
GPU ProgrammingGPU ProgrammingGPU ProgrammingGPU Programming
Graphics Past Graphics Past
 Graphics Present
 Graphics FutureGraphics Future
 High-Level Shading

Languages

CISC 440/640

g g

Spring 2013

Department of Computer and Information Science

OpenGL 1.4 - Graphics Pastp p
• Fixed-Function Graphics Pipeline with

“every step neatly planned”
• PHILOSOPHY: Performance > Flexibility
• Extended by committee

Why process anything other than polygons or the occasional• Why process anything other than polygons or the occasional
pixel?

Vertex
Transforms

Cull, Clip
& Project Process

And
Rasterize

Fragment
Processing

Per-
Fragment
Operations

Frame
Buffer

Operations

Host
Commands

Rasterize
Primitive Frame

Buffer
Texture
Memory

Pixel

Display

Department of Computer and Information ScienceLecture 15

Read Back
Control

Pixel
Pack &
Unpack

OpenGL 2.0 - Graphics Todayp p y
• Programmable Processing units

(Exposing what was always there beneath the covers)
Programmable per Vertex Processors– Programmable per-Vertex Processors

– Programmable per-Fragment Processors

• Texture memory – general purpose data storage
Texture
Memory

Vertex
Processor

Cull, Clip
& Project Process

and
Rasterize

Fragment
Processor

Per-
Fragment
Operations

Frame
Buffer

Operations

Host
Commands

Rasterize
Primitive Frame

Buffer

Pixel

Display

Department of Computer and Information ScienceLecture 15

Read Back
Control

Pixel
Pack &
Unpack

Vertex Processor Capabilitiesp
• Lighting, Material and Geometry flexibility
• Vertex programs replace the following parts of theVertex programs replace the following parts of the

pipeline:
– Vertex & Normal transformation

N li ti d li– Normalization and rescaling
– Per-Vertex Lighting Calculations
– Color application & clamping
– Texture coordinate generation & transformation

• The vertex shader does NOT replace:
Perspective divide and viewport (NDC) mapping– Perspective divide and viewport (NDC) mapping

– Clipping
– Backface culling

Department of Computer and Information ScienceLecture 15

– Primitive assembly (Triangle setup, edge equations, etc.)

Vertex Processor Inputs &
OutputsOutputs

• Vertex “Shader” has all of the primitive arguments available to it
• Fixed constants that are compiled into the shader
• Special variables that are rendering specific
• Writes its results into prearranged locations (registers) that are

“understood” by later processing steps

Standard OpenGL attributes

User-Defined Uniform Variables
eyePosition, lightPosition, modelScaleFactor, etc.

Standard OpenGL variables

Vertex
Processor

glColor, glNormal
glVertex, glMultiTexCoord

User-Defined Attributes

Vertex & texture coords,
Vertex color

User-Defined variablesProcessorUser-Defined Attributes

Standard OpenGL State

User Defined variables
Model coordinates,
Normals, hVector,
toEyeVector, etc

Department of Computer and Information ScienceLecture 15

Standard OpenGL State
ModelViewMatrix, glLightSource[0,..n],

glFogColor, glFrontMaterial, etc.

Fragment Processor
CapabilitiesCapabilities

• Flexibility for texturing and per-pixel operations
• Fragment programs replace the following parts of the OpenGL pipeline:• Fragment programs replace the following parts of the OpenGL pipeline:

– Operations on interpolated values Pixel zoom
– Texture access Scale and bias
– Texture application (modulate, add) Color table lookup
– Fog (color(depth)) Convolution
– Color sums (blends, mattes) Color matrix
– Perspective divide

• The Fragment shader does NOT replace:• The Fragment shader does NOT replace:
– Scan Conversion Histogram
– Coverage Pixel packing and unpacking
– Scissor Stipple
– Alpha test Depth test
– Stencil test Alpha blending
– Logical ops Dithering
– Plane masking Z-buffer replacement test

Department of Computer and Information ScienceLecture 15

g p

Fragment Processor Inputs &
OutputsOutputs

• Fragment “Shader” has all of the rasterization arguments available to it
• Fixed constants that are compiled into the shader
• Special variables that are rendering specific
• Writes its results into prearranged locations (registers) that are “understood”

by later processing steps
User Defined Uniform Variables

Standard Rasterizer attributes

User-Defined Uniform Variables
eyePosition, lightPosition, modelScaleFactor, epsilon, etc.

Standard OpenGL variables

Fragment
Processor

color (r, g, b, a), depth (z),
textureValues (s, t, w)

(interpolated)

FragmentColor,
FragmentDepth

Processor(interpolated)
User-Defined Attributes
Normals, modelCoord,

density, etc
TextureMemory

Department of Computer and Information ScienceLecture 15

TextureMemory
Textures, Tables,

TempStorage

GPU Programmabilityg y
• The major innovation of the Vertex and Fragment Processors is the

exposing of a programmable interface
• Initially the Vertex and Fragment programs were written in a low-level• Initially, the Vertex and Fragment programs were written in a low-level

H/W specific assembly languages, with specific capabilities (eg.
floating point only in Vertex shaders, Fixed-point only in Fragment
shaders)shaders)

• Trend is toward Higher-Level languages and more symmetric
capabilities

Per

Application Vertex
Processor

Fragment
Processor

Process
and

Rasterize
Primitive

Per
Fragment
& Frame
Buffer
Ops

Frame
Buffer

Ops

Application
P

Vertex
“Shader”

Fragment

Department of Computer and Information ScienceLecture 15

Program “Shader”
Program

“Shader”
Program

Example: GeForce 3 Vertex
ProcessorProcessor

• In the beginning,
resources were limited Vertex

• It was difficult to do
anything, even at the
assembl le el

Vertex
Attributes

16x4 registers

Uniform
Parameters
(don’t change

on each vertex)assembly level
• Useful macros

– Vector-scalar mult

Vertex
Program
128 instrs

on each vertex)
96x4 registers

Temp

Vector
Floating Pt

Datapath

– Vector-vector add
– Dot-product

Normalize
Vertex
Results

Temp
Registers

12x4 registers

p

– Normalize

became
the programming

Results
15x4 registers

Department of Computer and Information ScienceLecture 15

method of choice

GPU/CPU Differences

• First GPUs offered no branching Vertexg
support

• Conditional operations instead

Vertex
Attributes

16x4 registers

Uniform
Parameters
(don’t change

on each vertex)
If (regA < 0)

regB = regC
Vertex

Program
128 instrs

on each vertex)
96x4 registers

Temp

Vector
Floating Pt

Datapath

• No general indirect access to
memory (i.e. lookup tables,
textures, etc.) Vertex

Results

Temp
Registers

12x4 registers

p

• Limited Arrays
(uniform parameters)

• Fixed vector sizes (2, 3 & 4)

Results
15x4 registers

Department of Computer and Information ScienceLecture 15

OpenGL Shading Language
(GLSL)(GLSL)

• The end result is OpenGL ShadingThe end result is OpenGL Shading
Language, which is a part of the OpenGL
2.0 standard (October 22, 2004)()

• GLSL is commonly referred to as “GLslang”GLSL is commonly referred to as GLslang

• GLSL and Cg are quite similar with GLSL• GLSL and Cg are quite similar, with GLSL
being a lot closer to OpenGL

Department of Computer and Information ScienceLecture 15

The Graphics Pipelinep p

Department of Computer and Information ScienceLecture 15

Fixed Functionality – Vertex
TransformationTransformation

• A vertex is a set of attributes
such as its location in space, p ,
color, normal, texture
coordinates, etc.
Inp ts indi id al ertices• Inputs: individual vertices
attributes.

• Operations: p
– Vertex position

transformation
– Lighting computations per

vertex
– Generation and

Department of Computer and Information ScienceLecture 15

– Generation and
transformation of texture
coordinates

Fixed Functionality – Primitive
Assembly and RasterizationAssembly and Rasterization

• Inputs: transformed vertices
and connectivity informationand connectivity information

• Op 1: clipping against view
frustum and back face cullingg

• Op 2: the actual rasterization
determines the fragments,
and pixel positions of theand pixel positions of the
primitive.

• Output: p
– position of the fragments

in the frame buffer

Department of Computer and Information ScienceLecture 15

– interpolated attributes for
each fragment

Fixed Functionality – Fragment
Texturing and ColoringTexturing and Coloring

• Input: interpolated
fragment information g

• A color has already been
computed in the previous
stage thro ghstage through
interpolation, and can be
combined with a texel

• Texture coordinates have
also been interpolated in
the previous stage Fog isthe previous stage. Fog is
also applied at this stage.

• Output: a color value and

Department of Computer and Information ScienceLecture 15

a depth for each fragment.

Fixed Functionality – Raster
OperationsOperations

• Inputs:
– pixels locationpixels location
– fragments depth and color values

• Operations:p
– Scissor test
– Alpha test
– Stencil test
– Depth test

Department of Computer and Information ScienceLecture 15

Fixed Functionalityy
• A summary (common jargons: T&L, Texturing etc.)

Department of Computer and Information ScienceLecture 15

Replacing Fixed Functionalitiesp g
• Vertex Transformation stage:

vertex shaders
• Fragment Texturing and

Coloring stage: fragment
shadersshaders

• Obviously, if we are replacing
fixed functionalities with
programmable shaders, “stage”
is not a proper term any more
F h l t’ ll th• From here on, let’s call them
vertex processors and fragment
processors

Department of Computer and Information ScienceLecture 15

Vertex Processors
• The vertex processor is where the vertex shaders are run
• Input: the vertex data namely its position color normalsInput: the vertex data, namely its position, color, normals,

etc, depending on what the OpenGL application sends
• A piece of code that sends the inputs to vertex shader:

glBegin(...);

glColor3f(0.2,0.4,0.6);

glVertex3f(-1.0,1.0,2.0);

glColor3f(0.2,0.4,0.8);

glVertex3f(1.0,-1.0,2.0);

glEnd();

Department of Computer and Information ScienceLecture 15

Vertex Processors
• In vertex shaders, sample tasks to perform

include:include:
– vertex position transformation using the modelview and projection

matrices
l t f ti d if i d it li ti– normal transformation, and if required its normalization

– texture coordinate generation and transformation
– lighting per vertex or computing values for lighting per pixel
– color computation

• Note:
– it is not required that your vertex shader q y
does any particular task
– no matter what vertex shader is provided,
you have already replaced the entire fixed
f ti lit f t t f ti t

Department of Computer and Information ScienceLecture 15

functionality for vertex transformation stage

Vertex Processors

• The vertex processor processes vertices individually
d h i f ti di ti itand has no information regarding connectivity, no

operations that require topological knowledge can't be
performed in here.

for example no back face culling– for example, no back face culling

• The vertex shader must write at least a variable:
gl_Position
– often transforming with modelview and projection matrices

• A vertex processor has access to OpenGL states
– so it can do lighting and use materials– so it can do lighting and use materials.

• A vertex processor can access textures (not on all
hardware).

• A vertex processor cannot access the frame buffer

Department of Computer and Information ScienceLecture 15

• A vertex processor cannot access the frame buffer.

Fragment Processorsg
• Inputs: the interpolated values computed in the

previous stage of the pipeline p g p p
– e.g. vertex positions, colors, normals, etc...

• Note, in the vertex shader these values are computed
per erte Here e're interpolating for the fragmentsper vertex. Here we're interpolating for the fragments

• When you write a fragment shader it replaces all the
fixed functionality. The programmer must code all y p g
effects that the application requires.

• A fragment shader has two output options:
– to discard the fragment, hence outputting nothing
– to compute either gl_FragColor (the final color of the
fragment), or gl_FragData when rendering to multiple

Department of Computer and Information ScienceLecture 15

targets.

Fragment Processorsg
• The fragment processor operates on single

fragments, i.e. it has no clue about the neighboring
fragments. g

• The shader has access to OpenGL states
– Note: a fragment shader has access to but cannot change

the pixel coordinate. Recall that modelview, projection and
i t t i ll d b f th f tviewport matrices are all used before the fragment

processor.
• Depth can also be written but not required
• Note the fragment shader has no access to the frame• Note the fragment shader has no access to the frame

buffer
• Operations such as blending occur only after the

fragment shader has runfragment shader has run.

Department of Computer and Information ScienceLecture 15

Using GLSLg
• If you are using OpenGL 2.0, GLSL is part of it
• If not you need to have two extensions:• If not, you need to have two extensions:

GL_ARB_fragment_shader
GL_ARB_vertex_shader

• In OGL 2.0, the involved functions and symbolic
constants do not have “ARB” in the name any
more.

Department of Computer and Information ScienceLecture 15

Shader Review
• Hardware

– Video cards only [300,650]Mhz (CPUs are 2-4Ghz) but
[2,16] vertex, [8,48] fragment processors

• Fragment Programs: FX1000:8x300=2 4Ghz; 7800GT: 20x400Mhz=8 0Ghz• Fragment Programs: FX1000:8x300=2.4Ghz; 7800GT: 20x400Mhz=8.0Ghz

– SLI for 2-4 video cards (www.tomshardware.com)

Department of Computer and Information ScienceLecture 15

Shader Review
• Programming GPU:

Store data as texture (similar to 2D array)– Store data as texture (similar to 2D array)
– RoT: data structures, kernels, matrices, reduce

communication, reduce conditionals

Triangle
~3,042 pixels

E h i lEach pixel
processed by

fragment processor
each frame

Department of Computer and Information ScienceLecture 15

each frame

Shader Review
• GPU uses:

– Games often use for Example ShaderGames often use for
custom lighting, dynamic
contrast, etc.
Shader programs: 3 100

Example Shader

– Shader programs: 3-100
lines of code (10 avg.)

– General uses: particle
i ill i tiengines, illumination,

signal processing,
image compression,

t i icomputer vision,
sorting/searching
(www.gpgpu.org)

Department of Computer and Information ScienceLecture 15

Enter the GPU IDE

Department of Computer and Information ScienceLecture 15

ATI RenderMonkeyy
• Integrated Shader Development Environment

– Interactive Preview window-- lets you see the impact of your shader y p y
changes immediately

– Supports HLSL, Cg, and OpenGL Slang
– Separate editor windows for vertex and fragment shading codeSeparate editor windows for vertex and fragment shading code
– Support generation of artwork (textures, color palettes, MIPmaps)
– Built-in host application that allows loading geometry

B ilt i di bl– Built-in disassembler
– Error checking but not Debugging

• Free download at
– http://www.ati.com/developer/sdk/radeonSDK/html/Tools/RenderMonkey.ht

ml

Department of Computer and Information ScienceLecture 15

ATI RenderMonkeyy

Department of Computer and Information ScienceLecture 15

GLSL Data Typesyp
• Three basic data types in GLSL:

– float, bool, int
– float and int behave just like in C,and bool types can take on the

values of true or false.
• Vectors with 2,3 or 4 components, declared as:

– vec{2,3,4}: a vector of 2, 3,or 4 floats
– bvec{2,3,4}: bool vector
– ivec{2,3,4}: vector of integers { , , } g

• Square matrices 2x2, 3x3 and 4x4:
– mat2
– mat3– mat3
– mat4

Department of Computer and Information ScienceLecture 15

GLSL Data Typesyp
• A set of special types are available for texture

access, called sampler, p
– sampler1D - for 1D textures
– sampler2D - for 2D textures
– sampler3D - for 3D textures
– samplerCube - for cube map textures

• Arrays can be declared using the same syntax as• Arrays can be declared using the same syntax as
in C, but can't be initialized when declared.
Accessing array's elements is done as in C.

• Structures are supported with exactly the same
syntax as C struct dirlight

{

Department of Computer and Information ScienceLecture 15

{
vec3 direction;
vec3 color;

};

GLSL Variables
• Declaring variables in GLSL is mostly the same as in C

float a,b; // two vector (yes, the comments are like in C)

• Differences: GLSL relies heavily on constructor for

int c = 2; // c is initialized with 2
bool d = true; // d is true

initialization and type casting
float b = 2; // incorrect, there is no automatic type casting
float e = (float)2;// incorrect, requires constructors for type casting
int a = 2;

• GLSL is pretty flexible when initializing variables using

;
float c = float(a); // correct. c is 2.0
vec3 f; // declaring f as a vec3
vec3 g = vec3(1.0,2.0,3.0); // declaring and initializing g

• GLSL is pretty flexible when initializing variables using
other variables vec2 a = vec2(1.0,2.0);

vec2 b = vec2(3.0,4.0);
vec4 c = vec4(a,b) // c = vec4(1.0,2.0,3.0,4.0);

Department of Computer and Information ScienceLecture 15

vec2 g = vec2(1.0,2.0);
float h = 3.0;
vec3 j = vec3(g,h);

GLSL Variables
• Matrices also follow this pattern

mat4 m = mat4(1.0) // initializing the diagonal of the matrix with 1.0

Th d l ti d i iti li ti f t t i

vec2 a = vec2(1.0,2.0);
vec2 b = vec2(3.0,4.0);
mat2 n = mat2(a,b); // matrices are assigned in column major order
mat2 k = mat2(1.0,0.0,1.0,0.0); // all elements are specified

• The declaration and initialization of structures is
demonstrated below

struct dirlight { // type definitionstruct dirlight { // type definition
vec3 direction;
vec3 color;

};
dirlight d1;
di li ht d2 di li ht(3(1 0 1 0 0 0) 3(0 8 0 8 0 4))dirlight d2 = dirlight(vec3(1.0,1.0,0.0),vec3(0.8,0.8,0.4));

Department of Computer and Information ScienceLecture 15

GLSL Variables
• Accessing a vector can be done using letters as well as

standard C selectors vec4 a = vec4(1.0,2.0,3.0,4.0);standard C selectors. (, , ,);
float posX = a.x;
float posY = a[1];
vec2 posXY = a.xy;
float depth = a.w;

• One can the letters x,y,z,w to access vectors components;
r,g,b,a for color components; and s,t,p,q for texture ,g, , p ; , ,p,q
coordinates.

• As for structures the names of the elements of the
structure can be used as in Cstructure can be used as in C

d1.direction = vec3(1.0,1.0,1.0);

Department of Computer and Information ScienceLecture 15

GLSL Variable Qualifiers

• Qualifiers give a special meaning to the variable In• Qualifiers give a special meaning to the variable. In
GLSL the following qualifiers are available:
– const - the declaration is of a compile time constant
– attribute – (only used in vertex shaders, and read-only in

shader) global variables that may change per vertex, that are
passed from the OpenGL application to vertex shaders

– uniform – (used both in vertex/fragment shaders, read-only
in both) global variables that may change per primitive (may
not be set inside glBegin,/glEnd)

– varying - used for interpolated data between a vertex shader
and a fragment shader. Available for writing in the vertex
shader, and read-only in a fragment shader.

Department of Computer and Information ScienceLecture 15

GLSL Statements
• Control Flow Statements: pretty much the same as in C.

if (bool expression)
...

elseelse
...

for (initialization; bool expression; loop expression)
...

while (bool expression)
...

dodo
...

while (bool expression)

N t l “if” il bl t t h d

Department of Computer and Information ScienceLecture 15

Note: only “if” are available on most current hardware

GLSL Statements
• A few jumps are also defined:

•continue - available in loops, causes a jump to the next iteration of the loop

•break - available in loops causes an exit of the loopbreak - available in loops, causes an exit of the loop

•Discard - can only be used in fragment shaders. It causes the termination of the
shader for the current fragment without writing to the frame buffer, or depth.

Department of Computer and Information ScienceLecture 15

GLSL Functions
• As in C, a shader is structured in functions. At least each type of

shader must have a main function declared with the following
syntax: void main() y ()

• User defined functions may be defined.
• As in C a function may have a return value, and use

the return statement to pass out its result A functionthe return statement to pass out its result. A function
can be void. The return type can have any type,
except array.

f f f• The parameters of a function have the following
qualifiers:
– in - for input parameters
– out - for outputs of the function. The return statement is also

an option for sending the result of a function.
– inout - for parameters that are both input and output of a

f ti

Department of Computer and Information ScienceLecture 15

function
– If no qualifier is specified, by default it is considered to be in.

GLSL Functions
• A few final notes:

– A function can be overloaded as long as the list of parameters is g p
different.

– Recursion behavior is undefined by specification.

• Finally let’s look at an example• Finally, let s look at an example

vec4 toonify(in float intensity)
{

vec4 color;vec4 color;
if (intensity > 0.98)

color = vec4(0.8,0.8,0.8,1.0);
else if (intensity > 0.5)

color = vec4(0.4,0.4,0.8,1.0);
else if (intensity > 0.25)

color = vec4(0.2,0.2,0.4,1.0);
else color = vec4(0.1,0.1,0.1,1.0);
return(color);

}

Department of Computer and Information ScienceLecture 15

}

GLSL Varying Variablesy g
• Let’s look at a real case, shading

– Current OGL does Gouraud Shadingg
– Phong shading produces much higher visual quality, but turns out

to be a big deal for hardware

• Illumination takes place in vertex transformation then• Illumination takes place in vertex transformation, then
shading (color interpolation) goes in the following stage

• But Phong shading basically requires per fragment
illumination

Department of Computer and Information ScienceLecture 15

GLSL Varying Variablesy g
• Varying variables are interpolated from vertices, utilizing

topology information, during rasterizationp gy , g
• GLSL has some predefined varying variables, such as

color, texture coordinates etc.
• Unfortunately, normal is not one of them
• In GLSL, to do Phong shading, let’s make normal a varying

variablevariable

Department of Computer and Information ScienceLecture 15

GLSL Varying Variablesy g
• Define varying variables in both vertex and fragment

shaders

• Varying variables must be written in the vertex shader

varying vec3 normal;

• Varying variables can only be read in fragment shaders

Department of Computer and Information ScienceLecture 15

More Setup for GLSL- Uniform
VariablesVariables

U if i bl thi i f C• Uniform variables, this is one way for your C program
to communicate with your shaders (e.g. what time is it
since the bullet was shot?)

• A uniform variable can have its value changed by
primitive only, i.e., its value can't be changed between
a glBegin / glEnd pair.g g g

• Uniform variables are suitable for values that remain
constant along a primitive, frame, or even the whole
scene.scene.

• Uniform variables can be read (but not written) in both
vertex and fragment shaders.

Department of Computer and Information ScienceLecture 15

The Overall Process

Department of Computer and Information ScienceLecture 15

Creating a Shaderg
• The first step is creating an object which will act as a

shader container. The function available for this purpose p p
returns a handle for the container

GLhandleARB glCreateShaderObjectARB(GLenum shaderType);

• You can create as many shaders as needed but there can

Parameter:

shaderType - GL_VERTEX_SHADER_ARB or
GL_FRAGMENT_SHADER_ARB.

• You can create as many shaders as needed, but there can
only be one single main function for the set of vertex
shaders and one single main function for the set of
fragment shaders in each single program.

Department of Computer and Information ScienceLecture 15

Creating a Shaderg
• The second step is to add some source code (like this is a

surprise). p)
– The source code for a shader is a string array, although you can

use a pointer to a single string.

• The syntax of the function to set the source code for a• The syntax of the function to set the source code for a
shader is

void glShaderSourceARB(GLhandleARB shader, int numOfStrings, const char
**strings, int *lenOfStrings);

Parameters:

shader - the handler to the shader.

numOfStrings - the number of strings in the array.

strings - the array of strings.

l OfSt i ith th l th f h t i

Department of Computer and Information ScienceLecture 15

lenOfStrings - an array with the length of each string, or
NULL, meaning that the strings are NULL terminated.

Creating a Shaderg
• The final step, the shader must be compiled.
• The function to achieve this is:The function to achieve this is:

void glCompileShaderARB(GLhandleARB program);

Parameters:Parameters:

program - the handler to the program.

Department of Computer and Information ScienceLecture 15

Creating a Programg g
• The first step is creating an object which will act as a

program container.
• The function available for this purpose returns a handle

for the container
• One can create as many programs as needed Once

GLhandleARB glCreateProgramObjectARB(void);

One can create as many programs as needed. Once
rendering, you can switch from program to program,
and even go back to fixed functionality during a single
frameframe.
– For instance one may want to draw a teapot with refraction

and reflection shaders, while having a cube map displayed for
background using OpenGL's fixed functionality. g g p y

Department of Computer and Information ScienceLecture 15

Creating a Programg g
• The 2nd step is to attach the shaders to the program you've just

created.
• The shaders do not need to be compiled nor is there a need to

have src code. For this step only the shader container is required
void glAttachObjectARB(GLhandleARB program GLhandleARB shader);

• If you have a pair vertex/fragment of shaders you'll need to attach

void glAttachObjectARB(GLhandleARB program, GLhandleARB shader);

Parameters:
program - the handler to the program.
shader - the handler to the shader you want to attach.

• If you have a pair vertex/fragment of shaders you ll need to attach
both to the program (call attach twice).

• You can have many shaders of the same type (vertex or fragment)
attached to the same program (call attach many times)attached to the same program (call attach many times)

•As in C, for each type of shader there can only be one shader
with a main function. You can attach a shader to multiple

Department of Computer and Information ScienceLecture 15

programs, e.g. to use the same shader in several programs.

Creating a Programg g

• The final step is to link the program In order to carry• The final step is to link the program. In order to carry
out this step the shaders must be compiled as
described in the previous subsection.

void glLinkProgramARB(GLhandleARB program);

Parameters:

program - the handler to the program.

• After link, the shader's source can be modified and
recompiled without affecting the program.

Department of Computer and Information ScienceLecture 15

Using a Programg g
• After linking, the shader's source can be modified and

recompiled without affecting the program.
• Because calling the function that actually load and use

the program , glUseProgramObjectARB, causes a
program to be actually loaded (the latest version then)program to be actually loaded (the latest version then)
and used.

• Each program is assigned an handler, and you can
have as many programs linked and ready to use as
you want (and your hardware allows).

void glUseProgramObjectARB(GLhandleARB prog);void glUseProgramObjectARB(GLhandleARB prog);

Parameters:

prog - the handler to the program to use, or zero to return to fixed functionality

Department of Computer and Information ScienceLecture 15

A program in use, if linked again, will automatically be placed in use
again. No need to useprogram again.

Setting up - setShadersg p

• Here is a sample function to setup shaders. You can
call this in your main function

void setShaders() /* GLhandleARB p,f,v; are declared as globals */
{
char *vs,*fs; , ;
const char * vv = vs;
const char * ff = fs;
v = glCreateShaderObjectARB(GL_VERTEX_SHADER_ARB);
f = glCreateShaderObjectARB(GL_FRAGMENT_SHADER_ARB);
vs = textFileRead("toon vert");vs = textFileRead(toon.vert);
fs = textFileRead("toon.frag");
glShaderSourceARB(v, 1, &vv, NULL);
glShaderSourceARB(f, 1, &ff, NULL);
free(vs); free(fs);

textFileRead is providedglCompileShaderARB(v);
glCompileShaderARB(f);
p = glCreateProgramObjectARB();
glAttachObjectARB(p,v);
glAttachObjectARB(p f);

textFileRead is provided
in the class directory

Department of Computer and Information ScienceLecture 15

glAttachObjectARB(p,f);
glLinkProgramARB(p);
glUseProgramObjectARB(p);

}

Cleaning Up g p

• A function to detach a shader from a program is:• A function to detach a shader from a program is:
void glDetachObjectARB(GLhandleARB program, GLhandleARB shader);

Parameter:

• Only shaders that are not attached can be deleted

program - The program to detach from.

shader - The shader to detach.

• To delete a shader use the following function:
id lD l t Sh d ARB(GLh dl ARB h d)void glDeleteShaderARB(GLhandleARB shader);

Parameter:

shader - The shader to delete.

Department of Computer and Information ScienceLecture 15

Getting Errorg
• There is an info log function that returns compile & linking

information, errors,

void glGetInfoLogARB(GLhandleARB object,
GLsizei maxLength,
GL i i *l th GGLsizei *length,G
GLcharARB *infoLog);

Department of Computer and Information ScienceLecture 15

More Setup for GLSL- Uniform
VariablesVariables

• The first thing you have to do is to get the memory location
of the variableof the variable.
– Note that this information is only available after you link the

program. With some drivers you may be required to be using the
program i e glUseProgramObjectARB is already calledprogram, i.e. glUseProgramObjectARB is already called

• The function to use is:

GLi t lG tU if L ti ARB(GLh dl ARB t h *)GLint glGetUniformLocationARB(GLhandleARB program, const char *name);

Parameters:

program - the handler to the program

name the name of the ariablename - the name of the variable.

The return value is the location of the variable, which can be used to assign values to it.

Department of Computer and Information ScienceLecture 15

More Setup for GLSL- Uniform
VariablesVariables

• Then you can set values of uniform variables with a family
of functions.

• A set of functions is defined for setting float values as
below. A similar set is available for int’s, just replace “f”

ith “i”with “i”

void glUniform1fARB(GLint location, GLfloat v0);
void glUniform2fARB(GLint location, GLfloat v0, GLfloat v1);
void glUniform3fARB(GLint location, GLfloat v0, GLfloat v1, GLfloat v2);
void glUniform4fARB(GLint location, GLfloat v0, GLfloat v1, GLfloat v2, GLfloat v3);

GLint glUniform{1,2,3,4}fvARB(GLint location, GLsizei count, GLfloat *v);
Parameters:

location - the previously queried location.
v0,v1,v2,v3 - float values.

Department of Computer and Information ScienceLecture 15

count - the number of elements in the array
v - an array of floats.

More Setup for GLSL- Uniform
VariablesVariables

• Matrices are also an available data type in GLSL, and a set
of functions is also provided for this data type: p yp

GLint glUniformMatrix{2,3,4}fvARB(GLint location, GLsizei count, GLboolean transpose, GLfloat *v);

Parameters:

location - the previously queried location.

count - the number of matrices. 1 if a single matrix is being set, or n for an array of n
matrices.

transpose - wheter to transpose the matrix values. A value of 1 indicates that the matrixtranspose wheter to transpose the matrix values. A value of 1 indicates that the matrix
values are specified in row major order, zero is column major order

v - an array of floats.

Department of Computer and Information ScienceLecture 15

More Setup for GLSL- Uniform
VariablesVariables

• Note: the values that are set with these functions will keep
their values until the program is linked again.

• Once a new link process is performed all values will be
reset to zeroreset to zero.

Department of Computer and Information ScienceLecture 15

More Setup for GLSL- Uniform
VariablesVariables

A l• A sample:
Assume that a shader with the following
variables is being used:

In the OpenGL application, the code for setting the variables could
be:

uniform float specIntensity;
uniform vec4 specColor;
uniform float t[2];
uniform vec4 colors[3];

GLint loc1,loc2,loc3,loc4;
float specIntensity = 0.98;
float sc[4] = {0.8,0.8,0.8,1.0};
float threshold[2] = {0.5,0.25};
float colors[12] = {0 4 0 4 0 8 1 0 0 2 0 2 0 4 1 0 0 1 0 1 0 1 1 0};uniform vec4 colors[3]; float colors[12] = {0.4,0.4,0.8,1.0, 0.2,0.2,0.4,1.0, 0.1,0.1,0.1,1.0};
loc1 = glGetUniformLocationARB(p,"specIntensity");
glUniform1fARB(loc1,specIntensity);
loc2 = glGetUniformLocationARB(p,"specColor");
glUniform4fvARB(loc2,1,sc);
loc3 = glGetUniformLocationARB(p,"t");
glUniform1fvARB(loc3,2,threshold);
loc4 = glGetUniformLocationARB(p,"colors");
glUniform4fvARB(loc4,3,colors);

Department of Computer and Information ScienceLecture 15

More Setup for GLSL- Attribute
VariablesVariables

• Attribute variables also allow your C program to
communicate with shaders

• Attribute variables can be updated at any time, but
can only be read (not written) in a vertex shader.

• Attribute variables pertain to vertex data, thus not
useful in fragment shader
T t it l (j t lik if i bl) it i• To set its values, (just like uniform variables) it is
necessary to get the location in memory of the
variable.variable.
– Note that the program must be linked previously and

some drivers may require the program to be in use.
GLi t lG tAtt ibL ti ARB(GLh dl ARB h *)

Department of Computer and Information ScienceLecture 15

GLint glGetAttribLocationARB(GLhandleARB program,char *name);
Parameters:

program - the handle to the program.
name - the name of the variable

More Setup for GLSL- Attribute
VariablesVariables

• As uniform variables, a set of functions are provided to set
attribute variables (replacing “f” with “i” gives the API for
int’s)int s)

void glVertexAttrib1fARB(GLint location, GLfloat v0);
void glVertexAttrib2fARB(GLint location, GLfloat v0, GLfloat v1);
void glVertexAttrib3fARB(GLint location, GLfloat v0, GLfloat v1,GLfloat v2);
void glVertexAttrib4fARB(GLint location GLfloat v0 GLfloat v1 GLfloat v2 GLfloat v3);void glVertexAttrib4fARB(GLint location, GLfloat v0, GLfloat v1,,GLfloat v2, GLfloat v3);

or

GLint glVertexAttrib{1,2,3,4}fvARB(GLint location, GLfloat *v);

Parameters:Parameters:

location - the previously queried location.

v0,v1,v2,v3 - float values.

v - an array of floats

Department of Computer and Information ScienceLecture 15

v an array of floats.

More Setup for GLSL- Attribute
VariablesVariables

• A sample snippet
Assuming the vertex shader has:

attribute float height;

In the main Opengl program, we can do the following:

loc = glGetAttribLocationARB(p,"height");
glBegin(GL TRIANGLE STRIP);glBegin(GL_TRIANGLE_STRIP);
glVertexAttrib1fARB(loc,2.0);
glVertex2f(-1,1);
glVertexAttrib1fARB(loc,2.0);
glVertex2f(1,1);
glVertexAttrib1fARB(loc 2 0);glVertexAttrib1fARB(loc,-2.0);
glVertex2f(-1,-1);
glVertexAttrib1fARB(loc,-2.0);
glVertex2f(1,-1); glEnd();

Department of Computer and Information ScienceLecture 15

Appendixpp
• Sample Shaders

Li f l d B il i ’ f GLSL• List of commonly used Built-in’s of GLSL
• Shader Tools

Department of Computer and Information ScienceLecture 15

Ivory – vertex shadery

uniform vec4 lightPos;

varying vec3 normal;
varying vec3 lightVec;a y g ec3 g t ec;
varying vec3 viewVec;

void main(){
l P iti l M d lVi P j ti M t i * l V tgl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
vec4 vert = gl_ModelViewMatrix * gl_Vertex;

normal = gl NormalMatrix * gl Normal;g _ g _
lightVec = vec3(lightPos - vert);
viewVec = -vec3(vert);

}

Department of Computer and Information ScienceLecture 15

Ivory – fragment shadery g
varying vec3 normal;
varying vec3 lightVec;
varying vec3 viewVec;

void main(){
vec3 norm = normalize(normal);

vec3 L = normalize(lightVec);
vec3 V = normalize(viewVec);

3 h lfA l li (L + V)vec3 halfAngle = normalize(L + V);

float NdotL = dot(L, norm);
float NdotH = clamp(dot(halfAngle, norm), 0.0, 1.0);

// "Half-Lambert" technique for more pleasing diffuse term// Half Lambert technique for more pleasing diffuse term
float diffuse = 0.5 * NdotL + 0.5;
float specular = pow(NdotH, 64.0);

float result = diffuse + specular;

gl_FragColor = vec4(result);
}

Department of Computer and Information ScienceLecture 15

Gooch – vertex shader
uniform vec4 lightPos;

varying vec3 normal;varying vec3 normal;
varying vec3 lightVec;
varying vec3 viewVec;

void main(){
gl_Position = gl_ModelViewProjectionMatrix *
gl_Vertex;
vec4 vert = gl_ModelViewMatrix * gl_Vertex;

normal = gl_NormalMatrix * gl_Normal;
li htV 3(li htP t)lightVec = vec3(lightPos - vert);
viewVec = -vec3(vert);

}

Department of Computer and Information ScienceLecture 15

Gooch – fragment shaderg
uniform vec3 ambient;

varying vec3 normal;
varying vec3 lightVec;varying vec3 lightVec;
varying vec3 viewVec;

void main(){
const float b = 0.55;
const float y = 0.3;
const float Ka = 1.0;
const float Kd = 0.8;
const float Ks = 0.9;

vec3 specularcolor = vec3(1.0, 1.0, 1.0);

vec3 norm = normalize(normal);
vec3 L = normalize (lightVec);
vec3 V = normalize (viewVec);
vec3 halfAngle = normalize (L + V);

Department of Computer and Information ScienceLecture 15

Gooch – fragment shader (2)g ()
vec3 orange = vec3(.88,.81,.49);
vec3 purple = vec3(.58,.10,.76);

vec3 kCool = purple;
vec3 kWarm = orange;

float NdotL = dot(L, norm);
float NdotH = clamp(dot(halfAngle, norm), 0.0, 1.0);
float specular = pow(NdotH, 64.0);

float blendval = 0.5 * NdotL + 0.5;
vec3 Cgooch = mix(kWarm, kCool, blendval);

vec3 result = Ka * ambient + Kd * Cgooch + specularcolor * Ks *
lspecular;

gl_FragColor = vec4(result, 1.0);
}

Department of Computer and Information ScienceLecture 15

Built-in variables
• Attributes & uniforms

F f i• For ease of programming
• OpenGL state mapped to variables
• Some special variables are required to be

written to, others are optional, p

Department of Computer and Information ScienceLecture 15

Special built-insp
• Vertex shader
vec4 gl Position; // must be writtenvec4 gl_Position; // must be written
vec4 gl_ClipPosition; // may be written
float gl_PointSize; // may be written

• Fragment shader
//float gl_FragColor; // may be written

float gl_FragDepth; // may be read/written
vec4 gl_FragCoord; // may be read
bool gl_FrontFacing; // may be read

Department of Computer and Information ScienceLecture 15

Attributes
• Built-in
attribute vec4 gl Vertex;g _
attribute vec3 gl_Normal;
attribute vec4 gl_Color;
attribute vec4 gl SecondaryColor;g _ y ;
attribute vec4 gl_MultiTexCoordn;
attribute float gl_FogCoord;

• User-defined
attribute vec3 myTangent;
attribute vec3 myBinormal;
Etc…

Department of Computer and Information ScienceLecture 15

Built-in Uniforms
uniform mat4 gl_ModelViewMatrix;
uniform mat4 gl_ProjectionMatrix;
uniform mat4 gl ModelViewProjectionMatrix;uniform mat4 gl_ModelViewProjectionMatrix;
uniform mat3 gl_NormalMatrix;
uniform mat4 gl_TextureMatrix[n];

struct gl_MaterialParameters {
vec4 emission;
vec4 ambient;
vec4 diffuse;
vec4 specular;
float shininess;

};
uniform gl_MaterialParameters gl_FrontMaterial;
uniform gl_MaterialParameters gl_BackMaterial;

Department of Computer and Information ScienceLecture 15

Built-in Uniforms
struct gl_LightSourceParameters {
vec4 ambient;
vec4 diffuse;vec4 diffuse;
vec4 specular;
vec4 position;
vec4 halfVector;

3 tDi tivec3 spotDirection;
float spotExponent;
float spotCutoff;
float spotCosCutoff; p ;
float constantAttenuation
float linearAttenuation
float quadraticAttenuation

};};
Uniform gl_LightSourceParameters

gl_LightSource[gl_MaxLights];

Department of Computer and Information ScienceLecture 15

Built-in Varyingsy g
varying vec4 gl_FrontColor // vertex
varying vec4 gl_BackColor; // vertex
varying vec4 gl_FrontSecColor; // vertex
varying vec4 gl BackSecColor; // vertexvarying vec4 gl_BackSecColor; // vertex

varying vec4 gl_Color; //
fragmentfragment

varying vec4 gl_SecondaryColor; //
fragment

varying vec4 gl_TexCoord[]; // both
varying float gl_FogFragCoord; // both

Department of Computer and Information ScienceLecture 15

Built-in functions
• Angles & Trigonometry

di d i t i– radians, degrees, sin, cos, tan, asin, acos,
atan

E ti l• Exponentials
– pow, exp2, log2, sqrt, inversesqrt

• Common
– abs, sign, floor, ceil, fract, mod, min, max,

clamp

Department of Computer and Information ScienceLecture 15

Built-in functions
• Interpolations

i () *(1 0) *)– mix(x,y,a) x*(1.0-a) + y*a)
– step(edge,x) x <= edge ? 0.0 : 1.0
– smoothstep(edge0,edge1,x)

t = (x-edge0)/(edge1-edge0);
t = clamp(t, 0.0, 1.0);
return t*t*(3.0-2.0*t);

Department of Computer and Information ScienceLecture 15

Built-in functions
• Geometric

l th di t d t li– length, distance, cross, dot, normalize,
faceForward, reflect

M t i• Matrix
– matrixCompMult

• Vector relational
– lessThan, lessThanEqual, greaterThan,

greaterThanEqual, equal, notEqual, any, all

Department of Computer and Information ScienceLecture 15

Built-in functions
• Texture

t t 1D t t 2D t t 3D t t C b– texture1D, texture2D, texture3D, textureCube
– texture1DProj, texture2DProj, texture3DProj,

te t reC beProjtextureCubeProj
– shadow1D, shadow2D, shadow1DProj,

shadow2Dprojshadow2Dproj
• Vertex

– ftransform

Department of Computer and Information ScienceLecture 15

Tools
• OpenGL Extensions Viewer

– http://www.realtech-vr.com/glview/download.html

• Simple Shaders
– ogl2brick (http://developer.3dlabs.com/downloads/glslexamples/)

Hello GPGPU– Hello GPGPU (http://www.gpgpu.org/developer/)

• ShaderGen
– http://developer.3dlabs.com/downloads/shadergen/

• Shader data structures – Brook, glift
• Recommended literature – OpenGL RedBook,

O GL O B k GPU G 2OpenGL OrangeBook, GPU Gems 2

Department of Computer and Information ScienceLecture 15

