewire cameras and streams, capturing data to
four PC hosts for processing. Because of the excessive data
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Fig. 1 The NVIDIA Tegra 3 prototype tablet and the processing pipeline of our software system. All
modules are implemented on the Android 4.1 operating system.

volume, DoF effects are rendered offline. The Massachusetts
Institute of Technology light field camera array® uses 64 usb
webcams and is capable of performing real-time rendering of
DoF effects. However, these camera systems are bulky and
hard to build. Recently, Ng et al.' have introduced a new
camera design by placing a microlens array in front of the
sensor with distance equals microlens focal length, wherein
each microlens captures a perspective view in the scene from
a slightly different position. However, the spatial resolution
near the microlens array plane is close to the number of
microlenses. To overcome this limitation, Georgiev and
Lumsdaine’® introduced the focused plenoptic camera
which trades angular resolution for spatial resolution. An
alternative approach is to integrate light-modulating masks
to conventional cameras and multiplex the radiance in the
frequency domain.’ This design enables the camera sensor
to capture both spatial and angular frequency components,
but reduces light efficiency.

As the rapid research and development provide great
opportunities, hand-held plenoptic camera has been proven
practical and quickly progressed into markets. The Lytro
camera'®!! is the first implementation of a consumer-level
plenoptic camera. Recently, Pelican Imaging'? announced
a 16-lens mobile plenoptic camera system and scheduled
to implement it to new smartphones in 2014.

Our work is inspired by the algorithms proposed by Yu
et al.'>!* However, the system proposed in these two papers
is bulky and expensive, and the algorithm is highly depen-
dent on the GPU performance, making it hard to transfer
the proposed method to small hand-held devices such as
cellphones and compact size cameras. The system used by
Yu et al."* is composed of a desktop workstation and a cus-
tomized stereo camera system. The desktop is equipped with
a 3.2 GHz Intel Core i7 970 6-core CPU and a NVIDIA
Geforce GTX 480 Graphic Card with 1.5 GB memory.
Actually, very few laptops on the market can reach the
same level of performance, let alone tablets or cellphones.
Also, this system connects to two Point Grey Flea 2 cameras
via a Firewire link. The retail price for two Flea cameras is
around $1500, and the camera itself requires external power
source and professional software for functionalities such as
auto exposure, white balancing, and stereo synchronization,
which is almost impractical for general users without a com-
puter vision background. In addition, most scenes in this
article are indoor scenes with controlled lighting, and the
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user is required to tune different parameters on a GUI in
order to obtain a good-looking disparity map in different
scenes. In contrast, our software system works directly on
an off-the-shelf tablet, which costs less than $400. Since
our algorithm is implemented under the Android operating
system using highly optimized CPU-only functions from
OpenCV4Android SDK, it can be easily ported to other
hand-held Android devices with limited computational
power. Besides, we conducted extensive experiments to
obtain parameters that generate optimal results. Therefore, it
is easy to install and use our software, no hardware setup or
parameter adjustment is required. Furthermore, our system
uses GCs'® instead of belief propagation (BP)'° for stereo
matching and is tested working under complex illumination
conditions. According to the tests carried out by Tappen and
Freeman,!” GCs generate smoother solutions compared with
BP and consistently perform better than BP in all quality
metrics for the Middlebury'® Tsukuba benchmark image
pair. To conclude, we made the following contributions:

* We propose light field rendering as a possible solution
to generate dynamic DoF effects. We also discussed
why our method is good at reducing boundary discon-
tinuity and intensity leakage artifacts compared with
depth-based image blurring schemes.

* We implemented the entire system on an off-the-shelf
Android tablet using highly optimized CPU-only func-
tions from OpenCV4Android SDK. The system can be
easily ported to other mobile photography devices with
limited computational power.

* We conducted extensive experiments to obtain the opti-
mal combination of methods and parameters under
the Tegra 3 T30 prototype device. As a result, there is
no need for parameter adjustment and it is easy for the
user to install and use our application.

* We experimented with GCs for disparity map calcula-
tion, and the system is capable of working with a vari-
ety of scene structures and illumination conditions.

3 Overview

In this article, we demonstrate that the DoF effects can be
rendered using low-cost stereo vision sensors on mobile
devices. We first capture stereo image pairs by using
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the FCam API and then apply the GCs stereo-matching
algorithm to obtain low-resolution disparity maps. Next,
we take raw color images as guide images and upsample
the low-resolution disparity maps via joint bilateral upsam-
pling. Once the high-resolution disparity maps are generated,
we can synthesize light fields by warping the raw color
images from the original viewing position to nearby view-
points. We then render dynamic DoF effects by using the
synthetic light fields and visualize the results on the tablet
screen. We evaluate a variety of real-time stereo-matching
and edge-preserving upsampling algorithms for the tablet
platform. Experimental results show that our approach pro-
vides a good tradeoff between expected depth-recovering
quality and running time. All aforementioned processing
algorithms are implemented to the Android operating system
and tested on the Tegra 3 T30 prototype tablet. The user can
easily install the software and capture and generate desired
DoF effects using the tablet only, with no additional hard-
ware or software required. The system has been tested in
a variety of environments with satisfactory results.

4 Programmable Stereo Camera

4.1 Development Environment

The Tegra 3 T30 prototype tablet is equipped with a 1.5 GHz
quad-core ARM Cortex-A9 CPU and a 520 MHz GPU. It
has three sensors. The rear main sensor and secondary sensor
are identical with a 6-cm baseline. The third sensor is on the
same side of the multitouch screen facing the user. The raw
image resolution is 640 x 360 (16:9).

Our software is running under Android 4.1 (Jelly Bean)
operating system. We use the Tegra Android Developer Pack
(TADP) for building and debugging the application. This
software toolkit integrates Android SDK features to Eclipse
IDE by using the Android Development Tools (ADT) Plugin.
The ADT extends the capabilities of Eclipse and enables the
user to design graphic U, debug the application using SDK
tools, and deploy APK files to physical or virtual devices.
Since typical Android applications are written in Java and
compiled for the Dalvik Virtual Machine, there is another
toolset called Android Native Development Kit (NDT) for
the user to implement part of the application in native code
languages such as C and C++. However, using the NDT
brings certain drawbacks. First, the developer has to use the
NDT to compile native code, which hardly integrates with
the Java code, so the complexity of the application is
increased. Besides, using native code on Android system
generally does not result in a noticeable improvement in per-
formance. For our application, since we need to use the
FCam API for capturing stereo pairs and OpenCV and
OpenGL ES for image processing and visualization, we
implemented most of the code in C++ and run the code
inside the Android application by using the Java Native
Interface (JNI). The JNI is a vendor-neutral interface that
permits the Java code to interact with the underlying native
code or load dynamic-shared libraries. By using the TADP,
our workflow is greatly simplified. We first send commands
to the camera using the FCam API, then convert raw stereo
image pairs to cv::Mat format, and use OpenCV for rectifi-
cation, stereo matching, joint bilateral upsampling, and DoF
rendering. The final results are visualized on the screen using
OpenGL ES.
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4.2 FCam API

Many computational photography applications follow the
general pattern of capturing multiple images with changing
parameters and combining them into a new picture. How-
ever, implementing these algorithms on a consumer-level
tablet has been hampered by a number of factors. One
fundamental impediment is the lack of open software
architecture for controlling the camera parameters. The
Frankencamera® proposed by Adams et al. is the first archi-
tecture to address this problem. Two implementations of this
concept are a custom-built F2 camera and a Nokia N900
smartphone running on a modified software stack to include
the FCam API. Troccoli et al. extended the implementation
of FCam API to support multiple cameras'® and enabled the
NVIDIA Tegra 3 prototype tablet to trigger stereo captures.

4.3 Calibration, Synchronization, and Autofocus

Since the two sensors are not perfectly aligned, we calibrated
the stereo pair using a planar checker board pattern outlined
by Zhang.”® We computed the calibration parameters and
saved them to the tablet hard drive as a configuration file.
Once the user starts the application, it automatically loads
the calibration parameters to memory for real-time rectifica-
tion. This reduces distortion caused by the optical lens and
improves stereo-matching results. Even though we obtained
rectified image pairs, we still need to synchronize the sensors
since we cannot rectify over time for dynamic scenes. The
main mechanism for synchronizing multiple sensors in FCam
API is by extending the basic sensor component to a sensor
array.” A new abstract class called SynchronizationObject is
also derived from the Device class with members release and
wait for software synchronization. When the request queue
for the camera sensors is being processed, if a wait is found
and a certain condition is not satisfied, the sensor will halt
until this condition is satisfied. On the other hand, if a release
is found and the condition is satisfied, the halted sensor will
be allowed to proceed. The FCam API also provides classes
such as Fence, MultiSensor, MultiShot, Multilmage, and
MultiFrame for the user to control the stereo sensor with
desired request parameters.

In our application, we use the rear main camera to con-
tinuously detect the best focusing position and to send
updates to the other sensor. First, we ask the rear main lens
to start sweeping the lens. We then get each frame with its
focusing location. Next, we sum up all the values of the
sharpness map attached to the frame and send updates to
the autofocus function. The autofocus routine will move
the lens in a relatively slower speed to refine the best
focal depth. Once this process is done, we trigger a stereo
capture with identical aperture, exposure, and gain parame-
ters for both sensors. The overall image quality is satisfac-
tory, considering the fact that the size of the sensor is very
small and the cost is much lower than research stereo camera
systems such as Pointgreys Bumblebee. Figure 2 shows how
our software system interacts with the imaging hardware.

5 Disparity Map Generation

Computing depth information from stereo camera systems is
one of the core problems in computer vision. Stereo algo-
rithms based on local correspondences’?? are usually
fast but introduces inaccurate boundaries or even bleeding
artifacts. Global stereo estimation methods, such as GCs!

Mar—Apr 2014 « Vol. 23(2)



Wang et al.: Stereo vision—-based depth of field rendering on a mobile device

i SR ( )
ndroid application
Multi-shot requests _ Sensor array
Userinterface | Righ
ight sensor
Stereo matching Lens Left sensor
-Aperture
- -Exposure
Upsampling Tags L -Gain
K .
Rendering ( <
J e '
Y 640x360 (16:9) | Image statistics
Raw 1mage Statistics \ -Sharpness map

[ Multi-touch display ]U—_t
Ser 1mpu

Fig. 2 This diagram shows our system architecture. Our application accepts user input from the multi-
touch screen, sends multishot requests to the sensors with desired parameters, and then transfers the
raw stereo image pairs to the stereo-matching module. We then upsample the low-resolution disparity
map and synthesize a light field image array. Finally, we render DoF effects on the screen of the tablet.
We compute the best focal plane by using image statistics information tagged with the raw image frame.

and BP,'® have shown good results on complex scenes with
occlusions, textureless regions, and large depth changes.'®
However, running these algorithms on full-resolution (1
MP) image pairs is still expensive and hence impractical for
mobile devices. Therefore, we first downsample the raw
input image pair and recover a low-resolution disparity map
via GCs. Next, we take each raw color image as the guidance
image and upsample the disparity map via joint bilateral
upsampling.**

5.1 GCs Stereo Matching

In order to efficiently generate a high-resolution disparity
map with detailed information about the scene, we propose
a two-step approach. We first recover a low-resolution dis-
parity map on downsampled image pairs with the size of
160 % 90. Given the low-resolution image pairs, the goal is
to find labeling of pixels indicating their disparities. Suppose
f(p) is the label of pixel p; D, (x) is the data term, reflecting
how well pixel p fits its counterpart pixel p shifted by x in
the other image; V p,q(y, z) is the smoothness term indicating
the penalty of assigning disparity y to pixel p and disparity z
to pixel ¢; and N is the set of neighboring pixels, the cor-
respondence problem can be formulated as minimizing the
following energy function:

B() = are min{ 0,0+ 3 V,alfio).sla)l}

peP {p.ateN

6]

The local minimization of Eq. (1) can be efficiently
approximated using the alpha expansion presented in
Ref. 15. In our implementation, we set the number of dispar-

used here are block matching (BM), semi-global BM
(SGBM),?! efficient large-scale stereo (ELAS),? and GCs."”
Table 1 shows the running time of these algorithms on the
Tegra 3 tablet, and Fig. 3 shows the calculated disparity map
results. According to our experiments, BM is faster than
SGBM and ELAS on any given dataset but requires an
adequate choice of the window size. Smaller window
sizes may lead to a larger bad pixel percentage, whereas
larger window sizes may cause inaccuracy problems on the
boundary. Besides, the overall accuracy of disparity values
generated by BM is not very high. As can be seen from
Fig. 3, we can still identify the curved surface area of the
cones from the results generated by SGBM and ELAS, but
the same area looks almost flat in BM. SGBM and ELAS are
the two very popular stereo-matching algorithms with near
real-time performance. According to our experiments on the
tablet, they are very similar to each other in terms of running
time and accuracy. From Table 1 and Fig. 3, we can see that
ELAS generates better boundaries than SGBM on the cones
dataset, but takes more processing time and produces more
border bleeding artifacts. The GCs gives smooth transitions
between regions of different disparity values. According to
Table 2, the GCs algorithm outperforms other algorithms in
most of the quality metrics on the Middlebury datasets. For
our application, since the quality of upsampled result is
highly dependent on the precision of boundary values in
low-resolution disparity maps, we choose to use GCs rather

Table 1 Comparing running time (ms) of different stereo-matching
methods on the Tegra 3 tablet, using the Middlebury Cones dataset.
The longer edge is set to 160 pixels, and the number of disparities is
set to 16.

ities to be 16 and run the algorithm for five iterations. If the Datasets BM SGBM ELAS GCs
algorithm cannot find a valid alpha expansion that decreases
the overall energy function value, then it may also terminate Tsukuba 15 28 51 189
in less than five iterations. The performance of GCs on the
Tegra 3 tablet platform can be found in Table 1. Venus 13 30 97 234
To evaluate. our scheme, we performed experiments on Cones 19 42 124 321
various stereo image datasets. The stereo-matching methods
Journal of Electronic Imaging 023009-4 Mar—Apr 2014 « Vol. 23(2)
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Fig. 3 Comparison of our approach and other popular stereo-matching algorithms.

than other methods which runs faster. Another reason is that
we are running the GCs algorithm on low-resolution
imagery. According to Table 1, the running time is around
250 ms, which is still acceptable compared with ELAS
(around 100 ms). In return, noisy and invalid object boun-
daries are well optimized and the resulting disparity map is
ideal for refinement filters such as joint bilateral upsampling.

5.2 Joint Bilateral Upsampling

Because the stereo-matching process is performed on low-
resolution stereo image pairs, the resulting disparity map can-
not be directly used for DoF synthesis. We need to upsample
the disparity map while keeping important edge information.

Bilateral filtering proposed by Tomasi and Manduchi?* is
a simple, noniterative scheme for edge preserving smooth-
ing, which uses both a spatial kernel and a range kernel.
However, for low signal-to-noise ratio images, this algorithm
cannot keep the edge information very well. A variant called
joint bilateral filter introduced by Kopf et al.>* addresses this

problem by adding the original RGB image as a guidance
image. More formally, let p and g be two pixels on the
full-resolution color image I; p; and ¢, denote the corre-
sponding coordinates in the low-resolution disparity map
D’; f is the spatial filter kernel, g is the range filter kernel,
W is the spatial support of kernel f, and K, is the normal-
izing factor. The upsampled solution D,, can be obtained as

1
D, =2 > Dy flpy = aDa(li, = 1,11 @
P q ew

This method uses RGB values from the color image to
create the range filter kernel and combines high-frequency
components from the color image and low-frequency com-
ponents from the disparity map. As a result, color edges are
integrated with depth edges in the final upsampled disparity
map. Since depth discontinuities typically correspond with
color edges, this method can remove small noises. How-
ever, it may bring some unwanted effects. First, blurring

Table2 Evaluation of different stereo-matching methods on the Middlebury stereo datasets cite in bad pixel percentage (%). The method shown in
the last row applies five iterations of joint bilateral upsampling to the downsampled results (half of the original size) of GCs, using the full-resolution
color image as the guidance image. The resolutions of the four datasets (Tsukuba, Venus, Teddy, and Cones) are 384 x 288, 434 x 383,
450 x 375, and 450 x 375, respectively. If not specified, raw image size of each individual dataset will be the same for the remainder of this article.

Tsukuba Venus Teddy Cones
nonocc all disc nonocc all disc nonocc all disc nonocc all disc
BM 10.3 11.9 21.5 12.4 13.9 21.6 16.7 23.1 27.3 7.46 17.2 23.8
SGBM 3.26 3.96 12.8 1.00 1.57 11.3 6.02 12.2 16.3 3.06 9.75 8.90
ELAS 3.96 5.42 17.9 1.82 2.78 20.9 7.92 14.5 22.8 6.81 14.9 17.2
GCs 1.94 4.12 9.39 1.79 3.44 8.75 16.5 25.0 24.9 7.70 18.2 15.3
Proposed 1.01 2.83 5.42 0.18 0.59 1.99 6.57 11.2 15.1 3.06 9.70 8.92

Note: nonocc, bad pixel percentage in nonoccluded regions; all, bad pixel percentage in all regions; disc, bad pixel percentage in regions near-

depth discontinuities.
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and aliasing effects caused by the optical lens are transferred
to the disparity map. Besides, the filtering process may
change disparity values in occlusion boundaries, according
to the high-frequency components in the color image, and
thus causing the disparity map to be inaccurate. We address
this problem by iteratively refining the disparity map after the
upsampling process is done. As a result, the output image of
the previous stage becomes the input of the next stage.

Figure 4 shows the results after different numbers of iter-
ations. The initial disparity map [see Fig. 4(a)] is noisy and
inaccurate, because it is generated on low-resolution image
pairs. However, if too many iterations are applied to the input
image [Fig. 4(d)], the boundaries of the cup handle start to
bleed into the background, which is a result of over-smooth-
ing. Also, more iterations add to the complexity and process-
ing overhead of the entire application. According to Fig. 5,
the quality of the disparity map can be improved during the
first five or six iterations. This is because joint bilateral
upsampling can preserve edges while removing noises in
the disparity map. However, if the refining process contains
too many iterations, then the disparities of one side of edges
start to bleed into the other side, causing the bad pixel per-
centage to go up, especially in regions near depth disconti-
nuities (refer to the increase of disc values in Fig. 5).
Therefore, a compromise number of iterations must be
chosen. In our application, the number is set to 5. Since
the Middlebury datasets contain both simple scenes like
Venus and complex scenes such as Teddy and Cones, we
assume that five iterations should return good results under
a variety of scene structures. Generally, it takes around 40 ms
to finish the five iteration steps on the tablet. Figure 6 illus-
trates the detailed view of our result compared with other
standard upsampling methods. Because DoF effects are
most apparent around the depth edges, it is very important
to recover detailed boundaries in the high-resolution dispar-
ity map. According to Table 3, our method outperforms other
methods in all quality metrics and generates better boundary
regions (refer to disc values in Table 3) by using the fine
details from the high-resolution color image.

6 DoF Rendering

Once we obtained the high-resolution disparity map, we can
proceed to synthesize dynamic DoF effects. Previous studies
suggested that the real-time DoF effects can be obtained by
applying a spatially varying blur on the color image and
using the disparity value to determine the size of the blur
kernel.>>?® However, this method suffers from strong inten-
sity leakage and boundary bleeding artifacts. Other methods

such as distributed ray tracing®’ and accumulation buffer®®
give more accurate results. However, these methods are com-
putationally expensive and therefore can only provide a lim-
ited frame rate.

6.1 Synthesized Light Field Generation

In this article, we use a similar approach to Ref. 29 by gen-
erating a synthetic light field on the fly. The main idea is to
get the light field image array by warping the raw color
image to nearby viewpoints, according to the corresponding
values in the upsampled high-resolution disparity map. The
light field array can then be used to represent rays in the
scene. Each ray in the light field can be indexed by an integer
4-tuple (s, t, u, v), where (s, t) is the image index and (u, v) is
the pixel index within an image. Next, we set the rear main
camera as the reference camera and use the high-resolution
color image and disparity map for reference view Ry, We
then compute all rays passing through a spatial point X with
shifted disparity y from the reference view. Suppose X is pro-
jected to pixel (ug, vy) in the reference camera, we can com-
pute its image pixel coordinate in any other light field camera
view R as

(u,0) = (ug,v) + (5,) - 7. 3)

However, this algorithm may introduce holes in warped
views, and this artifact becomes more severe when the syn-
thesized baseline increases. To resolve this issue, we start
from the boundary of the holes and iteratively take nearby
pixels to fill the holes. Note that this module is only used
for generating pleasing individual views for the user to inter-
actively shift the perspective. In the final rendering process,
missing rays are simply discarded and the filled pixels are
not used. Figure 7 shows the warped views of an indoor
scene using the aforementioned warping and hole-filling
algorithms.

Since the image formed by a thin lens is proportional to
the irradiance at pixel a,*’ if we use Loy(s,t, u,v) to re-
present the out-of-lens light field and L;,(s,t, u,v) to re-
present the in-lens light field, the pixels in this image can
be obtained as a weighted integral of all incoming radiances
through the lens

y) =~ ZLin(s, t,u,v) - coste. 4

To compute the out-of-lens light field, we simply remap
the pixel a(x,y) to pixel (ug,v9) = (w—x,h—y) in the
reference view Ry, Therefore, we can focus at any scene

Ground truth

(d)

Fig. 4 Comparison of results using different numbers of iterations. Panels (a), (b), (c), (d) are obtained

using 0, 5, 10, 20 iterations, respectively.
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Fig. 5 Evaluation of the disparity maps using different numbers of joint bilateral upsampling iterations on
the Middlebury stereo dataset. The horizontal axis shows the number of iterations and the vertical axis

shows the bad pixel percentage.

depth with corresponding disparity y, by finding the pixel
index in camera R ; using Eq. (3). Since the direction for
each ray is (s,t,1), we can approximate the attenuation

term cos”* ¢ as m, and the irradiance at a can be cal-
culated as

Lo (s, t,ug+s-yr09+t-
a(x, y) =~ Z out( 0 V£ 0o Vf) . (5)

(S’t) (SZ +t2 _|_ 1)2

Figure 8 shows the details of the rendered image by using
different sizes of the synthesized light field array. Since ali-
asing artifacts are related to scene depth and sampling

Upsampled result

Nearest Neighbor

Bicubic

frequency,’’ we can reduce aliasing in the rendered image
by increasing the size of the synthesized light field array.

6.2 Comparison of Our Method and Single-Image
Blurring

Reducing boundary artifacts is very important as DoF effects
are apparent near the occlusion boundaries. Comparing with
single-image blurring methods,”?® our light field—based
analysis is good at reducing two types of boundary artifacts:
the boundary discontinuity and intensity leakage artifacts.
We summarize four types of boundary artifacts and analyze
them separately. A detailed illustration of the four cases can

A48

Bilateral Proposed Color Image

Fig. 6 Comparison of our approach and other upsampling algorithms on the Middlebury cones dataset.
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Table 3 Evaluation of various upsampling methods on the Middlebury stereo datasets in bad pixel percentage (%). We run these methods on
downsampled ground truth data (half of the original size), and then try to recover the disparity maps at original size and measure the error
percentage.

Tsukuba Venus Teddy Cones
nonocc all disc nonocc all disc nonocc all disc nonocc all disc
Nearest neighbor 5.55 6.65 18.3 0.47 1.02 6.56 8.65 9.77 28.2 7.98 9.62 23.7
Bicubic 4.97 5.69 18.7 0.67 0.93 9.32 4.89 5.61 17.8 6.81 7.59 20.6
Bilateral 4.59 5.04 10.8 0.41 0.60 575 4.52 5.12 16.3 6.85 8.41 20.5
Proposed 3.08 3.34 7.54 0.25 0.33 3.47 2.41 2.89 8.76 3.45 3.96 10.5

Note: nonocc, bad pixel percentage in honoccluded regions; all, bad pixel percentage in all regions; disc, bad pixel percentage in regions near-
depth discontinuities.

be found at Fig. 9. In practice, the four cases can occur at the and 9(b), we assume that the camera to be focused at the

same time within a single scene. background, and for Figs. 9(c) and 9(d), we assume that
Our analysis is based on the real-world scene shown in the camera is focused at the foreground. For each case, a

Fig. 9. Consider a woman in a black dress walking in comparison of results using different methods is shown at

front of a white building. When we conduct the DoF analy- the right side of the images.

sis, the camera is either focused at the foreground (the Now consider the first two cases shown in Figs. 9(a) and

woman) or at the background (the building). For Figs. 9(a) 9(b). Suppose P,, is a point on the background building and

Fig. 7 Synthesized light field view, missing pixels are marked in red. (a) Input image, (b) warped left side
view, (c) warped right side view, and (d) resulting image using our hole-filling algorithm, taking (c) as the
input.

.“ G Using 15x%15 synthesized light field array
‘ ‘ l -
Rendered image Using 31x31 synthesized light field array

Fig. 8 Comparing rendering results with different sizes of the synthesized light field array.
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Synthesized scene

©

3

(d

Fig. 9 Causes of different boundary artifacts (see Sec. 6.2 for details). In (a) and (b) the camera is
focused at the background. In (c) and (d), the camera is focused at the foreground.

its image 7, in the camera is right next to the foreground as
shown in Fig. 9(a). The ground truth result should blend both
foreground and background points for calculating 7, to make
the transition natural and smooth. However, single-image
blurring methods would consider P, in focus and directly
use its color as the value of ;. This will result in a boundary
discontinuity artifact because of the abrupt jump between
foreground and background pixel values. Our method, how-
ever, takes advantage of the synthesized light field, attempts
to use rays originating from both foreground and background
to calculate the pixel value of /,,, and hence generates correct
results for this scenario. Similarly, for a foreground point P

shown in Fig. 9(b), the ground truth result should blend its
neighboring foreground pixels and a single in-focus back-
ground point. The single-image blurring methods will use
a large kernel to blend a group of foreground and background
pixels, producing the intensity leakage artifact. In contrast,

our method only takes rays needed to get the value of Py
and is free of intensity leakage artifacts. However, due to
occlusion, some background pixels may be missing. In
this case, our method will blend foreground rays and acces-
sible background rays together. Since the missing rays only
occupy a small portion of all background rays, our method
produces reasonable approximations.

For the other two cases [Figs. 9(c) and 9(d)], assume
that the camera is focused at the foreground. As shown in
Fig. 9(c), the ground truth result should only blend back-
ground pixels. However, because of the blur kernel, the sin-
gle-image blurring method blends both foreground and
background pixels and thus causing intensity leakage prob-
lems. Our method, on the other hand, only attempts to blend
background rays. Similar to the previous case, some rays are
occluded by the foreground. We simply discard these rays
and by blending existing rays together, we are able to reach

Ours

©

(d)

Fig. 10 Comparison between our method and single-image blurring. Single-image blurring methods
suffer from intensity leakage (a) and boundary discontinuity (b) artifacts. Our method (c and d) reduces

these artifacts.
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Original » - -

Upsampled depth

Focus back

Scene 1

Original =

Upsampled depth

Focus back

Scene 2

Fig. 11 Input disparity map and rendered images of our system on two frames from the same stereo

video sequence.

reasonable approximations of the ground truth. For the last
case, consider a point P, on the foreground, as shown in
Fig. 9(d). Since this pixel is considered to be in focus, the
single-image blurring method will directly use its color
and produces the correct result. Our method collects all
rays coming from P, and these rays are all accessible.
Therefore, our method is also able to get the correct result.

Figure 10 shows the results of our method and single-
image blurring on an outdoor scene. As mentioned before,
our method reduces artifacts on boundary regions compared
with single-image blurring approaches. In fact, our method
will not cause any intensity leakage problems. When exam-
ining the single-image blurring result [Fig. 10(a)], it is very
easy to find intensity leakage artifacts along the boundary,
whereas our technique prevents such leakage [Fig. 10(c)].
Also, our method provides smooth transitions from the hand-
bag strips to the background [Fig. 10(d)], whereas single-
image blurring method exhibits multiple discontinuous
jumps in intensity values.

7 Results and Analysis

We conducted extensive experiments on both indoor and out-
door scenes. Figures 11 and 12 show the results generated by
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our system under different scene structures and illumination
conditions. Scenes 1 and 2 demonstrate our system’s ability
of handling real-time dynamic scenes; Scene 3 shows the
result on an outdoor scene with strong illumination and shad-
ows; Scene 4 displays the result on an indoor scene with
transparent and textureless regions.

The processing speed of different frames varies from less
than a second to several hundred seconds depending on the
parameters such as number of stereo-matching iterations,
number of bilateral upsampling iterations, and the size of
the synthesized light field array. The user can keep taking
pictures while the processing takes place in the background.
Considering the performance of current mobile device pro-
cessors, rendering real-time DoF effects on HD video
streams is still not practical. However, this does not prevent
users from taking consecutive video frames and rendering
them offline, as can be seen in scenes 1 and 2 of Fig. 11.
Also, since in general the stereo cameras on mobile devices
have a small baseline, the disparity values of pixels in the
downsampled images have certain max/min thresholds. We
can reduce the number of disparity labels in the GCs algo-
rithm and further improve the processing speed without
introducing much performance penalty.

Mar—Apr 2014 « Vol. 23(2)
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Scene 4

Fig. 12 Input disparity map and rendered images of our system on two real scenes with the same

arrangement as in Fig. 11.

We first demonstrate our system in dynamic outdoor
scenes. Figure 11 shows the results of two frames from
the same video sequence. Since we currently do not have
any auto-exposure or high-dynamic range (HDR) modules
implemented, some parts of the photo are over-exposed. As
shown in the photograph, many texture details are lost in the
over-exposed regions, making it challenging for the stereo-
matching algorithm to recover accurate disparity values.
Moreover, the background lawn contains noticeable shadows
and large portions of the building wall are textureless. This
adds to the difficulty of finding pixel to pixel correspond-
ences. Notwithstanding, our algorithm generates visually
good-looking disparity maps. The edges of the woman’s
hand and arm are preserved when they are in focus, and
objects outside of the focal plane are blurred smoothly.

Scene 3 of Fig. 12 displays a scene of two women walk-
ing in front of a parking lot. Typically the working range of
the tablet sensor is from half a meter to 5 m. As a result, the
cars in the parking lot are already approaching the maximum
working distance of the sensor. This, however, does not
affect the overall refocusing result as the cars with similar
disparity values are either all in focus [Fig. 12, row 2, column
2] or blurred [Fig. 12, row 2, column 1]. The sidewalk in
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front of the parking lot has a lot of textureless areas, making
it difficult to achieve coherent disparity values. As a result,
the left and right parts of the sidewalk are blurred slightly
differently although they are on the same plane [Fig. 12,
row 2, column 2]. Also, because the women in scene 3 are
farther away from the camera compared with the women in
scenes 1 and 2, the boundaries of women in scene 3 are
coarser and fine details on the bodies are lost. Therefore,
foregrounds in scene 3 are more uniformly blurred compared
with scenes 1 and 2.

Indoor scenes have controllable environments and un-
doubtedly aid the performance of our system. For example,
most structures from an indoor scene are within the working
range of our system and typically indoor lighting would not
cause problems such as over-exposure or shadows. Scene 4

Table 4 Results of subjective quality rating tests.

User 1 2 3 4 5 6 7 8 9 10 Average

Nonexperts 7 9 9 8 9 8 7 7 9 8 8.1

Experts 5 3 7 6 8 7 1 5 5 6 53

Mar—Apr 2014 « Vol. 23(2)
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—

Fig. 13 Our result on a skateboard scene at 6 MP captured by Fuijifilm FinePix Real 3-D camera (cour-

tesy of Design-Design).*?

of Fig. 12 shows the results on an indoor scene with
transparent objects and textureless regions. Since our algo-
rithm effectively fills holes and corrects bad pixels on the
disparity map by using the guide color image, the resulting
disparity map looks clean and disparity edges of the chan-
delier are well preserved [Fig. 12, row 3, column 2]. The
upper left part of the wall surface is over-exposed and the

Focus front

light bulb in the foreground almost merged into the back-
ground. However, the disparity map still recovers edges
correctly. As can be seen in Fig. 12, row 4, column 2, the
defocus blur fades correctly from the out-of-focus light
bulb regions into the in-focus wall regions, despite the
fact that they are both white and do not have clear boundaries
in between.

Focus back

Fig. 14 Our result on a sculpture scene at 6 MP captured by Fuijifilm FinePix Real 3-D camera (courtesy

of Design-Design).%?
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The discussion here is based on our own captured data,
and it is hard to evaluate rendered results because of the lack
of ground truth. To address this problem, we conducted sub-
jective rating tests with 20 people. Among these people, 10
have a computer vision or graphics background and the
remaining have no expertize in the related field. For conven-
ience and clarity, the rating is done on a 0 to 9 scale for meas-
uring the quality of rendered results. We define the rating as
follows: 0 (not acceptable), 1 (acceptable), 3 (good, but
needs improvement), 5 (satisfactory), 7 (very good), and 9
(excellent). The test results can be found in Table 4. The
average rating of the nonexpert group is 8.1, and the average
rating from the experts is 5.3. Therefore, the overall quality
of the rendered results can be concluded as satisfactory.

According to Table 2, our method returns the best dispar-
ity map results in terms of overall bad pixels percentage.
Also, our system correctly handles complex scene structures
with real-world illumination conditions. Last but not least,
according to the resulting images in Fig. 8, we reduce alias-
ing artifacts in out-of-focus regions by blending multiple
synthesized light field views together.

Finally, to demonstrate that our algorithm is also capable
of generating high-quality DoF effects using high-resolution
stereo input, we leverage mobile devices Fujifilm FinePix
Real 3-D camera to capture a set of stereo images and to
generate the shallow DoF images with refocus capabilities
at 6-MP resolution, as shown in Figs. 13 and 14. Current
light field cameras are not capable of generating such high-
resolution images. Figure 13 shows the scene of a person
playing with a skateboard. Our algorithm is able to preserve
most of the depth discontinuities in the scene such as the
edges of the hand, the skateboard, and the leg. Note that
the background between the legs is marked as the fore-
ground, leaving artifacts in the final rendering. This is due
to the unsuccessful depth estimation of the GCs algorithm,
and our current depth upsampling is largely relying on the
initial estimation. In the future, we plan to employ the depth
error correction into our upsampling scheme. Figure 14
shows a scene of a sculpture in a shopping mall. Despite the
complex occlusion conditions in the scene, our algorithm is
still able to synthesize shallow DoF effects with little artifacts
such as fussy edges on the stairs.

8 Conclusion

We have presented an affordable solution for producing
dynamic DoF effects on mobile devices. The whole system
runs on an off-the-shelf tablet, which costs less than $400.
We compare the performance of popular stereo-matching
algorithms and design a hybrid resolution approach,
which tries to improve both speed and accuracy. Also, we
generate the synthesized light field by using a disparity warp-
ing scheme and render the high-quality DoF effects. Finally,
we map all processing stages onto the Android system and
control the computational imaging device by using the FCam
architecture. Our system efficiently renders dynamic DoF
effects with arbitrary aperture sizes and focal lengths in
a variety of indoor and outdoor scenes.

Our future efforts include adding modules such as auto-
exposure or HDR to improve the imaging quality. We would
also like to explore the possibility of implementing our
approach to sparse camera arrays with limited number of
views.
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