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Abstract—Existing saliency detection approaches use images as inputs and are sensitive to foreground/background similarities,

complex background textures, and occlusions. We explore the problem of using light fields as input for saliency detection. Our

technique is enabled by the availability of commercial plenoptic cameras that capture the light field of a scene in a single shot. We show

that the unique refocusing capability of light fields provides useful focusness, depths, and objectness cues. We further develop a new

saliency detection algorithm tailored for light fields. To validate our approach, we acquire a light field database of a range of indoor and

outdoor scenes and generate the ground truth saliency map. Experiments show that our saliency detection scheme can robustly handle

challenging scenarios such as similar foreground and background, cluttered background, complex occlusions, etc., and achieve high

accuracy and robustness.

Index Terms—Saliency detection, light field, Lytro, focus stack

Ç

1 INTRODUCTION

SALIENT region detection is a long standing problem in
computer vision. It aims to locate pixels or regions in an

image that most attract human’s visual attention. Accurate
and reliable saliency detection can benefit numerous tasks
ranging from tracking and recognition in vision to image
manipulation in graphics. For example, successful salient
object detection algorithms facilitate automated image seg-
mentation [1], more reliable object detection [2], effective
image thumbnailling [3] and retargeting [4].

State-of-the-art solutions [5] have focused on integrating
low-level features (pixels or superpixels) and high-level
descriptors (regions or objects). However, existing solutions
have many underlying assumptions, e.g., the foreground
should have a different color from the background, the back-
ground should be relatively simple and smooth, the fore-
ground is occlusion free, etc. In reality, many real images
violate one ormultiple assumptions as shown in Fig. 1.

By far, nearly all existing saliency detection algorithms
utilize images acquired by a regular camera. In this paper,
we explore the salient object detection problem by using a
completely different input: the light field of a scene. A light
field [8] can be essentially viewed as an array of images cap-
tured by a grid of cameras towards the scene. Commercial
light field cameras can now capture reasonable quality light
fields in a single shot. Lytro, for example, mounts a lenslet
array in front of the sensor (as shown in Fig. 2a ) to acquire
a light field at a 360� 360 (upsampled to 1;080� 1;080)

spatial resolution and 10� 10 angular resolution. The
Raytrix R11 camera can produce a higher spatial resolution
at the cost of lower angular resolution. The multi-view
nature of the light field has enabled new generations of ste-
reo matching [9] and object segmentation algorithms [10]. In
this paper, we explore how to conduct salient object detec-
tion using a light field camera.

Human vision systemhas the refocusing abilitywhich can
help us paymore attention to the interesting objects, since the
other objects are blurredwhen our eye focus on certain object
[11]. Due to above reason, we can easily distinguish the inter-
esting object, i.e., the salient object, regardless the texture or
the color of other objects in the scene, i.e., the background.
When it comes to detect the salient object from images, sev-
eral problems will be arisen if the objects in the image have
similar color or texture appearance, as shown in Fig. 1.

Conceptually, the light field data can benefit saliency
detection in a number of ways. First, the light field has a
unique capability of post-capture refocusing [12], i.e., it can
synthesize a stack of images focusing at different depths. As
shown in Fig. 2b, we can always find right layerswhich focus
on the salient object within focus stack. If we can pick out the
right layers which only focus on foreground, the salient
object detection problem will be equal to the focus measures
algorithms. The availability of a focal stack is inline with the
recently proposed “focusness”metric [13]. It is the reciprocal
of blurriness and can be estimated in terms of edge scales via
scale-space analysis. Second, a light field provides an
approximation to scene depth and occlusions. In saliency
detection, even amoderately accurate depthmap can greatly
help distinguish the foreground from the background. This
is also inline with the “objectness” [13], i.e., a salient region
should complete objects instead of cutting them into pieces.

In addition to focusness and objectness, we also exploit
the recent background prior [14]. Instead of directly detect-
ing salient regions, such algorithms aim to first find the
background and then use it to prune non-salient objects.
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Robust background detection, however, is challenging,
especially when the foreground and background have sim-
ilar appearance or the background is cluttered. To resolve
this problem, we utilize the focusness and objectness to more
reliably choose the background and select the foreground
saliency candidates. Specifically, we compute a foreground
likelihood score (FLS) and a background likelihood score (BLS)
by measuring the focusness of pixels/regions. We select
the layer with the highest BLS as the background and use
it to estimate the background regions. In addition, we
choose regions with a high FLS as candidate salient objects.
Finally, we conduct contrast-based saliency detection on
the all-focus image and combine its estimation with the
detected foreground saliency candidates.

For validation, we acquire a light field database of a
range of indoor and outdoor scenes and generate the
ground truth saliency map. We have already shared this
database, i.e., Light Field Saliency Detection (LFSD) Dataset,
to community online.1 Experiments show that our saliency
detection scheme can robustly handle challenging scenarios
such as similar foreground and background, cluttered back-
ground, and images with multiple depth layers and with
heavy occlusions, etc., and achieve high accuracy and
robustness. In addition, the comparison results show that
our focusness cues using light field are more effective than
or equally as good as other state-of-arts depth cues.

A preliminary version of this work appeared in [15].

2 RELATED WORK

The saliency detection literature is huge and existing solu-
tions can be classified in terms of top-down versus bottom-
up, center versus background prior, with versus without
depth cue, etc. Readers can refer to [5] for a comprehensive
comparisons on state-of-the-art solutions. We discuss the
most relevant ones.

2.1 Top-Down versus Bottom-Up

Top-down approaches [16], [17] use visual knowledge com-
monly acquired through learning to detect saliency.
Approaches in this category are highly effective on task-
specified saliency detection, e.g., identifying human activi-
ties [18]. However, a large number of annotated images
need to be used for training. Bottom-up methods do not
require training and rely on low-level features such as color

contrast [19], pixel/patch locations [20], histogram [21], etc.,
for saliency detection. Our approach falls into the category
of bottom-up approaches where we add an additional class
of focus-related cues.

2.2 Center versus Background Priors

Many saliency detection schemes exploit contrast cues, i.e.,
salient objects are expected to exhibit high contrast within
certain context. Koch and Itti [19] are the first to use center-
surround contrast of low level features to detect saliency.
Motivated by theirwork,many existing approaches compute
the center-surround contrast either locally or globally. Local
methods compute the contrast within a small neighborhood
of pixels by using color difference [22], edge orientations
[23], or curvatures [24]. Global methods consider statistics of
the entire image and rely on features such as power spectrum
[25], color histogram [26], and element distributions [20].

Although the center-surround approaches are proven
highly effective, Wei et al. [14] suggested that background
priors are equally important. In fact, one can eliminate the
background to significantly improve foreground detection.
Yang et al. [27] observed that connectivity is an important
characteristics of background and used a graph-based rank-
ing scheme to measure patch similarities. Since most exist-
ing approaches rely on color contrast, when the foreground
and background have similar color, these approaches can
easily fail. Our approach resolves this issue by combining
color contrast, background prior, and focusness prior w.r.t.
different depth layers obtain from the light field.

2.3 Focusness and Objectness Cue

Jiang et al. [13] proposed that objects of interest in an image
are often photographed in focus. This naturally associates
the focusness with that saliency. They estimated the focus-
ness by the scale of edges using scale-space analysis. In
addition, they also proposed an objectness estimation which
utilized the probability of a region belongs to a complete
object in some local windows to measure. Regarding our
techniques versus [13], we want to emphasize that
our scheme is advantageous over [13] in several ways. First,
our focusness cue is extracted directly from a complete focal
stack produced by the 4D light field whereas the cue has to
be inferred from a single image in [13]. Therefore, our tech-
nique is more robust and reliable especially on the images
that contain similar foreground/background and/or lack
defocus cues. Second, the availability of light fields facili-
tates easier an effective extraction of location, contrast and
foreground cues. These cues, in many ways, serve the simi-
lar purpose of uniqueness and objectness cues in [13] but
are more robust. Third, our objectness cue is concerned as
to an focus stack slice not to a certain region or pixels, which
accelerates the computational speed.

2.4 Depth Cue

Recent studies on human perception [28] have shown that
depth cue plays a important role in determining salient
regions. However, only a handful of works incorporate
depth maps into saliency models. Maki et al. [18] used
depth cue to detect human motions. Their depth features
are highly task-dependent and the detection is performed in

Fig. 1. Light field versus traditional saliency detection. Similar foreground
and background or complex background imposes challenges on state-
of-the-art algorithms (e.g., RC [6], DRFI [7]). Using light field as inputs,
our saliency detection scheme is able to robustly handle these cases.

1. http://www.eecis.udel.edu/�nianyi/LFSD.htm
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a top-down fashion. Niu et al. [29] computed saliency based
on the global disparity contrast in a pair of stereo images.
Lang et al. [28] used a Kinect sensor to capture the scene
depth. Ciptadi et al. [30] used 3D layouts and shape features
from depth maps. Peng et al. [31] detected saliency taking
account of both depth and appearance cues derived from
low-level feature contrast, mid-level region grouping and
high-level priors enhancement. In this paper, we exploit rich
depth information embedded in the light field. Specifically,
we use coarse depth information embedded in a focal stack
to guide saliency detection. To achieve more accurate result,
most depth cue based schemes need relatively accurate
depth maps. In reality, depth estimation from images (e.g.,
stereo) remains challenging in both computational cost and
accuracy on real scene. One can alternatively resort to active
sensing (e.g., structured light or time-of-flight). However,
such schemes also have their limitations such as limited
depth range and interference with environment lighting.
Focus stack rendering, on the other hand, is more intuitive
and precise. Also, isolating different objects by depth map is
more likely to break object into pieces, as we have no prior
depth information of each object. Our proposed scheme aims
to resemble human perception using eye: the eyes can
dynamically refocus at different slices to determine saliency.
This can be done by constructing focus stack using light field
rendering approach. Detecting on focus stack, on the other
hand, is more likely to preserve better objectness of salient
object than depth map, if salient objects have narrow depth
range compared with the depth range of complete scene.
More detailed discussion can be found in Section 3.4.

3 COMPUTING LIGHT FIELD SALIENCY CUES

Fig. 3 shows our saliency detection approach using the light
field. We first generate a focal stack and an all-focus image
through light field rendering. For each image in the focal
stack, we detect the in-focus regions and use them as the
focusness measure. Next, we combine the focusness mea-
sure with the location prior to extract the background and
the foreground salient candidates. We further couple the
background prior with contrast-based saliency detection for
detecting saliency candidates in the all-focus image. Finally,
we use the objectness as weights for combining the saliency
candidates from the all-focus image and from the focal stack
as the final saliency map.

3.1 Focal Stack and All-Focus Images

A unique capability of light field is after-capture refocus-
ing. Here we briefly reiterate its mechanism. A light field
stores regularly sampled views looking towards the scene
on a 2D sampling plane. These views form a 4D ray data-
base and new views can be synthesized by querying exist-
ing rays. Given the light field of a scene, one can
synthesize a Depth-of-Field (DoF) effects by selecting
appropriate rays from the views and blending them, as
shown in Fig. 2a. Isaksen et al. [32] proposed to render
DoF by reparameterizing the rays onto the focal plane and
blending them via a wide aperture filter. Ng et al. [12] pro-
posed a similar technique in the Fourier space and the
solution has been adopted in the Lytro light field camera.
Using the focal stack, we can fuse an all-focus image, e.g.,
through photomontage [33]. We refer the readers to the
comprehensive survey on light field imaging [34], [35] for
more details about the refocusing algorithm.

In this paper, we use the Lytro camera as the main imag-
ing device to acquire the light field. The Lytro camera uses
an array of 360� 360 microlenses mounted on an 11 mega-
pixel sensor, where each microlens resembles a pinhole
camera. It can produce the refocused results at a resolution
of 360� 360.

We compose an all-focus image by focus fusion using
existing online-tools2 from the focal stack so that the all-
focus image has the same resolution as the focal stack. In

Fig. 3. Processing pipeline of our saliency detection algorithm for light
fields.

Fig. 2. (a) A Lytro light field camera can capture a light field towards the scene in a single shot. The results can be then used to synthesize a focal
stack and further a all-focus image. (b) Focus stack (the first row) and its corresponding focus regions (second row).

2. http://code.behnam.es/python-lfp-reader/
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addition, it is worth noting that DoF effect is not significant
in Lytro focal stack due to small microlens baseline. As a
result, each slice is just slightly defocused. Therefore, brute-
force approaches such as applying saliency detection on
each slice and then combine the results are not directly
applicable since all slices will produce similar results.

Before proceeding, we explain our notation. We denote

fIig, i ¼ 1; . . . ; N as the focal stack synthesized from the
light field and I� the all-focus image by fusing the focused

regions of fIig. Our goal is to compute a saliency map w.r.t.

I�. We segment each slice fIig and I� into a set of small
non-overlapping regions (superpixels) using the mean-shift
algorithm [36]. This segmentation helps to preserve edge
consistency and maintain proper granularity. We use ðx; yÞ
index a pixel and r to index to a region.

3.2 Focusness Measure

We start with detecting the in-focus regions in each focal
stack image Ii and use them as the focusness prior. In the
recent focusness-based saliency detection work, Jiang et al.
[13] measured focusness via edge sharpness. However,
edge-based in-focus detection is only reliable when the out-
of-focus regions appear severely blurred. In our case, the
DoF of Lytro is not as shallow as the one in DSLR. Therefore,
edges in out-of-focus regions are not as blurred as in the clas-
sical datasets, as shown in Fig. 4a. It is hence difficult to use
spatial algorithms to separate the in-focus/out-of-focus
regions. Our approach is to analyze the image statistics in
the frequency domain. In Fig. 4, we compare the saliency
detection resutls versus the focusness measure both visually
and quantitatively. Specifically, we select 80 focus slices that
have a clear boundary between in-focus and defocused
regions.We then segment out the in-focus region. Fig. 4 illus-
trates that the in-focus regions are often quite different from
the actual saliency maps. It is also worth noting that [13]
attempts to segment the complete in-focus object whereas
our algorithm handels the focusness measures at region
level. Consequently, [13] is more likely to over-segement in-
focus regions, i.e., it will cut into part of the out-of-focus
regions, as shown in Fig. 4a. Our method, on the other hand,
processes superpixels and prevents over-segmentation.

Given an n� n image I, we first transform I into fre-
quency domain by the Discrete Cosine Transform (DCT)

Dðu; vÞ ¼
Xn�1

x¼0

Xn�1

y¼0

cos
pu

2n
ð2xþ 1Þ

� �
cos

pv

2n
ð2yþ 1Þ

� �
Iðx; yÞ:

(1)

Next, we compute the image’s response with respect to
different frequency components. We first apply a series of
M bandpass filters fPmg, m ¼ 1; . . . ;M on Dðu; vÞ for
decomposing the signal and then transform the decom-
posed results back via the inverse DCT. Recall that out-of-
focus blurs will remove certain high frequency components.
Therefore, only regions with a sharp focus will have high
responses at all frequencies. In our implementation, we use
a sliding window of 8� 8 pixels and compute the variance
tm within each patch with respect to filter Pm. To ensure
reliable focusness measurements, we use the harmonic vari-
ance [37] to measure the overall variance over allM filters

Fðx; yÞ ¼ 1

M � 1

XM
m¼1

1

t2mðx; yÞ

" #�1

: (2)

We use Fðx; yÞ as the focusness measure at pixel ðx; yÞ.
Under this formulation, only when the response of all filters
are high, the harmonic variance Fðx; yÞ will be high. Any
small tm will result in low F . Therefore, this formulation
ensures that only local windows preserving all frequency
components would be deemed as in-focus. Since both DCT
and harmonic variance computations are effective, we com-
pute F for every pixel in the image. Finally, to measure the
focusness of a region, we simply compute the average of all
pixels within a region r

FðrÞ ¼
X

ðx;yÞ2r

Fðx; yÞ
Ar

; (3)

where Ar is the total number of pixels in r. We will use this
region-based focusness prior FðrÞ for selecting background
and saliency candidates in Sections 3.3 and 3.4. It is worth
noting that more sophisticated focusness estimation techni-
ques such as scanning through the focal volume can be
used. In practice, our measure is sufficient for the task of
saliency detection and is much faster. Notice that harmonic
variance would fail at detecting regions with single-directed
edges or with homogeneous color, as can be seen from
Fig. 4. However, like the blue bottle case in Fig. 14, the
wrongly suppressed regions could be correctly highlighted
as salient region in the final saliency map by incorporating
color contrast cue. More details are discussed in Section 4.2.

3.3 Background Selection

Next, we set out to find the background slice. Notice that the
background slice is not equivalent to the farthest slice in the

Fig. 4. Focusness detection comparison of UFO [13] versus ours. (a) Focusness detection results comparsion. (b) PRCs comparison.
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focal stack. Recall that we synthesize the focal stack with-
out any knowledge on scene depth range. Therefore, the
farthest slice may not contain anything in focus and hence
provides little cues, as shown in the first row of Fig. 5. Sec-
ond, the slice that have the farthest object in focus does not
necessarily translate to the background slice, like what the
second example in Fig. 5 shows, the object may be isolated
from majority of the background and should be treated as
an outlier.

Our approach is to analyze both the distribution of the
in-focus objects with respect to their locations in the image:
if the majority of in-focus objects (pixels) lies near the border
of the image, then they are more likely to belong to the back-
ground. Further, if the corresponding depth layer is far
away, its in-focus objects are also more likely to be back-
ground. We therefore scan through all focal slices. For each
slice Ii, we integrate (project) the focusness measure F of all
pixels along the x and y axes respectively to form two 1D
focusness distributions as

Dx ¼ 1

a

Xh
y¼1

Fðx; yÞ; Dy ¼ 1

a

Xw
x¼1

Fðx; yÞ; (4)

where w and h are the width and height of the image and
a ¼ P

x

P
y Fðx; yÞ is the normalization factor.

A common assumption in saliency detection is that an
salient object is more likely to lie at the central area sur-
rounded by the background [14]. If a focal slice corre-
sponds to the background, its Dx and Dy should be high
near the endpoints but low in the middle. To quantita-
tively measure it, we define a “U-shaped” 1D band sup-
pression filter

Uðx; wÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx=hÞ2

q þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ððw� xÞ=hÞ2

q
0
B@

1
CA; (5)

where h controls the suppression bandwidth in U depend-
ing on the image size/resolution, i.e., a high resolution
image should have a high h. The Lytro focal stack images
have a uniform resolution of 360� 360 and we use h ¼ 47 in
all experiments.

Finally, we scale the focusness distribution by the sup-
pression filter to compute a Background Likelihood Score
for each focal slice Ii

BLSðIiÞ ¼ r �
Xw
x¼1

Di
xðxÞ � Uðx;wÞ þ

Xh
y¼1

Di
yðyÞ � Uðy; hÞ

" #
;

(6)

where r ¼ expð��iN Þ is theweighting factor of layer i in terms of
depth, N is the total number of slices in the focus stack and
� ¼ 0:3. We choose the slice with the highest BLS as the back-

ground slice IB. It is important to note that each focal slice

has a corresponding BLS even though it is not chosen as IB.

3.4 Objectness and Foreground Measures

Alexe et al. [38] suggested that a salient object should be
complete instead of being broken into pieces and refer to
this property as the objectness. Given a focal stack image Ii,
we measure the objectness of its focused region using a 1D
gaussian filter with mean m and variance s as

GðxÞ ¼ exp �x� m

2s2

� �
; (7)

where m corresponds to the centroid of the object and s as
its size. Recall that we have already computed the focusness
distributions Dx or Dy. Therefore, we can directly obtain
m ¼ xp or yp, that corresponds to the peak location of Dx or
Dy respectively. If multiple peaks exist, we simply take their
average.

Next we estimate s as the size of the object. If s is too
small, isolated small superpixels would be treated as an
object. If s is too large, i.e., it would treat the entire image as
an object. In our implementation, we choose s ¼ 45, i.e., 50
percent Gaussian covers half of the Dx or Dy. We compute
the objectness score (OS) for each focal slice

OSðIiÞ ¼
Xw
x¼1

Di
xðxÞ � Gðx;wÞ þ

Xh
y¼1

Di
yðyÞ � Gðy; hÞ: (8)

Conceptually, if an object in a given slice is salient, it
should have a low BLS and high OS, indicating it belongs to
the foreground. We therefore define a foreground likelihood
score as

FLSðIiÞ ¼ OSðIiÞ � ð1�BLSðIiÞÞ: (9)

Same as how we select the background slice IB, we

choose the foreground slices fIFg as one with the higher
FLS (FLS > 0:7�maxðFLSÞ). Fig. 6 illustrates the process
of finding the background and foreground slices on a sam-
ple image. Notice that salienct object can be separated into
several layers, which might result in inaccurate FLS/BLS
score for some focusness layers. For instance, the first layer

F 1 in Fig. 6 focuses on the salient object, but our algorithm
regarded it more likely to be background layer. We would
like to point out that not all slices focusing on foreground

are good choices for fIFg. In the F 1 case, even though its
highlighted regions belong to salient object, they are scat-
tered around image boundary whereas our goal is to detect
salient object as a whole. In reality, saliency objects have
narrow depth range in regard to the depth range of the com-
plete scene. This indicates that within a focal stack, there
generally exists a slice where the entire salient object/region

exhibits high sharpness, such as the second layer F 2 in

Fig. 5. Focusness detection result on focus stack. (a) All focus image.
(b) Focusness map on the nearest objects. (c) Focusness map on objects
at themiddle of depth range. (c) Focusnessmap on the furthest objects.
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Fig. 6. Once we are able to select the correct candidate slices,
i.e., slices with high FLS/BLS value, the inclusion of incor-
rect FLS/BLS will not greatly affect the final saliency result.
In fact, inaccurate FLS will affect saliency detection only
when the salient object has a large depth range in the com-
plete scene.

4 SALIENCY DETECTION

Finally, we combine the cues obtained from the light field
focal stack to detect saliency in the all-focus image I�.

4.1 Location Cues

We first locate the background regions in I� using the focus-

ness measure FBðrÞ of the estimated background slice IB.
To incorporate the location prior [20], we scale the focusness
measure for each region Rr in terms of its distance to the
center of the image and use it as a new background cue

BCðrÞ ¼ 1

g
½FBðrÞ � jjpr � cjj2�; (10)

where g is a normalization factor, pr is the centroid of r and
c is image center. We further threshold the BC for determin-
ing the background regions fBr0 g, r0 ¼ 1; . . . ; K in I� (where
K is the total number of background regions). We can then
compute the Location cue as

LCðrÞ ¼ expð�b �BCðrÞÞ: (11)

In our experiment, we use b ¼ 8.

4.2 Contrast Cues

Once we obtain the background regions, we apply the
color-contrast based saliency detection on the non-back-
ground region. For each non-background region r and
background region r0 in I�, we calculate their color differ-

ence dðr; r0Þ w.r.t. r0 as dðr; r0Þ ¼ maxfjredðrÞ � redðr0Þj2;
jgreenðrÞ � greenðr0Þj2; jblueðrÞ� blueðr0Þj2g. To improve
robustness, we use compute the harmonic variance of all
dðr; r0Þ for r

HV ðrÞ ¼ 1

K

XK

r0¼1

1

dðr; r0Þ

" #�1

: (12)

Combining the harmonic variance of color difference HV
with location cue LC, we obtain a color contrast based
saliency map as

SCðrÞ ¼ HV ðrÞ � LCðrÞ: (13)

4.3 Foreground Cues

From the detected foreground salient candidates fIFj g,
j ¼ 1; . . . ; L via focusness analysis (where L is the total
number of foreground slices), we compute the foreground

cues the combining the focusness maps FF
j ðrÞ and the loca-

tion cue LC

Sj
F ðrÞ ¼ FF

j ðrÞ � LCðrÞ: (14)

4.4 Combine

Finally, We use the objectness measure as weight for com-
bining the contrast based salience map SCðrÞ and fore-

ground maps Sj
F ðrÞ as

SðrÞ ¼
XL
j¼1

vj � Sj
F ðrÞ þ vC � SCðrÞ; (15)

where vj ¼ OSðSj
F Þ and vC ¼ OSðSCÞ are the objectness

weights calculated by Eqn. (8).

5 EXPERIMENTS

Recall that most previous approaches use a single image as
input whereas our approach uses the light fields. Since a
light field captures much richer information of the scene
than a single image, our comparisons do not intend to show
that our technique outperforms the state-of-the-art as any
such comparisons would be unfair. Rather, our goal is to

Fig. 6. Separating the foreground and background using focusness cues. Left: The computed foreground likelihood score (FLS) and the background
likelihood score (BLS) computed on different focal slices. Right: Examples on computing objectness measure (up) and background measure
(bottom). Green curve is corresponding filter (U-shape or Gaussian); blue curve is sampleDx/Dy; red curve is the scaled distribution by the filter.
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show that the additional information provided by the light
field can greatly improve saliency detection tasks.

5.1 Dataset

Traditional benchmark data sets [23], [39] are all single
images and cannot be used to test our solution. Most online
light field datasets, on the other hand, are not suitable for
the purpose of saliency detection. For example, several data-
sets are either too simple: they only contain a single fore-
ground object again a plain background, or too complex:
foreground too cluttered. Further, most light field datasets
are captured by large baseline light field cameras, to
enhance the DoF effect in refocusing. Consequently, the ren-
dered focus stacks are more likely to break salient objects
into smalls pieces, which would impact the final saliency
map as we discussed in Section 3.4.

We therefore first collect a dataset of 100 light fields using
the Lytro light field camera. The dataset consists of 60
indoor scenes and 40 outdoor scenes.

For each data, we ask three individuals to manually seg-
ment the saliency regions from the all-focus image. The
results are deemed ground truth only when all three results
are consistent (i.e., they have an overlap of over 90 percent).

5.2 Evaluations on Different Superpixel Algorithms

We first evaluate the impact of superpixel algorithms on our
scheme. We compare the most widely used two superpixel-
generating algorithms in saliency detection, i.e., Mean-Shift
Clustering (MS) [36] and simple linear iterative clustering
(SLIC) [40]. The rest parameters were kept the same. It is
worth noting that MS would generate more regions than
SLIC if they have same original superpixel number N. Con-
sequently, we set the N of SLIC and MS to 300 and 200
respectively.

To quantitatively compare different methods, we use the
canonical precision-recall curve (PRC) to evaluate the simi-
larity between the detected saliency maps and the ground
truth. Precision corresponds to the percentage of salient pix-
els that are correctly assigned and recall refers to the frac-
tion of detected salient region w.r.t. the ground truth
saliency. Fig. 8 shows the PRC comparison result on our
light field dataset. Our experiment follows the settings in
[26], i.e., we binarize the saliency map at each possible

threshold within ½0; 255�. Fig. 10 is a visual comparison
between the saliency maps of different schemes. We can see
that the saliency results adopting SLIC (LFS SLIC) resem-
ble MS (LFS MS) whereas SLIC is about 2.5 times faster, as
validated in Figs. 8 and 9.

5.3 Evaluations on Regular Images

Next, we show our light field saliency detection results and
the results using a range of unsupervised schemes on regular
images. These include algorithms based on spatiotemporal-
cues (LC [41]), graph-based saliency (GB [42]), frequency-
tuning (FT [39]), spectral residual (SS [43]), global-contrast
(HC [26] and RC [6]), Low Rank Matrix Recovery (LRMR
[20]), Graph-Based Manifold Ranking (GBMR [27]), focus-
ness-based (UFO [13]), Hierarchical Saliency (HS [17]) and
Discriminative Regional Feature Integration (DRFI [7]).
Most these methods have open source code and we use
the default parameter.

We first evaluate the performance of above methods on
all-focus images. In Fig. 10, we show the saliency detection
results for visual comparisons. For very challenging scenes
such as the blue bird (second row), our approach produces
much better results than regular image based techniques. It
is important to note that all-focus image will degrade the
sharpness contrast between salient object and background,
which would impact the performance of algorithms based
on sharpness/focusness cues. To ensure fairness, we then
compare the performance on partial-focus images, i.e., the
image layer focusing at a fixed depth layer. If there are sev-
eral layers that focus on the same foreground object, we
simply pick out the one that produces the sharpest image of
the salient object. Fig. 8a provides the PRCs comparison. In
Fig. 7, we show a visual comparison between the resulting
saliency maps of various single-image based state-of-the-art
schemes. We observe that only in cases where a partial-
focus image exhibits a severely defocused background, par-
tial-focus slice would produce better performance than an
all-focus image, as shown in Fig. 7 (the blue flower scene
versus the fruit scene). Notice though that the results using
the complete light field still outperforms the ones using
either the best partial slice or the all-focus image. This illus-
trates the significant advantage of using the light field as
inputs for saliency detection.

Fig. 7. Saliency results using all-focus images (the first and third rows) and partial-focus images (the second and forth rows).

LI ET AL.: SALIENCY DETECTION ON LIGHT FIELD 1611



We would like to point it out that the PRCs are less
smooth than they appear in traditional saliency works.
This is due to the small amount of data in our dataset (100
light field sets versus 1,000 images in classical bench-
marks), although the curves still provide useful insights on
the performance. Also note that a large number of scenes
in our light field dataset is highly challenging to previous
techniques, i.e., many have complex background or similar
foreground and background. Fig. 10 shows sample in-focus
images of these difficult scenes. We observe that recently
proposed RC [6], HS [17] and DRFI [7] can still achieve
reasonable performance. This is partially due to the

background prior refinement and color space smoothing
methods used in RC, the multi-scale features used in HS
and the supervised feature vector mapping approach used
in DRFI. Results using our technique produces the highest
precision in the entire recall range. This illustrates the
importance of focusness and objectness prior provided by
the light field.

Fig. 9 evaluates the running time of each methods. We
implemented all methods with open source code and list
their average running time for one scene. Notice that even
though our algorithm needs processing much larger data
(about 10 times) than others, the average processing time is

Fig. 8. PRC comparisons on our light field dataset. (a) Results of regular image based algorithms. (b) Results of depthmap based algorithms.
(c) Using different cues in our approach.

Fig. 9. Comparison of average time taken for different saliency detection methods.

Fig. 10. Visual comparisons of different saliency detection algorithms versus ours on our light field dataset.
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still comparable to those regular-image-based techniques
using the same programming platform.

5.4 Evaluations on Images with Depth Information

We further choose three recent proposed depthmap-based
methods, i.e. SVR [44], LS [30] and RGBD [31], to compare
their performances with our model. The depth maps of
LFSD are generated directly from Lytro desktop. Fig. 8b
shows the PRC comparisons among above mentioned algo-
rithms, which illustrates that the focusness cues utilized in
our technique are equally or more useful than depth cue.
Fig. 10 shows the visual comparisons on several LFSD
images. We observe that LS and SVR may produce low pre-
cision results, since they treat depth cues independently for
saliency detection, while ignoring the strong complementar-
ity between appearance and depth cues and utilize depth
cues as an independent image channel for saliency detec-
tion. It is important to note that directly using depth maps
as saliency cues is not reliable. For example, simple thresh-
olding on the depth maps would produce large errors on
images in row 3, 4, and 6 of Fig. 10 where both salient and
non-salient objects lie at the similar depth. In fact, in Fig. 8b,
we have plotted the PRC performance by using merely
depth maps as saliency cues and the results show that it is
inferior to depth-based approaches.

We also evaluate their performance on both all-focus and
partial-focus images. It is noteworthy that all-focus images
also degrade the performance of those depthmap-based
techniques. This is because that all these three methods
incorporate depth saliency with regular saliency models to
obtain the final saliency maps. Moreover, the larger the reg-
ular saliency features weigh, the more evident improvement
will show.

5.5 The Effect of Camera-to-Object Distance

Recall that a Lytro camera has small baseline. In order to
enlarge the infocusing and defocusing contrast between
foreground and background, most of the salient objects in
our dataset are placed near the Lytro camera. When the
foreground object is faraway from the camera, the change of
depth-of-field when switching the focus from the fore-
ground to the background would be less significant. To test
whether our algorithm is robust to the camera-to-object

distance d, we capture 50 more light fields where salient
objects are located at diverse d. Notice that the maximum d
making the object notable is proportional to the object size.
In our experiment, instead of exploring the connection of
performance versus d, we analyze the relevance of perfor-
mance versus objects’ depth-to-size ratioR

R ¼ d �maxðdepth rangeÞ
HeightðObjectÞ �WidthðObjectÞ : (16)

Typically, the range of R in our testing set is between
½14; 170�. To plot the performance versusR curve, we divide
the 50 light fields into 5 subsets according to their R value.
Each set contains about 10 light fields. Here, we adopt the
F-score methodology

Fb ¼ ð1þ b2Þ � Precision �Recall
b2 � PrecisionþRecall

: (17)

It is concluded in [23] that precision rate is more essential
than recall in attention detection. Accordingly, we choose

b2 ¼ 0:3 to weigh precision more than recall. For each light
field set, we calculate its average precision and recall rate.
The average Fb is derived by Eqn. (17). Fig. 11a shows the
Fb �R curves of different methods and Fig. 11b presents
the comparison of average precision, recall and F-score on
this 50 light fields set. Fig. 12 provides the visual compari-
son of different methods when changing d. We can tell that
as R goes larger, the performance of most algorithms
decrease. This is because that when the object lies far away
from the camera, in the slice where the object is in-focus, the
background appears nearly focused as well. Such a scenario
resembles the classical all-focus saliency detection case
where the usefulness of most focusness cue is reduced. Due
to the effectiveness of our focusness detection algorithm,
our method shows the best robustness in Fb �R curves and
also achieves the highest average F-score.

5.6 The Effect of Parameters

For all the experiments described above, the parameters
were kept fixed, i.e., no user fine-tuning was done. To test
the robustness of our algorithm to the parameters and to
analyze their effect, we repeated the experiments, while
varying h from Eqn. (5), s from Eqn. (7), N (the number of

Fig. 11. (a) Performance comparisons of F-score regardingR. (b) Average precision, recall and F-score on 50 testing light fields.

LI ET AL.: SALIENCY DETECTION ON LIGHT FIELD 1613



superpixels), b from Eqn. (11), and � from Eqn. (6). To quan-
titatively show these impact, we follow the F-score method-
ologies described in Section 5.5 to evaluate the accuracy of
the detected saliency when varying h, s, N , b and �, as
shown in Fig. 13.

Parameter h controls U-shape filter while parameter s

controls the shape of Gaussian. Since we have normalized
both U-shape and Gaussian filter to a very small scale, those
two parameters causes barely modifications when changing
values. N denotes the number of superpxiels. It can be
observed that our algorithm is very robust as well, due to
the performance is dominantly affected by the objectness of
superpixels and less by the number of superpixels. Cer-
tainly when the number of superpixels is too small, the
salient and non-salient regions will be merged and the per-
formance of our approach will be inferior. It is noticeable
that the above three parameters are varying among different
ranges. h should vary between 0 and minðw; hÞ, where w

and h are the width and height of the image. Recall that the
Gaussian filter has relative large response between
½m� s;mþ s�, during which the salient objects should be
located. Therefore, we normally keep s between 0 and
minðw; hÞ. As forN , we range it from 20 to 1,000.

Parameter b effects the highlight extend of regions
located at the center of images and parameters � controls
the probability of picking the back layer as background
slice. b and � of exponential functions, on the other hand,
have much smaller ranges, i.e., [0, 100], to prevent from
out of memory issues. Unlike h, s and N , changing the val-
ues of b and � has specific impact on our final results, even
though slightly.

Fig. 13b reveals that when b goes large, the performance
of our approach will degrade. Notice that low recall occurs
when highlighted regions in saliency maps are all of high
value. In our case, the larger b is, the higher values will be
assigned to the central regions by the location cue, i.e., LC.

Fig. 12. Saliency maps of red robot at differentR. From top to down,R ¼ 14; 53; 92; 131; 170.

Fig. 13. F-score curvers when varying �, b, h, s,N .
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F-score, therefore, will be decreased consequently. When �
is large (> 2), the performance will degrade slightly (about
0.03). This is because that large � value will enforce picking
the furthest layer as background slice, which may fail at
cases we discussed in Section 3.3.

We also compare the saliency components obtained
using different cues, i.e., color contrast, location and focus-
ness cues. Fig. 8c shows the PRC comparisons using indi-
vidual versus combined cues. The plot illustrates that each
cue has its unique contribution to saliency detection,
although in some cases, an image can be dominated by a
specific cue as shown in Fig. 14. In the first row, color con-
trast provides most valuable cues and the estimated
saliency from it resembles the final one. This is mainly
because the blue mug lacks texture and hence is not
robustly detected as the foreground object to provide focus-
ness cues. In contrast, in the flower scene in the second row,
the color contrast result treats both the foreground flower
and the background clutter as saliency. The focusness cue,
however, manages to correct the errors by removing the
background. In the last example, the color contrast result
misses the foreground bottle and the focusness cue manages
to add it back.

5.7 Limitations

The performance of our algorithm is largely dependent
on the quality of the acquired light field. Lytro, however,
has a much narrow Field-of-View than regular cameras.
Therefore, objects in our light fields generally appear
“bigger” than in other benchmarks. With emerging inter-
est on light field camera designs, we expect next-genera-
tion models to overcome this limitation. There are also
alternative approaches to use the light field for saliency
detection. For example, one can potentially first construct
a depth map using stereo matching. However, the qual-
ity of stereo matching depends largely on scene composi-
tion. Nevertheless, even a low quality depth map may
provide useful cues comparable to the focusness cue.
Furthermore, it is also possible to first conduct saliency
detection on the all-focus image and then use the results
to improve the quality and speed of light field stereo
matching.

6 CONCLUSION

We have presented a saliency detection algorithm tailored
for light fields. We believe this is the first light field saliency
detection scheme. The key advantage of using a light field
instead of a single image is that it provides both focusness
and depth cues. In recent works [13], [29], these new cues
have shown great success in improving accuracy and
robustness in saliency detection. Our solution echoes these
observations and also provides an alternative and more
robust method to extract these cues through the analysis of
light fields. Experiments show that our technique can han-
dle many challenging scenarios that cast problems on tradi-
tional single-image-based algorithms. Another contribution
of our work is the construction of the light field saliency
dataset which consists of the raw light field data, the synthe-
sized focal stacks and all-focus images, and the ground
truth saliency maps. Our immediate future work is to build
a much larger and comprehensive database and share it
with the community.
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