
Automatic Detection of Ambiguous Terminology for
Software Requirements

Yue Wang, Irene L. Manotas Gutiérrez, Kristina Winbladh, and Hui Fang

Department of Electrical and Computer Engineering,
University of Delaware,

Newark, DE 19716
{wangyue,imanotas,winbladh,hfang}@udel.edu

Abstract. Identifying ambiguous requirements is an important aspect of soft-
ware development, as it prevents design and implementation errors that are costly
to correct. Unfortunately, few efforts have been made to automatically solve the
problem. In this paper, we study the problem of lexical ambiguity detection and
propose methods that can automatically identify potentially ambiguous concepts
in software requirement specifications. Specifically, we focus on two types of
lexical ambiguities, i.e., Overloaded and Synonymous ambiguity. Experiment re-
sults over four real-world software requirement collections show that the pro-
posed methods are effective in detecting ambiguous terminology.

Keywords: Ambiguity detection, Software requirements, Overloaded ambigu-
ity, Synonymous ambiguity

1 Introduction
A Software Requirements Specification (SRS) describes the required behaviour of a
software product, and is often specified as a set of necessary requirements for project
development. An ideal SRS should clearly state the requirements without introducing
any ambiguities. Unfortunately, it is impossible to avoid the ambiguous SRSs since they
are often described using natural languages.

A requirement is ambiguous if it can be interpreted in multiple ways. Ambiguous
requirements can be a major problem in software development [4]. Project participants
tend to subconsciously disambiguate requirements based on their own understanding
without realizing that they are ambiguous. As a result, different interpretations often
remain undiscovered until later stages of the software life-cycle, when design and im-
plementation choices materialize the specific interpretations. It costs 50-200 times as
much to correct an error late in a software project compared to when it was introduced
[3].

One possible way of preventing ambiguous requirements is through manual inspec-
tion [17], which clearly is time-consuming and error prone. Consequently, it is impor-
tant to study how to automatically detect ambiguous requirements in software require-
ment specifications (SRS).

Establishing a consistent usage of terminology early on in a project is imperative as
it provides a vocabulary for the project and can greatly reduce misunderstandings. In

2 Automatic Detection of Ambiguous Terminology for Software Requirements

this paper, we focus on the problem of lexical ambiguity detection. Specifically, we aim
to detect terminology misuse such as overloaded and synonymous concepts. We use the
word concept instead of term, because we consider both terms and phrases. A concept
is overloaded if it refers to different semantic meanings and it is synonymous if several
different concepts are used interchangeably to refer to the same semantic meaning (see
Fig. 1). Note that overloaded concepts include both homonyms and polysemy.

concept

meaning 1

meaning 2

meaning 3

Overloaded concept

meaning 1

concept 1

concept 2

concept 3

Synonymous concepts

Fig. 1. Overloaded and synonymous concepts.

We propose to formulate the problem as a ranking problem that ranks all the impor-
tant concepts from a SRS based on their ambiguity scores. The ranked list of concepts
is expected to help requirement engineers to more efficiently identify ambiguous con-
cepts and revise the SRS accordingly. One advantage of formulating the problem this
way is to allow requirements engineers to decide how many concepts they want to go
through based on their own situations. For example, some engineers may want to catch
all ambiguous concepts while others may only have limited time to correct the most
ambiguous ones. Once the ambiguous concepts are identified and rephrased, the SRS
would have higher quality and can be better used in the subsequent stages of the project.

Specifically, we propose two feature-based methods that can rank the concepts
based on their overloaded and synonymous ambiguities respectively. Experiments are
conducted over four data sets with real-world SRSs. These data sets cover different
types and scales of software systems. Results show that the proposed methods are ef-
fective in detecting both overloaded concepts and synonyms.

2 Related Work
Requirements ambiguities can be avoided by using formal languages to specify the
requirements. Formal languages use mathematical notations and syntax to specify re-
quirements precisely and can be used to check the requirements for inconsistencies and
other problems. A non-extensive list of formal approaches include approaches that use
logic-based, state-based, event-based, and algebraic-based representations [5, 6, 8, 22].
Although formal specification languages do avoid ambiguities, there are some limita-
tions in using them. One limitation is that formal notations require more efforts from
requirements engineers and other participants in creating and reviewing requirements.
Another limitation is that although a formally specified requirement might be free of
ambiguities, it could still be incorrect as it has been translated from an informal re-
quirement at some point. That is, the same disambiguating assumptions can be made

Automatic Detection of Ambiguous Terminology for Software Requirements 3

when translating informal requirements into the formal notation as when leaving the re-
quirements in their informal representation and using them in subsequent development
activities. It is therefore important to disambiguate the language used in the informal
representation prior to using a formal notation.

A common approach to handle ambiguous requirements problem in SRSs is the
use of a project glossary. The creation of a project glossary generally occurs during
domain understanding and requirements elicitation. Although a project glossary can
play an essential role in a software project, there is usually no quality checks on the
glossary. It turns out that many glossaries are rather weak in the sense that they do not
cover the terminology that is actually used in a specification and the synonymous and
overloaded concepts are not recognized and marked [25]. Chantree et al. present an
interesting approach with a focus on identifying ambiguities that are likely to lead to
misunderstandings [4]. Others have worked on resolving requirements ambiguities that
are likely problematic to requirements engineers [2, 18]. Our work differs in that we
focus on terminology consistency and specifically on reducing the ambiguity that can
result from terminology misuse.

Some studies tried to combine machine learning and NLP techniques to identify am-
biguous requirements at the sentence level [10, 15] . On the contrary, this paper focused
on detecting the ambiguous requirements from at the concept level.

Our work is closely related to the word sense disambiguation problem, which deter-
mines the appropriate sense of a word given its context and the senses often are defined
in a dictionary. However, our work focuses on a different problem, and aims to detect
whether a concept is ambiguous in a requirements document. The problem is more chal-
lenging than in the general domain since the definition of the ambiguity is more subtle.
First, the problem is domain-specific, and there is no dictionary available for each do-
main to describe possible senses of every concept, which requires us to automatically
identify possible senses by ourselves. Second, the definition of ambiguity in SRSs is
not well defined, and relies highly on the context of the concepts. A concept may be
used ambiguously in the requirements of one project, but not in other projects.

3 Problem Formulation

A SRS is ambiguous if it can be interpreted in more than one ways [2]. There are many
different types of ambiguities, and here we focus on lexical ambiguities. Lexical ambi-
guities can be classified into overloaded ambiguity and synonymous ambiguity [25], as
shown in Figure 1. We define an overloaded ambiguity to be a concept that has lost its
specificity in the particular document. For example, consider the concepts user, guest
user, and verified user in a SRS. In cases where only user is used in the SRS, a reader
may not be able to distinguish which kind of user is intended. In contrast to overloaded
ambiguity, synonymous ambiguity is when multiple concepts refer to the same semantic
meaning. For instance, in the SRS of a testing gateway system, the concepts system and
testing gateway both refer to the system to be developed. As a result, requirement en-
gineers could use both concepts in the SRS without realizing the potential for conflicts
and misunderstandings.

To detect ambiguous concepts from a SRS collection, we first use C-value method
[24, 7] to extract candidate concepts, and then propose to rank the extracted concepts

4 Automatic Detection of Ambiguous Terminology for Software Requirements

or concept pairs based on their degree of ambiguity. In particular, for overloaded ambi-
guity detection, concepts should be ranked based on the likelihood that a concept has
multiple interpretations, while for synonymous ambiguity detection, concept pairs are
ranked based on the likelihood that they represent the same meaning. The ranked lists
are expected to help requirements engineers focus on the concepts that are most likely
to be ambiguous so that they can quickly identify the places that need clarification.

The key challenge here is how to estimate the ambiguity score for a concept or
a concept pair. We focus on identifying useful features that could be used to identify
each type of ambiguities. For overloaded ambiguities, the features are mostly related
to the context of a concept, i.e., words that occur before and after the concept in the
same sentence. For synonymous ambiguity detection, the features are based on not only
context but also patterns and content of the candidate pairs. With the identified features,
we then propose a possible solution to combine them and learn the ambiguity scores for
the concepts or concept pairs. Details are provided in the following sections.

4 Overloaded Ambiguity Based Ranking
As defined previously, overloaded ambiguities lead to a “one-to-many” mapping from
concepts to semantic meanings. Since the context of a concept is closely related to its
semantic meaning, the degree of ambiguity of a concept should be determined by how
diverse its context is. We study the following features that measure the diversity of the
context for a concept.

– Concept frequency: Given a concept, this feature computes the frequency of the
concept in all the SRSs. The intuition is that a concept is more likely to cause an
overload ambiguity when it occurs more frequently in the collection.

– Context diversity: For a given concept, the feature measures how diversified its
contexts are. We define a context of a concept as a set of words that occur in the
same sentence as the concept. If the concept is overloaded, its context should cover
different meanings for the sub-layer entities. Therefore, the diversity score should
be high. On the other hand, the entity that the concept refers to should be consistent
among different contexts, which means the context diversity should be low. The
context diversity score of a concept is computed as the inverse of the average cosine
similarity among all its contexts.

– Number of clusters in the context: Clustering is one possible way of partitioning
contexts of a concept into different groups with similar meanings. Thus, the num-
ber of clusters could be a good indicator of the degree of ambiguity of the concept.
In this paper, we use hierarchical agglomerative clustering method [12]. There are
multiple ways for clustering. During the training stage of our experiment, we tried
single-link, complete-link and centroid HAC algorithm. The results suggested that
the single link algorithm consistently outperform than the other algorithms. There-
fore, it is chosen as the final method. We keep grouping similar contexts together
until it reaches the stopping criterion, i.e., when the minimum similarity between
each group is smaller than a similarity boundary.

– Inter-cluster distance: It measures the average distance among different clusters.
The intuition is that when a concept is ambiguous, its context clusters would cover
different information, which leads to higher inter-cluster distance. The distance is

Automatic Detection of Ambiguous Terminology for Software Requirements 5

computed as the inverse of the similarity, which can be computed using cosine
similarity based on the context.

We now discuss how to combine all the features. Since each feature can be used
individually to rank concepts, we can then compute the ambiguity score of a concept
based on its ranking positions using each of the features. The concepts are then ranked
based on these scores.

Formally, c denotes a concept, ASO(c) denotes the overloaded ambiguity score of
the concept, and fi(c) is the value of feature fi for concept c. We can then have:

ASO(c) =
∑

αi · PS(fi(c))

where αi is the weight of the result of each feature fi and
∑
αi = 1. The weights can

be learned from a training set. PS(x) is the relative position score of each feature and
can be computed as:

PS(fi(c)) = 1− PositionInFeature(c, fi)− 1

#TotalConcepts
(1)

where the PositionInFeature is the ranking of concept c in feature f.
Note that there could be other ways of combining these features. We choose to use

the relative value instead of the absolute score from each feature is because we want to
make the results from different features more comparable.

5 Synonymous Ambiguity Based Ranking
A synonymous ambiguity is caused by a “many-to-one” mapping between concepts
and semantic meanings. We identify the following features that can be used to identify
synonymous ambiguity:

– Context-based similarity: It computes the average similarity of contexts for each
pair of concepts. However, it is possible that two concepts have similar contexts
but are not synonymous. For example, concepts user ID and password may co-
occur frequently in a SRS collection, but they are not considered as synonymous.
To solve this problem, we propose to consider only concept pairs that do not occur
in the same sentence when computing the context similarities. Thus, the context-
based similarity of two concepts ci and cj can be computed as follows:

SimC(ci, cj) =

∑
x∈UC(ci|cj),y∈UC(cj |ci) Similarity(x, y)

|UC(ci|cj)| × |UC(cj |ci)|

where UC(ci|cj) is a set of context for concept ci that do not contain concept cj .
Similarity(x, y) measures the similarity between two contexts and is computed
using cosine similarity.

– Pattern-based similarity: Pattern-based features have been used to detect the se-
mantic relationship in large text corpora [9, 19, 14]. We follow a similar strategy to
detect synonym pairs in this paper. In particular, we start with a set of known pairs
of synonymous concepts, and then retrieve the sentences that mention both con-
cepts. We then identify patterns, i.e., common phrases or terms, and these patterns
will then use to retrieve more candidate pairs. The process is repeated until no more
new patterns can be found.

6 Automatic Detection of Ambiguous Terminology for Software Requirements

If concept ci and cj follow the discovered pattern P , then we have

SimP (ci, cj) = SimP (cj , ci) = 1.

Following the proposed methods, we are able to find the following patterns:
• c1 abbreviated c2
• c1 (c2)
• c1, also known as c2
• c1, a.k.a. c2

– Textual-based Similarity: A synonymous concept pair reflects the same semantic
meaning, so it is likely that their textual similarity is higher than other pairs. For
example, concepts account reference number and original account number both
refer to the number assigned to a user when opening an account. Thus, we have

SimT (ci, cj) = CosineSimilarity(ci, cj).

Each of the features captures one aspect of the synonymous ambiguities, and they
all have their own limitations. Context-based similarity feature may fail to detect the
ambiguous pairs from the same sentence, while pattern-based feature can mainly detect
those from the same sentence. Textural similarity is only effective when the ambiguous
pairs share common terms, and would fail to detect many that do not satisfy the require-
ment (e.g., the account reference number and its abbreviation arn). Thus, we propose
the following method to combine all the features to improve the performance:

ASS(ci, cj) = max{SimP (ci, cj), (α · PS(SimC(ci, cj)) + (1− α) · PS(SimT (ci, cj)))}

where PS(x) is the relative position score as shown in Equation (1). The proposed
method trusts the results of pattern-based similarity more than other two features. When
the two concepts do not follow any learned patterns, we will the consider their context
and textual similarities. The importance between these two similarities is determined
by the parameter α.

6 Experiment Setup
6.1 Experiment Design
Our system takes a set of SRSs as input, and then returns two separate ranking lists for
the two kinds of ambiguities.

The pre-processing of the SRSs is kept to the minimum. We split the requirements
into sentences, but did not remove stop words or stem the words. Stop words are not
removed because they may be considered a stop word in one part of the document but
used in a meaningful way in other parts of the document. For example, the words to, be
are generally considered as stop words, but if these two words are removed, the concept
system to be will lose its meaning. Word stemming is not used here because it may gen-
erate new ambiguity. For example, the concepts programs, programmer, programming
are used correctly in the document without ambiguity. If word stemming is used, the
three concepts will change to program, which could unnecessarily make the problem of
overloaded ambiguity more difficult.

Results are evaluated with three measures, i.e., P@N (i.e., precision at top N re-
sults), R@N (i.e., recall at top N) and MAP@N (i.e., mean average precision at top

Automatic Detection of Ambiguous Terminology for Software Requirements 7

Table 1. Description of data sets

Type Domain SRS length # of Req Req Length # of Rev.

PI Web-based software Software
7524 62 14 7

engineering tool Engineering
PII Web-based business application Business 5711 65 17 11
PIII Web-based lending application Banking 26823 272 14 16
PIV Business application Business 2294 60 29 17

N). P@N measures the percentage of top N detected concepts (or concept pairs) that
are indeed ambiguous. R@N measures the percentage of ambiguous concept (or con-
cept pairs) that are included in the top N results. MAP@N is a commonly used mea-
sure to evaluate the ranking results of top N results. Our primary evaluation measure is
MAP@10.

6.2 Data Sets

We conduct experiments over four real-world data sets obtained from different software
projects. These projects are chosen because they are real-world software projects, they
span different domains and sizes, and there have been consistent efforts on revising the
requirement documents. The characteristics of these projects are described in Table 1.
The information includes the project name, project type, project domain, SRS length
(in Terms), number of requirements, average requirement length and the number of
revisions to the requirement documents for each project. The participants involved in PI
and PII were software engineering students and professional developers with varying
skills and experience, while those for PIII and PIV were professional developers.

To quantitatively evaluate the proposed approach, we create judgments on both am-
biguity types for each project. Each judgment indicates whether a concept is overloaded
ambiguous or whether a concept pair is synonymous ambiguous. The judgments are
created by five assessors with training in software engineering and requirement engi-
neering. For overloaded ambiguity, an assessor would go over all the candidate concepts
for a project, and then decide whether each of them is ambiguous or not. The decision is
made by first locating all the places where the concept was mentioned, and then check
whether the concept has multiple meanings by reading the context of the concepts. The
process for synonymous ambiguity is similar, while the assessor needs to compare the
contexts of concept pairs.

The four projects were cross-evaluated by different assessors, for each project, there
are at least 3 judgments for each type of ambiguity. With this judgments file, a voting
schema is used to make the final decision. For each type of ambiguity of each project,
we consider the candidate concept (pair of concepts) as ambiguous only if two or more
assessors identified it is ambiguous.

Table 2 describes the basic statistics of the created judgments for each project. It
includes the number of candidate concepts (i.e., Concepts), the number of overloaded
concepts (i.e., Overloaded) and the number of synonymous concept pairs (i.e., Synony-
mous). It is surprising to see that a significant portion of the candidate concepts are
still ambiguous even after at least 7 revisions, which reinforces the need for automated
techniques that can help reduce these ambiguities and produce more consistent SRSs.

8 Automatic Detection of Ambiguous Terminology for Software Requirements

Table 2. Statistics of judgment sets

Projects Concepts Overloaded Synonymous
PI 80 8 9
PII 66 23 3
PIII 143 11 7
PIV 57 7 6

7 Experiment Results
We now report the results for the proposed methods. There are several parameters in
the proposed methods, so we train the parameter values on one collection (i.e., PI) and
use the learned parameters for the remaining three test collections (i.e. PII, PIII and
PIV). We conduct two sets of experiments to evaluate the effectiveness of the proposed
methods for each ambiguity type, and report the optimal performance on the training
set and the test performance on the testing sets for both sets.

7.1 Effectiveness of Overloaded Ambiguity Detection
Table 3 shows the optimal performance of the proposed overloaded ambiguity detec-
tion methods for PI. All denotes the method that combines all the features. CDiv.,
CFreq, NClusters, and InterDist corresponds to the methods that use a single feature
for ranking. They correspond to context diversity, concept frequency, the number of
clusters in the context and inter-cluster distance respectively. During the training, we
also conducted the 5 fold cross-validation on PI. The average MAP@10 measure of the
proposed method (i.e., combining all feature) is 0.334. It is clear that combining all the
features can consistently and significantly outperform the baseline method over all the
test collections.

Table 3. Optimal Performance for Overloaded Detection on Training Set (PI)

Features MAP@10 P@10 R@10
All 0.42 0.5 0.63

CDiv 0.24 0.3 0.38
CFreq 0.27 0.4 0.5

NClusters 0.21 0.3 0.38
InterDist 0.19 0.2 0.25

Table 4 shows the testing performance for the three test collections. Note that the pa-
rameters are set based on the values learned on the training set, i.e., PI. All still denotes
the performance of combining all the features, and BL denotes the best performance
when using a single feature. Moreover, the learned parameters on the training set seem
to work well on the other test sets even if they are from completely different domains.

The similarity boundary is used as the stop criterion of the HAC method, i.e., when
the maximum similarity value of two clusters is smaller than the similarity boundary,
the clustering procedure stops. Therefore, the value of the similarity boundary affects
the performance of NCluster, InterDist and All for overloaded ambiguity detection.
We now examine the performance sensitivity with respect to the value of similarity
boundary. Figure 2 shows the sensitivity curves for all the three methods on the training
collection (i.e., PI). It is clear that the similarity boundary can not be either too large or
too small. When the similarity boundary is too large, we may separate similar contexts

Automatic Detection of Ambiguous Terminology for Software Requirements 9

Table 4. Test Performance Comparison for Overloaded Detection

All BL
MAP@10 P@10 R@10 MAP@10 P@10 R@10

PII 0.21 0.6 0.26 0.11 0.5 0.22
PIII 0.15 0.2 0.18 0.08 0.1 0.09
PIV 0.42 0.4 0.57 0.12 0.1 0.14

into different groups. On the other hand, when the similarity boundary is too small,
we may not be able to distinguish different contexts. For example, if the threshold is
0.1, most of the contexts will be grouped together and the ability to differentiate them
is not limited. Our preliminary results suggest that the optimal value for the similarity
boundary is around 0.3.

Fig. 2. Similarity boundary affects the performance(Project I).

7.2 Effectiveness of Synonymous Ambiguity Detection

We also evaluate the effectiveness of synonymous ambiguity detection methods. Table
5 shows the optimal performance on the training set PI. We conducted the 5-fold cross-
validation for synonymous detection too. The average MAP@10 for using all features is
0.3. It is clear that using all the features is more effective than using individual features.
In particular, using the textual-based feature outperform using the other two features.
Furthermore, it is worth noticing that the context information is useful in detecting
overloaded ambiguous concepts (all the features used in overloaded detection is based
on context of the concept) but not helpful in detecting synonymous ones. The Contexts-
based Similarity method does not perform as well as we expected. The reason, to our
understanding, is because of the concept co-occurrence problem. Although currently
the penalty is applied on the terms that show together, it is possible that two different
concepts show in similar contexts but are not synonymous. On the other hand, it is not
surprising to find that textual-based Similarity has a better performance, because similar
concepts often share common terms.

With the parameters trained on Project I, we report the test performance on the other
three collections in Table 6. BL denotes the baseline method using a single feature, and
we use the textual based feature in this set of experiments since it is more effective than
the other two features. Results show that it is more effective to combine all the features,
and the conclusion holds for all the test sets.

10 Automatic Detection of Ambiguous Terminology for Software Requirements

Table 5. Optimal Performance for Synonymous Detection on Training Set (PI)

Feature MAP@10 P@10 R@10
All 0.31 0.4 0.44

Textual-based 0.13 0.2 0.22
Context-based 0.07 0.2 0.33
Pattern-based 0.11 0.1 0.11

Table 6. Test Performance Comparison for Synonymous Detection

All BL
MAP@10 P@10 R@10 MAP@10 P@10 R@10

PII 0.38 0.2 0.66 0.16 0.1 0.33
PIII 0.17 0.3 0.42 0.09 0.3 0.42
PIV 0.37 0.3 0.5 0.13 0.2 0.33

We also conduct an exit survey with assessors and ask them about their experience in
making the judgments for synonymous ambiguity detection. We find that it takes more
efforts to make judgments for this ambiguity type, and it is necessary to consider both
context and semantic meaning of the concepts to detect such ambiguities. Furthermore,
the assessors also state that the ranked list is a good tool that can help them identify the
ambiguous pairs more effective. In particular, the pairs remind them of some concepts
that could be interchangeable, which was really helpful, especially when the SRS is
long.

7.3 Discussions
Identifying ambiguous concepts from natural language is a difficult task, even for hu-
man assessors. To demonstrate that, we evaluated the judgment results from assessors.
As every project have 3 sets of judgment, one of them is chosen as the golden standard
to evaluate the remaining two. We iteratively conducted this evaluation in the project,
and reported the average performance as shown in table 7. It is worth to notice that
the performance of the manually created results is only around 0.5 for MAP. This low
value proved that ambiguity detection is a challenging tasks even for well trained human
assessors.

Table 7. Evaluation of manually created results

Overloaded Synonymy
MAP@10 P@10 R@10 MAP@10 P@10 R@10

PI 0.53 0.61 0.79 0.49 0.61 0.61
PII 0.49 0.78 0.49 0.46 0.68 0.76
PIII 0.47 0.48 0.50 0.36 0.61 0.38
PIV 0.52 0.51 0.53 0.57 0.58 0.67

8 Conclusions and Future Work

Our paper is one of the first papers that aim to detect ambiguous terminology from
software requirements specifications. The problem is important yet under-studied. To

Automatic Detection of Ambiguous Terminology for Software Requirements 11

tackle the challenge, we propose to formulate the problem as a ranking problem, and
then discuss how to estimate the overloaded ambiguity scores for concepts and synony-
mous ambiguity scores for concept pairs. Experiment results over four real-world data
sets show that the proposed combined methods are more effective than those methods
using single features alone, and they have potential to help software engineers to detect
ambiguity terminologies more efficiently.

Another interesting outcome from a software engineering perspective is the abun-
dance of ambiguous terminology found in the four SRSs we used in the evaluation.
The ambiguities were identified through a manual process, and averaged around 20%
of concepts per SRS are ambiguous either because they are overloaded or synonymous.
The large number of ambiguous concepts present, really reinforces the need for auto-
mated techniques that can help reduce these ambiguities and produce more consistent
SRSs.

There are a few interesting directions for the future work. First, we plan to study
how to automatically learn the weights for the proposed combined method based on the
statistics of the data sets. Second, the detection performance is closely related to the
quality of extracted concepts. We will study other concept extraction methods and see
whether they are improve the detection performance. Finally, it would be interesting to
study other types of ambiguities such as the scope ambiguity and attachment ambiguity
[1, 2].

References

1. D, Berry.: Ambiguity in natural language requirements documents. In B. Paech, C. Martell.
(eds.), Innovations for Requirement Analysis. From Stakeholders’ Needs to Formal Designs,
LNCS, vol. 5320, pp. 1-7. Springer Heidelberg (2008)

2. D. M. Berry, E. Kamsties, M. M. Krieger: From contract drafting to software specifica-
tion: Linguistic sources of ambiguity (2003). http://se.uwaterloo.ca/˜dberry/
handbook/ambiguityHandbook.pdf

3. B. W. Boehm P. N. Papaccio.: Understanding and controlling software costs. In: IEEE Trans-
action of Software Engineering, vol. 14, pp. 1462–1477 (1988)

4. F. Chantree, B. Nuseibeh, A. de Roeck, A. Willis.: Identifying nocuous ambiguities in natural
language requirements. In: Proceedings of the 14th IEEE International Requirements Engi-
neering Conference, pp. 56-65, Washington, DC, USA (2006)

5. R. L. Cobleigh, G. S. Avrunin, L. A. Clarke.: User guidance for creating precise and accessible
property specifications. In: ACM SIGSOFT 14th International Symposium on Foundations of
Software Engineering, pp. 208-218 (2006)

6. C. Damas, B. Lambeau, P. Dupont, A. van Lamsweerde.: Generating annotated behavior mod-
els from end-user scenarios. IEEE Transaction of Software Engineering, vol. 31, pp. 1056-
1073 (2005)

7. K. Frantzi, S. Ananiadou.: Extracting nested collocations. In: Proceedings of the 16th confer-
ence on Computational linguistics, vol. 1, pp. 41-46 (1996)

8. S. Greenspan, J. Mylopoulos, A. Borgida.: On formal requirements modeling languages: Rml
revisited. In: Proceedings of the 16th international conference on Software engineering, pp
135-147, Los Alamitos, CA, USA (1994)

9. M. A. Hearst.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings of
the 14th conference on Computational linguistics, vol.2, pp. 539-545, Stroudsburg, PA, USA
(1992)

12 Automatic Detection of Ambiguous Terminology for Software Requirements

10. I. Hussain, O. Ormandjieva, L. Kosseim: Automatic Quality Assessment of SRS Text by
Means of a Decision-Tree-Based Text Classifier In: Seventh International Conference on
Quality Software (QSIC), pp 209-218, 2007

11. N. Ide, J. Vronis.: Word sense disambiguation: The state of the art. In: Computational Lin-
guistics, vol. 24, pp. 1-40 (1998)

12. C. D. Manning, P. Raghavan, H. Schtze.: Introduction to Information Retrieval. Cambridge
University Press, New York, NY, USA (2008)

13. C. D. Manning, H. Schütze.: Foundations of statistical natural language processing. MIT
Press, Cambridge, MA, USA (1999)

14. D. Maynard, A. Funk, W. Peters.: Using lexico-syntactic ontology design patterns for ontol-
ogy creation and population. In: Proceedings of WOP2009 collocated with ISWC2009, vol.
516 (2009)

15. A. Nikora, J. Hayes, E. Holbrook: Experiments in Automated Identification of Ambiguous
Natural-Language Requirements. In: Proc. 21st IEEE International Symposium on Software
Reliability Engineering, San Jose.

16. A. Porter and L. Votta.: Comparing detection methods for software requirements inspections:
A replication using professional subjects. In: Empirical Software Engineering, vol.3, pp. 355-
379 (1998)

17. A. A. Porter, L. G. Votta, Jr., V. R. Basili.: Comparing detection methods for software require-
ments inspections: A replicated experiment. In: IEEE Transaction of Software Engineering,
vol. 21, pp. 563-575 (1995)

18. H. B. Reubenstein, R. C. Waters.: The requirements apprentice: an initial scenario. In: SIG-
SOFT Software Engineering Notes, vol. 14, pp. 211-218 (1989)

19. B. Roark, E. Charniak.: Noun-phrase co-occurrence statistics for semiautomatic semantic
lexicon construction. In: Proceedings of the 17th international conference on Computational
linguistics, vol. 2, pp. 1110-1116, Stroudsburg, PA, USA (1998)

20. F. Shull, I. Rus, V. Basili.: How perspective-based reading can improve requirements inspec-
tions. In: Computer, vol. 33, pp. 73-79 (2000)

21. S. Tratz, D. Hovy.: Disambiguation of preposition sense using linguistically motivated fea-
tures. In: HLT-NAACL (Student Research Workshop and Doctoral Consortium), pp. 96-100
(2009)

22. A. Umber, I.S. Bajwa: Minimizing ambiguity in natural language software requirements
specification. In: Digital Information Management (ICDIM), pp. 102-107 (2011)

23. A. van Lamsweerde.: Requirements Engineering: From System Goals to UML Models to
Software Specifications. John Wiley & Sons (2009)

24. X. Zhang, A. Fang.: An ATE system based on probabilistic relations between terms and
syntactic functions. In 10th International Conference on Statistical Analysis of Textual Data -
JADT10 (2010)

25. X. Zou, R. Settimi, J. Cleland-Huang.: Improving automated requirements trace retrieval: a
study of term-based enhancement methods. In: Empirical Software Engineering, vol. 15, pp.
119-146 (2010)

26. D. Zowghi, V. Gervasi, A. McRae.: Using default reasoning to discover inconsistencies in
natural language requirements. In: Proceedings of the Eighth Asia-Pacific on Software Engi-
neering Conference, , pp. 133-140, Washington, DC, USA (2001)

