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Abstract

A plenoptic camera captures the 4D radiance about a
scene. Recent practical solutions mount a microlens ar-
ray on top of a commodity SLR to directly acquire these
rays. However, they suffer from low resolution as hundreds
of thousands of views need to be captured in a single shot.
In this paper, we develop a simple but effective technique
for improving the image resolution of the plenoptic cam-
era by maneuvering the demosaicing process. We first show
that the traditional solution by demosaicing each individual
microlens image and then blending them for view synthe-
sis is suboptimal. In particular, this demosaicing process
often suffers from aliasing artifacts, and it damages high
frequency information recorded by each microlens image
hence degrades the image quality. We instead propose to de-
mosaic the synthesized view at the rendering stage. Specif-
ically, we first transform the radiance to the desired focal
plane and then apply frequency domain plenoptic resam-
pling. A full resolution color filtered image is then created
by performing a 2D integral projection from the reparam-
eterized radiance. Finally, we conduct demosacing to ob-
tain the color result. We show that our solution can achieve
visible resolution enhancement on dynamic refocusing and
depth-assisted deep focus rendering.

1. Introduction

Recent advances in computational photography have
given rise to previously unexplored effects in imaging. A
notable example is the realization of the plenoptic (or “light
field”) camera [25, 21, 2, 8], a camera that uses a microlens
array to capture 4D radiance about a scene. The acquired
radiance information can be post-processed for either syn-
thesizing dynamic depth of field effects or for recovering
the 3D scene. There are numerous applications for this
emerging camera technology, ranging from entertainment
(Lytro [22]) to depth recovery for industrial and scientific
applications (Raytrix [26]).

The plenoptic camera, in essence, is a single-shot, multi-

view acquisition device. In order to overcome the spatio-
angular tradeoff, an ultra-high resolution sensor is com-
monly used. The resulting images, however, are still at a
disappointingly low resolution. The Adobe light field cam-
era [8] captures 20 different views of a scene using a 10
megapixel sensor, resulting in rendered images with visible
artifacts at a resolution of 700 × 700. Ng [25] proposed a
different design with a 296×296microlens array covering a
16 megapixel sensor. The dense angular resolution greatly
suppressed artifacts with higher refocusing power. Never-
theless, the image resolution is low, equal to the number of
microlenses in the camera (296 × 296). The recently re-
leased Lytro light field camera uses a 11 megapixel sensor
for capturing the radiance. Pictures published on Lytro’s
website still suffer from a low resolution of 0.7 megapixel,
with some visible artifacts around thin objects and sharp
edges.

In this paper, we develop a simple but effective technique
for improving the image resolution of the plenoptic cam-
era by using a more appropriate demosaicing process. A
plenoptic camera, like traditional color cameras, captures
color information with a Color Filter Array (CFA) mask-
ing the sensor pixels. We first show that the traditional
solution [25, 21, 2, 8] that demosaics each individual mi-
crolens image and then blends them for rendering is sub-
optimal. In particular, this demosaicing process damages
high frequency information recorded by each microlens im-
age, hence greatly degrading the achievable resolution of
the final photograph. We instead perform demosaicing on
the synthesized color photograph at each refocusing plane
Π. Specifically, we first reparameterize the light field to
the desired focal plane and then apply frequency-domain
plenoptic resampling. A full resolution color filtered image
is then created by performing a 2D integral projection from
the reparameterized light field. Demosaicing is performed
as a last step to obtain the final color result.

Experiments on synthetic and natural scenes show that
our approach generates images with higher resolution and
fewer artifacts compared with classical plenoptic rendering.
We demonstrate the quality enhancements of our results in
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Figure 1. Plenotpic Camera Designs. (a) Ng. (b) Lumsdaine et al.

several applications such as dynamic refocusing and depth-
assisted deep focus rendering.

Without loss of generality, in this paper, a 2D simplifica-
tion is used for visualization. However, formal mathemat-
ical analysis and algorithms are all dealing with 4D space.

2. Background

Integral or light field photography has its roots in the
methods introduced by Lippmann [19] and Ives [14] over
100 years ago. Recently, it has re-emerged with the intro-
duction of plenoptic cameras. In this section, we briefly
review previous work in this field.

2.1. Plenoptic Camera Design

Over the last twenty years, numerous integral cameras
have been built [2, 11, 13, 16]. However, it was not until re-
cently that Ng [25] improved the traditional plenoptic cam-
era design and introduced new methods for computational
refocusing. This plenoptic camera places the microlens ar-
ray on the image plane Π of the main lens to separate the
converging rays onto the sensor behind it (Figure 1(a)). The
sensor is located at the focal plane of each microlens so that
each microlens is focusing at its optical infinity (main lens
principal plane). The F-numbers of the main lens and each
microlens are matched to avoid “Cross-Talk” among mi-
crolens images. A version of this camera is available from
Lytro [22].

Lumsdaine et al. [21] introduced another design by fo-
cusing the microlens array on Π and correspondingly ad-
justing the position of the microlens array and the sensor
(Figure 1(b)). In this case each microlens image will have
samples with more spatial resolution and less angular reso-
lution on Π. Therefore this design is capable of producing
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Figure 2. Projection of the radiance corresponding to focusing
at different focal depth with the parameterization of the sampled
plane.

higher resolution results when focusing near the sampled
image plane. However, the lower angular resolution may
cause ringing artifacts in out of focus regions of the ren-
dered image.

2.2. Refocusing as Radiance Transform

In classical plenoptic or light field rendering, a two par-
allel plane parameterization is commonly used to represent
rays, where each ray is parameterized with the coordinates
of the mainlens principal plane Πuv and the mainlens focal
plane Πst. For simplicity, we use two dimensional vectors
s and u to represent positions (s, t) and (u, v) on Πst and
Πuv respectively. The irradiance I at position s can then be
computed as:

I(s) =
1

R2

∫
r(s,u)cos4Φdu, (1)

where R is the distance between the Πst and Πuv , and
cos4Φ is optical vignetting term. Same as [25], we com-
bine cos4Φ into r(s,u) for further simplification. Equa-
tion 1 shows that any photograph produced by a conven-
tional camera is the result of a 2D integral projection of the
angular dimensions of the radiance onto the spatial dimen-
sions, where the slope of the projection relies on the fo-
cal depth of the camera. The reparameterization approach
of [13] allows us to refocus at different scene depths by
transforming the radiance, as shown in Figure 2:

I ′(s) =
1

R′2

∫
r′(s,u)du, (2)

where

r′(s,u) = r(u + (s− u)
R

R′ ,u), (3)

I ′ is the irradiance at a new focal depth, and R ′ is the dis-
tance between Πuv and the target focal plane Πs′t′ .



2.3. Image Demosaicing

While a significant amount of work on plenoptic cam-
eras has been focusing on improving the image resolu-
tion [27, 5, 10], demosaicing remains as an understudied
problem. Demosaicing, in essence, converts single-CCD
color representations of one color channel per-pixel into full
per-pixel RGB. The most popular type of CFA in current
use is the Bayer filter [4]. Demosaicing a raw Bayer im-
age requires an underlying image model to guide decisions
for reconstructing the missing color channels: at every pixel
only one color channel is sampled and therefore we need to
use its nearby samples to reconstruct the other two channels.
Many sequential methods [17, 15, 1, 12, 24] have been in-
troduced based on the assumption that green channel is less
aliased than the other two due to higher sampling frequency.
More sophisticated methods impose local gradients [20] or
frequency statistics [18, 3, 6, 23] as constraints to improve
the performance.

However, by far nearly all demosaicing techniques aim
to process images captured by commodity digital cameras
and very little work has been focused on developing solu-
tions specifically for plenoptic cameras. Existing plenoptic
cameras typically demosaic each individual microlens im-
age and treat the captured plenoptic function as a captured
RGB image. One exception is the paper by Georgiev et
al. [9] that applies demosaicing after plenoptic rendering to
improve plenoptic superresolution. The approach presented
in [9] used a straightforward demosaicing that did not re-
sample the lightfield, resulting in significant color artifacts
in out-of-focus regions of the rendered images. Other re-
lated work is the spatial domain multi-frame demosaicing
and super-resolution technique reported in [7]. However,
their focus is to combine multiple low resolution images
whereas we aim to manipulate demosaicing to improve re-
focused images produced by plenoptic rendering.

3. Image Demosaicing in a Plenoptic Camera

Before proceeding with our analysis, we introduce our
notation. Let I(s) represent the irradiance of pixel s on the
image plane Πs′t′ and ri represent the RGB radiance of a
sample ray in microlens mi. Ii is the ideal optical RGB
image at mi. In reality, since a color filter is used to sep-
arate the colors, we instead consider a color filtered image
Ifi. For each color channel, Ifi can be viewed as an un-
dersampled version of Ii in that channel. The demosaicing
operator D upsamples Ifi to recover Ii.

3.1. Classical Rendering

The classical plenoptic rendering approach first applies
demosaicing to each individual microlens image and then
applies integral projection as given in Equation 2 for fo-
cused image formation. Let b denote the distance from the

(a) (b) (c)

Figure 3. Artifacts on the captured radiance introduced by classical
demosaicing. (a) Ground Truth. (b) Raw microlens image and
its frequency spectrum. (c) Demosaiced microlens image and its
frequency spectrum.

sensor to the microlens array and si denote the location of
the optical center of mi. In the discrete case, if we focus at
Πs′t′ with distance a to the microlens array, we can rewrite
the irradiance of Equation 2 as:

I ′(s) ≈
∑
i

D(Ifi((si − s)
b

a
+ si), (4)

Let ωi denote the highest frequency of Ii and ω denote the
sampling frequency of Ifi. In the trivial case (∀i)[2ωi ≤ ω],
we can completely recover the full frequency microlens im-
ages Ii and hence the refocused image I ′. In the general
case when (∃j)[2ωj > ω], the spectrum of Ifj exhibits
aliasing due to undersampling as shown in Figure 3(b). In
this case, the demosaic operator D is used to eliminate un-
dersampling artifacts. However, D generally behaves as
a low pass filter, indiscriminately removing high frequen-
cies, thereby degrading the image sharpness of the final re-
focused image. Finally, if Ifi is severely undersampled,
demosaicing (such as that performed by Adobe Photoshop
Camera Raw) can introduce inconsistent color interpolation
and cause color blending in the refocused image as shown
in Figure 3(c) (black and white to colorful).

3.2. Resolution on the Refocus Plane

Unlike the classical approach, which directly applies de-
mosaicing to the microlens images, we first project Ifi onto
the focused plane Πs′t′ and then perform demosaicing.

In this section, we provide a theoretical analysis to show
that the projected image If on plane Πs′t′ has a higher sam-
pling frequency than any of the microlens images, hence
performing demosaicing on If could greatly improve the
image resolution. For simplicity, we model each microlens
as a pinhole camera and only analyze rays passing through
each optical center. Also for simplicity, and without loss of



Sensor

Refocus plane 

 Microlens    
array

B C A


�

�

	

ℎ

m1 m2




ℎ




�_________
�(�+	)

�___
	

1

�

�´(ℎ)

Δ�(ℎ)

�(�)

(a) (b)


�


�ˊ 
�ˊ


�

Figure 4. (a) Possible resolution enhancement on the refocus plane
by projecting multiple microlens images. (b) Plots of function
Δd(h), β(h), and γ(k).

generality, we show only one spatial dimension s. Consider
two adjacent pixels pA and pB (pA < pB) in a specific mi-
crolens m1 that map to two points A and B on the target
focal plane Πs′t′ . Assume the distance between pA and pB
is 1, the distance between two adjacent microlenses is d,
Πs′t′ lies at distance a to the microlens array, the sensor lies
at distance b to the microlens array, and the spacing between
m1 and m2 is h, as shown in Figure 4(a). Note that since
the pixel distance is vanishingly small compared with a, b,
and d, we simply treat these latter quantities as integers.

Our goal is to study how many rays (pixels) from other
microlenses would fall between A and B on Πs′t′ . This
number approximates the factor of resolution enhancement
compared with the classical demosaicing followed by ren-
dering approach. In order to approximate this number, we
first introduce a function γ which maps the index of a given
microlens to its sampling point between A and B. Since all
the microlenses out of the minimum period T of γ are du-
plications of samples within T , we find out T of γ and use
it as the upper bound of the resolution enhancement.

Note that for each microlens m2 different from m1, we
can have at most 1 point between AB that maps to a pixel
to m2 as the length AB is preserved in all microlenses. As-
sume A and B map to points p′A and p′B in m2, as shown
in Figure 4(a). Note that p′A and p′B may not be pixels.
In the first case, p′A and p′B fall exactly on the pixels posi-
tion. In that case, no additional rays (pixels) from m2 would
intersect the segment AB on plane Πs′t′ . Therefore, m2

would not contribute to enhancing the resolution between
AB. Under similitude relationship, the conclusion holds for
any pair of adjacent pixels in m1 and m2, i.e., m2 would not
contribute to enhancing the resolution to m1’s image.

In the second case, A and B do not coincide with pixels
in mk and there is exactly one point C between A and B
that maps to a pixel in pC in mk. We call C a super-pixel

as it will increase the resolution between AB. We can then
compute pC = a+b

a h and the distance β between A and C
on the focal plane as:

β(h) = (
a+ b

a
h− �a+ b

a
h�)a

b
. (5)

Note that function β(h) is a periodic function with a mini-
mum period of a

a+b < 1. For each microlens, we can substi-
tute its distance h into m1 and compute the location of this
super-pixel. If the super-pixels in some N microlenses have
identical β values, then these microlenses only contribute 1
rather N super-pixels for enhancing the resolution between
AB.

To finally compute the exact resolution enhancement,
recall that in the microlens array setting, h = kd from
m1, where k is some positive integer and d > 1. We
can then concatenate the microlens sampling function (a
Dirac comb) Δd(h) with the distance function β(h) as:
Δd(h) ·β(h). To further simplify, we can factor d into γ(h)
so that γ(k) = Δ(k) ·β′(k). where β′(k) has period a

d(a+b)

and Δ(k) has period 1.
Clearly γ(k) has minimum integer period equal to the

least common integer multiple of a
d(a+b) and 1. We rewrite

a
d(a+b) as an irreducible fraction two integers m

n . Thus,
S′(k) has minimum integer period m = a

gcd(a,d(a+b)) ,
where gcd denotes the greatest common divisor operator
(Figure 4(b)).

Note that the number of microlenses sharing a field of
view also constrains the number of distinct samples be-
tween pA and pB . Since the shift from one microlens image
to another for any point p on Πs′t′ is Δ = d b

a , we can com-
pute the number of microlens covering p as:

np = � d
Δ
� = �a− f

f
�. (6)

Combining with Equation 5 we obtain that the resolution
enhancement factor from microlens image m i to Πs′t′ is
equal to min(m,np). Since b = af

a−f , this factor is con-
trolled only by a and f , namely, the depth of the scene and
the camera optics.

3.3. Our Approach

Projecting samples of each microlens to the refocus
plane Πs′t′ gives us a higher resolution image If . How-
ever, as shown in Figure 5(a), when the captured radi-
ance is transformed to Πs′t′ for projection, as proposed by
Georgiev et al. [9], the spacing of each color component is
not uniform on If , resulting in random RGB patterns (Fig-
ure 6(a)). This issue creates trouble for demosaicing If .
Therefore a crucial step of our approach is to resample the
radiance with the parameterization of Πs′t′ to achieve con-
stant spacing on each dimension (Figure 5(b)).
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Figure 5. Optical phase space illustration of resampling the cap-
tured radiance. (a) Directly projecting the captured radiance onto
the refocus plane. (b) Projecting the resampled radiance onto the
refocus plane.

Resampling We adopt a similar approach to that in [28],
which was originally developed for multi-frame single
channel image restoration. We use a frequency-domain ap-
proach to resample the 4D color filtered radiance. This sim-
plifies to reconstructing a higher resolution color image by
perfect registration with an array of low resolution color im-
ages taken at the same time in a 2D image restoration case.

Here we only consider the green rays. The other two
channels can be computed in a similar manner. Suppose we
have q microlenses. Each microlens captures a low resolu-
tion radiance with Ns and Nu samples on each dimension.
Let ro(s,u) be the original green rays parameterized by Πst

and Πuv . Given the distance a from Πst to the microlens
array, the registration of a recorded sub-radiance r i can be
computed accurately as offsets σs, σu on each dimension
respectively. Therefore, the sampled rays by microlens m i

is ri(s,u) = ro(s + σsi,u + σui). In frequency domain,
this yields:

Ri(S,U)=ej2π(σsiS+σuiU)Ro(S,U) (7)

where Ro(S,U) and Ri(S,U) are CFT of ro(s,u) and
ri(s,u) respectively. Let pixels under mi capture ri with
a uniform spacing (Ts, Tu), and Rdi(Ω) be the discrete
Fourier transform (DFT) of the rays recorded by i th mi-
crolens at frequency Ω = (ωs, ωu). From the aliasing re-
lationship between CFT and DFT, Rdi(Ω) satisfies the fol-
lowing equation:

Rdi(Ω)=K
∑
ms

∑
mu

(Ri(
ωs

NsTs
+msfs,

ωu

NuTu
+mufu)), (8)

where K = 1
TsTu

, and fs, fu are sampling frequencies on
each dimension of all micro images. All

∑
operators range

from −∞ to ∞ and ms,mu are integers. Substituting Ri

from Equation 7 to Equation 8 yields:

VΩ = MΩRΩ, (9)

where VΩ is a q dimensional column vector with ith el-
ement equal to Rdi(Ω); Let BS , BU be periodic bound-
aries of Ro such that Ro(S,U) = 0 for any condition of

(a) (b)

Figure 6. Rendered results using (a) the approach proposed by
Georgiev et al. [9] and (b) our approach. The out of focus fore-
ground objects exhibit RGB patterns in (a) due to non-uniform
spacing of color components after integral projection.

|S| > BSfs, |U | > BUfu satisfies; RΩ is a 4BSBU di-
mensional column vector with the k th element Ro(

ωs

NsTs
+

γsfs,
ωu

NuTu
+ γufu), and γs = kmod(2BS) − BS , γu =

� k
2BS

�−BU , and MΩ is a q× 4BSBU matrix with (i, k)th

element

1

TsTu
exp{j2π[σsi(

ωs

NsTs
+ γsfs) + σui(

ωu

NuTu
+ γufu)]}.

Since we know the locations of Πst and of each mi-
crolens mi, σsi and σui can be accurately computed.
Rdi(Ω) can be acquired by performing the 4D DFT on the
sampled radiance by each microlens. Therefore Equation 9
is solvable for unknown RΩ, which contains 2BS and 2BU

frequency samples of Ro(Ω) on each dimension respec-
tively. Combining all RΩ provides an estimate of Ro with
2NsBS , 2NuBU samples ranging from (−BSfs,−BUfu)
to (BSfs and BUfu) with spacing ( 1

NsTs
, 1
NuTu

) on each
dimension respectively. We then use it to estimate ro(s,u)
from (0, 0) to ((Ns − 1)Ts, (Nu − 1)Tu), with spacing
( Ts

2BS
, Tu

2BU
). Hence the resolution of the resampled radi-

ance is increased by 2BS , 2BU on s and u compared with
that of each original microlens image. An optimized pro-
cess of solving for RΩ is presented in Appendix A.

Integral Projection and Demosaicing As shown in Fig-
ure 5 (b), with the previous resampling process, we can
achieve an evenly-sampled radiance on the target focal
plane Πs′t′ . The integral projection is immediately applied
to get If . An example of the green channel of If is shown
by Figure 7(c). However, due to the higher sampling rate
of the green channel, a demosaicing process is still needed
for red and blue channels of If to render a full RGB image
with the resolution of the green channel.
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Figure 7. From (a)-(c), we compare the ground truth, the result
using classical approach, and the result using our approach. The
frequency spectrums are shown in the bottom row.

Traditional sequential demosaicing frameworks first re-
cover a full resolution green channel and subsequently use
that green channel to facilitate the recovery of red and blue
channels. In our case, the full resolution green channel is
already known after the integral projection. Based on this
green channel, the red and blue channels are reconstructed
by applying the state-of-the-art anisotropic adaptive filter-
ing [18] in the frequency domain. Figure 6(b) shows that
by employing the resampling scheme, the demosaicing can
be performed on the integral projection result and the final
image is free of RGB patterns.

Suppose the resampled radiance has highest frequency
ω′. The most common situation is (∃i)[ω ′ > 2ωi > ω]. In
this case the new demosaicing process preserves more high
frequency information of the radiance, hence producing a
higher resolution image (Figure 7). In other cases such as
(∀i)[ω′ > ω > 2ωi] (very smooth regions such as places
with constant color), both processes recover the full radi-
ance and the resolution of the resultant images are the same.
If (∀i)[2ωi > ω′ > ω] (texture rich regions or sharp edges),
the final images are both over-smoothed.

As illustrated by column (a) and (b) of Figure 7, with
the classical approach, significant losses in high frequency
components occur in texture-rich regions and the ren-
dered result suffers from over-smoothing compared with
the ground truth. Column (c) shows our method preserves
much more high frequency information of the ground truth,
therefore capable of producing a higher resolution image.

4. Implementation and Applications

Figure 8 shows the pipeline for implementing our pro-
posed plenoptic demosaicing and rendering scheme. We
first resample the radiance, then integral project it onto the
spatial domain, and finally demosaic the color filtered re-
sult.

Our experimental data is captured by a plenoptic camera

Integral ProjectionResampling Demosaicing

Captured Radiance Rendered Image

Figure 8. Our plenoptic demosaicing and rending pipeline.

similar to that described in [21]. We use a 39-megapixel
sensor with pixel size 6.8 μm. The main lens is mounted
on the camera with a 13mm extension tube, which provides
the needed spacing to establish an appropriate distance from
the main lens focal plane to the microlens array. The focal
length of the main lens and of each microlens are 80mm
and 1500μm respectively. The microlens pitch is 500 μm,
which makes it work with the F-number of the main lens.
The distances between microlenses are 74 pixels.

4.1. Enhanced Dynamic Refocusing

We first test our resolution enhancement performance by
synthesizing photographs with a shallow depth of field. Fig-
ure 9 shows the comparison of our approach (b) and clas-
sical rendering (a) on a resolution chart scene. The bottom
rows of (a) and (b) compare the demosaiced and raw mi-
crolens images of three highlighted regions. Note that se-
vere aliasing effects appear on each raw microlens image
and the structure of the resolution chart is not visible. If
demosaicing is performed directly on each microlens im-
age, colorful artifacts are introduced, damaging the high
frequency information and over-smoothing microlens im-
ages. As a result, these regions could not be successfully
reconstructed in the final image, as shown in (a). On the
contrary, our approach utilizes each aliased microlens im-
age to resample a high resolution radiance before demo-
saicing is performed. Thus preserving a larger portion of
high frequency information and producing a higher resolu-
tion image, as shown in (b). Also note that low frequency
regions such as the left bottom part of the chart are equally
clear in both cases, and very high frequency regions such as
the bottom of the red highlighted region are both blurry.

The top row of Figure 10 shows an outdoor scene. Ap-
parently, the numbers on the licence plate in (b) are not
visible but readable in (c). Another visible artifact of the
classical framework here is that small regions of specular
highlight appear less shiny due to over-smoothing on each
microlens image.

In another real scene shown in the second row of Fig-
ure 10. In column (b), the first line of characters are barely



(a) (b)

Figure 9. Comparison of rendered image employing classical ap-
proach and our approach. (a) Classical approach. Top row: Ren-
dered image. Bottom Row: Demosaiced microlens image. (b) Our
approach. Top row: Rendered image. Bottom row: Raw microlens
image.

readable using the classical rendering. Nevertheless, they
are clearly rendered with our approach. Note that colorful
artifacts introduced by demosaicing each microlens image
remain on positions of “nf” and “ffi” in (b) and ringing ar-
tifacts also appear around the edges of the characters. Fur-
thermore, the lower characters are totally blurry in (b) while
still readable in (c).

4.2. Extended Depth of Field

Another popular application of our method is the ex-
tended depth of field photography. Our approach pre-
computes the depth of the sampled radiance and renders
each pixel by choosing its own depth among samples au-
tomatically. We present our depth estimation algorithm de-
signed for the captured radiance in Appendix B.

The third row of Figure 10 shows our extended depth of
field application on the same data as the second row. Note
that the original out of focus regions such as the face and
hair of the person are brought into focus, as if the photo-
graph is captured by a pinhole aperture camera. However,
with our framework, shown in (c), the rendered result pre-
serves more high frequency information than the classical
approach shown in (b), therefore produces a much more de-
tailed look.

5. Discussions and Limitations

We have presented a well-principled plenoptic demo-
saicing and rendering framework, which preserves more
high frequency information from the captured radiance and
generate less aliasing artifacts compared with the classical
approach.

Our framework does not apply demosaicing directly to
the image captured by the plenoptic camera. Instead, with
a resampling scheme which helps achieve constant spacing
on each dimension, it dynamically performs demosaicing
after integral projection. Extensive experiments show that

this framework could produce photographs with commer-
cially acceptable resolution.

As analyzed in Section 3.2, the resolution enhancement
of each plane in the scene achieved by our algorithm varies
according to the depth of the plane. This could cause un-
pleasant results if the resolution enhancements are low on
planes of interests. In the extreme case, the resolution could
be as low as the classical framework. Like classical plenop-
tic photography, our approach assumes the captured radi-
ance are thin rays in order to reconstruct a refocused im-
age. This is also our assumption for theoretical resolution
enhancement analysis.

6. Acknowledgments

Z. Yu and J. Yu were supported by the National Sci-
ence Foundation under grants IIS-CAREER-0845268 and
IIS-RI-1016395, and by the Air Force Office of Science
Research under the YIP Award. Imagery used to create
the bottom two rows of Figure 10 are from WSCG 2010
(http://www.wscg.eu), courtesy of Vaclav Scala.

References

[1] J. Adams and J. H. Jr. Adaptive color plan interpolation
in single sensor color electronic camera, patent us 5506619,
1996. 3

[2] E. Adelson and J. Wang. Single lens stereo with a plenoptic
camera. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14:99–106, 1992. 1, 2

[3] D. Alleysson, S. Susstrunk, and J. Herault. Linear demosaic-
ing inspired by the human visual system. IEEE Transactions
on Image Processing, 14(4):439–449, apr. 2005. 3

[4] B. E. Bayer. Color imaging array. US Patent 3,971,065,
1976. 3

[5] T. E. Bishop, S. Zanetti, and P. Favaro. Light field superres-
olution. In IEEE ICCP, 2009. 3

[6] E. Dubois. Filter design for adaptive frequency-domain
bayer demosaicking. In IEEE International Conference on
Image Processing, oct. 2006. 3

[7] S. Farsiu, M. Elad, and P. Milanfar. Multiframe demosaicing
and super-resolution of color images. IEEE Transactions on
Image Processing, 15(1), jan. 2006. 3

[8] T. Georgeiv, K. C. Zheng, B. Curless, D. Salesin, S. Nayar,
and C. Intwala. Spatio-angular resolution tradeoff in integral
photography. In Proceedings of Eurographics Symposium on
Rendering, pages 263–272, 2006. 1

[9] T. Georgiev, G. Chunev, and A. Lumsdaine. Superresolu-
tion with the focused plenoptic camera. In Proc. SPIE 7873,
2011. doi:10.1117/12.872666. 3, 4, 5

[10] T. Georgiev and A. Lumsdaine. Focused plenoptic camera
and rendering. Journal of Electronic Imaging, 19, 2010. 3

[11] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The
lumigraph. In Proceedings of ACM SIGGRAPH, pages 43–
54, 1996. 2



(a) (b) (c)

Figure 10. Comparison of three results with classical approach and our approach. First and second row show shallow depth of field
rendering. The third row shows extended depth of field rendering. (a) Our rendered result. (b) and (c) are enlarged highlighted regions in
(a) with classical approach and our approach respectively.

[12] R. Hibbard. Apparatus and method for adaptively interpolat-
ing a full color image utilizing luminance gradients, patent
us 5506619, 1995. 3

[13] A. Isaksen, L. McMillan, and S. Gortler. Dynamically repa-
rameterized light fields. In Proceedings of ACM SIGGRAPH,
pages 297–306, 2000. 2

[14] F. Ives. Parallax stereogram and process of making same,
patent us 725567, 1903. 2

[15] R. Kakarala and Z. Baharav. Adaptive demosaicing with the
principal vector method. IEEE Transactions on Consumer
Electronics, 48(4):932–937, nov. 2002. 3

[16] M. Levoy and P. Hanrahan. Light field rendering. In Pro-
ceedings of ACM SIGGRAPH, pages 31–42, 1996. 2

[17] X. Li and M. Orchard. New edge-directed interpolation.
IEEE Transactions on Image Processing, 10:1521–1527,
2001. 3

[18] N. Lian, L. Chang, Y. Tan, and V. Zagorodnov. Adaptive fil-
tering for color filter array demosaicking. IEEE Transactions
on Image Processing, 16(10):2515 –2525, oct. 2007. 3, 6

[19] G. Lippmann. La photographie intgrale. Comptes-Rendus,
Acadmie des Sciences, 146:446–451, 1908. 2

[20] W. Lu and Y. Tan. Color filter array demosaicking: new
method and performance measures. IEEE T-IP, 12:1194–

1210, oct. 2003. 3
[21] A. Lumsdaine and T. Georgiev. The focused plenoptic cam-

era. In In Proc. IEEE ICCP, 2009. 1, 2, 6
[22] Lytro. www.lytro.com. 1, 2
[23] D. Menon and G. Calvagno. Demosaicing based on wavelet

analysis of the luminance component. In IEEE International
Conference on Image Processing, volume 2, pages 181–184,
2007. 3

[24] D. Muresan and T. Parks. Demosaicing using optimal re-
covery. IEEE Transactions on Image Processing, 14(2), feb.
2005. 3

[25] R. Ng, M. Levoy, M. Brdif, G. Duval, M. Horowitz, and
P. Hanrahan. Light field photography with a hand-held
plenoptic camera. Stanford University Computer Science
Tech Report, 2(2005-02):1–11. 1, 2

[26] Raytrix. www.raytrix.com. 1
[27] J. Stewart, J. Yu, S. J. Gortler, and L. McMillan. A new re-

construction filter for undersampled light fields. EGSR ’03,
pages 150–156, 2003. 3

[28] R. Tsai and T. Huang. Multi-frame image restoration and
registration. Advances in Computer Vision and Image Pro-
cessing, 1, 1984. 5



Appendices
A. Solving RΩ

If we separateMΩ into components related and unrelated
to Ω, it can be further decomposed into DΩMv, where the
DΩ is a diagonal matrix with ith diagonal element equals
to:

1

TsTu
exp{j2π[σsi(

ωs

NsTs
−BSfs) + σtu(

ωu

NuTu
−BUfu)]},

and Mv is a p× 4BSBU matrix with [Mv]ik equals to:

exp{j2π[σsikmod(2BS) + σui� k

BS
�]}.

therefore we can rewrite Equation 9 as:

MvRΩ = D−1
Ω VΩ. (10)

Since Mv is independent of Ω, therefore we only need to
solve it once for all sampled frequencies. The rows of Mv

are linearly independent if the shifts on dimensions satisfies
σsi 	= σsj + nsTs, σui 	= σuj + nuTu, where i 	= j and
ns, nu are some integers. If q ≥ 4BSBU , Equation 10
is consistent. Otherwise, Mv is singular and we obtain the
minimum-norm, least-square-error estimate of RΩ by first
computing the generalized inverse of Mv. This yields:

RΩ = (MT
v Mv)

−1(MT
v Mv)D

−1
Ω VΩ. (11)

Note that for each micro image, the sampling frequency on
t, v dimensions out of s,u is doubled for the green channel,
therefore the resampled radiance has a two times higher res-
olution on t, v dimensions of the green channel.

B. Depth Estimation on the Radiance

Recall that each microlens image captures part of the
scene from a different view point. Therefore, a multi-view
depth estimation is feasible to retrieve the depth information
from the entire captured radiance. Out algorithm iteratively
computes the depth of the pixel based on Graph Cuts. Given
a certain depth, we utilize the variance of the corresponding
pixels among microlens images as the data term. Since our
framework does not perform demosacing on the raw data.
Therefore, when computing the data term for each pixel,
only the pixels with the same color channel in different mi-
crolens images are used.

One common problem with depth estimation is that even
though the correct depth is assigned to one pixel, the data
term could still be large due to occlusion. This problem is
especially severe in the radiance case since many views are
involved in the computation. To resolve the this issue, a
gradually increasing confidence threshold is given in each

iteration, so that the pixels with lower depth will converge
first and the pixels with larger depth may still generate data
terms bigger than the threshold due to occlusion. Once the
depth of one pixel is decided, it will not be involved in the
computation anymore. Thus, the pixels with large depth
will avoid these low depth pixels and produce a low data
term if assigned the correct depth in the later iterations. The
complete algorithm is given in Algorithm 1.

Algorithm 1 Calculate depth of each pixel di

Require: Captured radiance r
for j = 1 → M do

for i = 1 → N do
if pi has been assigned with any depth value then

Continue;
end if
Compute data term ed of pixel pi;
if ed > kj then
{Data term is bigger than current threshold}
Continue;

else
Add pi to graph

end if
end for
Perform graph cuts;
Assign depths to pixels in the graph;

end for


