
CISC 106 Summer 2014 Project – Part I

Submission Deadline: 07/30/2014 11:55pm

* Form teams of two people. If you are not willing to work in a group, you can work
by yourself.
* Write at least 3 test cases for each function you implement. If the function gets
user input, you do not need to write test cases.
* Write both team members name at the top of project files.

In this project you are going to implement a version of the battleship game. If you do not
know the rules of the game, read the following Wikipedia page about the game
(http://en.wikipedia.org/wiki/Battleship_(game)). You can also play the online version of
the battleship game at http://www.battleshiponline.org/.

The game that you will develop is going to be a little more complicated than the regular
battleship game, but the main logic is going to be same. So, before continuing to read this
document, first make sure you know how to play the battleship game and spend some
time thinking about how you would design the classic battleship game. Let me give you a
hint. When I played the battleship at http://www.battleshiponline.org/ the program first
showed me a grid board which has two pieces; one piece for me and one piece for my
opponent (a computer) and asked me to place my ships to the board. Then the game
continued with firing each other’s board on a turn-by-turn basis. When there was no ship
left on my opponent’s board, the computer informed me that I won. So what I noticed is
that the game has 3 stages which are: creating and initializing the boards, inserting the
ships, and playing the game in turns. You can assume that the game you are going to
develop will have same stages.

You should first think about how you are going to represent the two boards (one for first
user and one for second user) in your program and how you are going to simulate the turn
shifts before embarking on coding. A simple solution to representing boards and turn
shifts can be using two dimensional nested lists (for boards) and loops (for turn shifts).

CISC 106 Battleship Game Requirements

Board	
Creation	 and	
Initialization	

Ship	 Insertion	
To	 Boards	

Game	 Play	
in	 Turns	

Game	
Ends	

Board creation and initialization:

• Battleship is a board game so your program should create a board for each of the two

players. You may choose to use a two dimensional nested list for board data structure.
• Each board should be 20 cells wide and 20 cells long.
• Boards should be initialized with ‘~’ character.

Ship Insertion
• After board creation and initialization the program should ask users to insert their

ships to their boards’ one ship at a time. After each insertion operation the program
should display the updated board. The program should start to ask to second user to
insert ships after the first user completes the insertion operations. One thing that you
have to be careful of with this operation is that the opponents’ ship locations should
not visible to the each other. You can use the cls function below after each turn shift
for this operation.

def$cls():$
$$$$print("\n"$*$100)$
$

• During an insertion operation of a ship the program should ask the user the following
questions; (1) what coordinate values you want to use for your ship, (2) what
direction you want to place/point your ship in. The values that the user enters (an x
and a y coordinate value) are going to be the center of the ship. There are only two
directions for the ship that can be either vertical (‘V’) or horizontal (‘H’).

• Each navy consists of two battleships, a destroyer, a frigate and a patrol ship. Each
ship should be represented with a character on the board. Use ‘B’ for battleship, ‘D’
for destroyer, ‘F’ for frigate and ‘P’ for patrol ship.

• A battleship is 7 cells long and it has 3 guns.
• A destroyer is 5 cells long, has 2 guns.
• A frigate is 5 cells long, has 2 guns
• A patrol ship is 3 cells long, has 1 gun.

In the picture below you can see a board output

