GPU Programming

= Gra
= Gra
= Gra

D
D
D

NICS
NICS

NICS

Past
Present

—uture

* High-Level Shading
Languages

CISC 440/640

Spring 2013

Department of Computer and Information Science

OpenGL 1.4 - Graphics Past

xed-Function Graphics Pipeline with
very step neatly planned”

ILOSOPHY: Performance > Flexibility
tended by committee

hy process anything other than polygons or the occasional
xel?

Display

Lecture 15 Department of Computer and Information Science

JpenGL 2.0 - Graphics Today

ogrammable Processing units

Xposing what was always there beneath the covers)
Programmable per-Vertex Processors
Programmable per-Fragment Processors

2Xture memory — general purpose data storage

Lecture 15 Department of Computer and Information Science

Vertex Processor Capabilities

Lighting, Material and Geometry flexibility

Vertex programs replace the following parts of the
pipeline:

— Vertex & Normal transformation

— Normalization and rescaling

— Per-Vertex Lighting Calculations

— Color application & clamping

— Texture coordinate generation & transformation
The vertex shader does NOT replace:

— Perspective divide and viewport (NDC) mapping

— Clipping

— Backface culling

— Primitive assembly (Triangle setup, edge equations, etc.)

Lecture 15 Department of Computer and Information Science

Vertex Processor Inputs &
Outputs

ertex “Shader” has all of the primitive arguments available to it
Ixed constants that are compiled into the shader
pecial variables that are rendering specific

rites its results into prearranged locations (registers) that are
nderstood” by later processing steps
User-Defined Uniform Variables
eyePosition, lightPositiony, modelScaleFactor, etc.

Standard OpenGL variables
Vertex & texture coords,
Vertex color

ard OpenGL attributes
jIColor, gINormal
tex, glMultiTexCoord

User-Defined variables
Model coordinates,
Normals, hVector,

toEyeVector, etc

r-Defined Attributes

Standard OpenGL State

glFogColor, glFrontMaterial, etc.

Lecture 15 Department of Computer and Information Science

% ModelViewMatrix, glLightSource|0,..n],

Fragment Processor
Capabilities

lexibility for texturing and per-pixel operations
ragment programs replace the following parts of the OpenGL pipeline:

Operations on interpolated values Pixel zoom
Texture access Scale and bias
Texture application (modulate, add) Color table lookup
Fog (color(depth)) Convolution

Color sums (blends, mattes) Color matrix

Perspective divide
he Fragment shader does NOT replace:

Scan Conversion Histogram

Coverage Pixel packing and unpacking
Scissor Stipple

Alpha test Depth test

Stencil test Alpha blending

Logical ops Dithering

Plane masking Z-buffer replacement test

1=)
g Lecture 15 Department of Computer and Information Science

Fragment Processor Inputs &
Outputs

ragment “Shader” has all of the rasterization arguments available to it
Ixed constants that are compiled into the shader

pecial variables that are rendering specific

rites its results into prearranged locations (registers) that are “understood”
y later processing steps
User-Defined Uniform Variables

eyePosition, lightPosition, modelScaleFactor, epsilon, etc.

Standard OpenGL variables
FragmentColor,
FragmentDepth

d Rasterizer attributes
, g, b, a), depth (2),
reValues (s, t, w)

(interpolated)
Defined Attributes
als, modelCoord,
density, etc

TextureMemory

Textures, Tables,
m% TempStorage

Lecture 15 Department of Computer and Information Science

GPU Programmability

e major innovation of the Vertex and Fragment Processors is the
posing of a programmable interface

tially, the Vertex and Fragment programs were written in a low-level
specific assembly languages, with specific capabilities (eg.

ating point only in Vertex shaders, Fixed-point only in Fragment
aders)

end is toward Higher-Level languages and more symmetric

=
1 t t

lication Vertex Fragment
ogram “Shader” “Shader”

Lecture 15 Department of Computer and Information Science

the beginning,

seful macros

Vector-vector add
Dot-product
Normalize

acame
e programming

eﬁ)d of choice

sources were limited

Vector-scalar mult

Example: GeForce 3 Vertex
Processor

Lecture 15 Department of Computer and Information Science

GPU/CPU Differences

t GPUs offered no branching
port

ditional operations instead

egA < 0)
regB =regC

general indirect access to
ory (i.e. lookup tables,
ures, etc.)

Lecture 15 Department of Computer and Information Science

OpenGL Shading Language
(GLSL)

The end result is OpenGL Shading
Language, which is a part of the OpenGL
2.0 standard (October 22, 2004)

GLSL is commonly referred to as “GLslang”

GLSL and Cg are quite similar, with GLSL
being a lot closer to OpenGL

SRR APRICS Lecture 15 Department of Computer and Information Science

The Graphics Pipeline

Vertex Connectivity

Transformed -
Vertices e Vertices Primitive
GElEs Assembly and
Transformation N
Rasterization

Pixel Fragmenis

Positions

Fragment
Texturing and

Colored Coloring
Fragments

Raster
Pixel Updates | OPerations

Lecture 15 Department of Computer and Information Science

Fixed Functionality — Vertex
Transformation

\ vertex Is a set of attributes
uch as its location in space,
olor, normal, texture Veriex Connectiiy
oordinates, etc.

puts: individual vertices
ttributes.

Jperations:

Transformed
Vertices

Primitive
Assembly and
Rasterization

Vertices

Vertex
Transformation

Pixel Fragments

Positions

Vel’teX pOSItIOﬂ Raster Fr‘ag_njz_aﬂt"
transformation EIES CEell Coorro
Lighting computations per

vertex

Generation and
Esformation of texture

Ceosvrren

Cemnso@@Ordinates

Lecture 15 Department of Computer and Information Science

Fixed Functionality — Primitive
Assembly and Rasterization

puts: transformed vertices
d connectivity information
D 1: clipping against view
stum and back face culling
0 2: the actual rasterization
termines the fragments,

d pixel positions of the
imitive.

Vertex Connectivity

Transformed
Vertices

Primitive
— Assembly and
Rasterization

Vertices

Vertex
Transformation

“ Pixel Fragments

% Positions

tput:
position of the fragments I g weam—— oTen
Pixel Updates | Operations Colored Coloring

In the frame buffer

Interpolated attributes for
fragment

Fragments

Lecture 15 Department of Computer and Information Science

Fixed Functionality — Fragment
Texturing and Coloring

Input: interpolated
fragment information

A color has already been . Vertex Connectiviy
computed in the previous
stage through
Interpolation, and can be
combined with a texel

Texture coordinates have
also been interpolated in Fe—
the previous stage. Fog is
also applied at this stage.

Output: a color value and
a@pth for each fragment.

I AT W TR

Transformed
Vertices

Verices

Primitive
— Assembly and
Rasterization

Vertex
Transformation

¥ Pixel Fragments

" Positions

Fragment
Raster :
e | £xturing and

Operations

Colored Coloring
Fragments

Lecture 15 Department of Computer and Information Science

Fixed Functionality — Raster
Operations

puts:

pixels location

fragments depth and color values
Jperations:

SCISSOI‘ teSt Vertex Connectivity

AI p h a teSt Vertices aiiy Tr?frés;tf?;réged Primitive
Ste N Ci I te St Transformation Aﬂsassgﬁlgaggg
De pth teSt Pixel Fragments

Positions

Fragment
S Te v:tu‘r%i ng and
Pixel Updates Operations Colored ﬂE:]I:]r'i_r'lé] -

Fragments

IR APRICS Lecture 15 Department of Computer and Information Science

Fixed Functionality

ummary (common jargons: T&L, Texturing etc.)

LINE(@ o) TRIANGLE(® @ O)

Vertices Transf Vertices Bt
o = o information
& ° Geom. Ops.
@ o ° o Ur
Assembly
[] i .d__r___{;
Colored Fragments Fragments ‘v
Raster
™ _ oo P ~
Interpolation
? _—

Lecture 15 Department of Computer and Information Science

Replacing Fixed Functionalities

Vertex Transformation stage:
vertex shaders

Fragment Texturing and

Coloring stage: fragment Tansomes ¥
shaders tarsomaton =
Obviously, if we are replacing
fixed functionalities with
programmable shaders, “stage”
IS Not a proper term any more

From here on, let’s call them
vertex processors and fragment
processors

Vertex Connectivity

Pixel
Puositions

Fragment
Texturing and

Colored Coloring
Fragments

Raster
Operations

Pixel Updates

a0
S TR Lecture 15 Department of Computer and Information Science

Vertex Processors

The vertex processor is where the vertex shaders are run

Input: the vertex data, namely its position, color, normals,
etc, depending on what the OpenGL application sends

A piece of code that sends the inputs to vertex shader:

Vertex Connectivity

Transformed
Vertices

Vertices

Vertex
Transformation

Primitive
Assembly and
Rasterization

Fragments

Pixel
Positions

Fragment
——— Te x'tu;:i ng and
Pixel Updates Operations Colored Coloring
Fragments

Lecture 15 Department of Computer and Information Science

Vertex Processors

In vertex shaders, sample tasks to perform
Include:

— vertex position transformation using the modelview and projection
matrices

— normal transformation, and if required its normalization
— texture coordinate generation and transformation

— lighting per vertex or computing values for lighting per pixel

— color computation . ey
ote:

— It Is not required that your vertex shader
does any particular task

— no matter what vertex shader is provided,
you have already replaced the entire fixed
functionality for vertex transformation stage =

Pixel Updates

Transformed
Veriices

Primitive
Assembly and
Rasterization

Vertices

Vertex
Transformation

Pixel Fragments
Fositions

Fragment
e T exturing and

Raster
Operations

Colored Coloring
Fragments

ey
I 1S Lecture 15 Department of Computer and Information Science

Vertex Processors

The vertex processor processes vertices individually
and has no information regarding connectivity, no
operations that require topological knowledge can't be
performed in here.

— for example, no back face culling

The vertex shader must write at least a variable:
gl_Position
— often transforming with modelview and projection matrices

A vertex processor has access to OpenGL states
— so it can do lighting and use materials.

A vertex processor can access textures (not on all
hardware).

A vertex processor cannot access the frame buffer.

Coe lifrl«n$
RREERECI. - W Lecture 15 Department of Computer and Information Science

Fragment Processors

e |nputs: the interpolated values computed Iin the
previous stage of the pipeline
— e.g. vertex positions, colors, normals, etc...

 Note, in the vertex shader these values are computed
per vertex. Here we're interpolating for the fragments

 When you write a fragment shader it replaces all the
fixed functionality. The programmer must code all

effects that the application requires.

fragment shader has two output options:

[———— Assembly and
Rasterization

— to discard the fragment, hence outputting nothing

— to compute either gl_FragColor (the final color of the

fragment), or gl_FragData when rendering to multiple — —
Pixel Updates | OPerafions Coloring

tarQEtS. = Te x‘turlrg and

Fragments

o (O
SRR Lecture 15 Department of Computer and Information Science

Fragment Processors

The fragment processor operates on single _
fragments, i.e. it has no clue about the neighboring
fragments.

The shader has access to OpenGL states

— Note: a fragment shader has access to but cannot change
the pixel coordinate. Recall that modelview, projection and
viewport matrices are all used before the fragment
processor.

Depth can also be written but not required

Note the fragment shader has no access to the frame
buffer

Operations such as blending occur only after the
fragment shader has run.

S
Vertices ertices Primitive
Assembly and
Rasterization

Vertex
Transformation

) R Raster Fragment

§ T - B s Texturing and

Tl THREY (Pixel Updates | Operations — Colaring
Lecture 15 Department of Colored Coloring

Using GLSL

you are using OpenGL 2.0, GLSL is part of it

not, you need to have two extensions:
GL_ARB fragment_shader

GL_ARB_vertex_shader

n OGL 2.0, the involved functions and symbolic
onstants do not have “ARB” in the name any
ore.

" Lecture 15 Department of Computer and Information Science

Shader Review

Hardware

Video cards only [300,650]Mhz (cpus are 2-a6hz) but
[2,16] vertex, [8,48] fragment processors

Fragment Programs: FX1000:8x300=2.4Ghz; 7800GT: 20x400Mhz=8.0Ghz

SLI for 2-4 video cards (www.tomshardware.com)

m Per Frame
Verbex Primifie w
" Assenbly | Fragment Buffer
K ,»' :
¥
m B
P00 Frame
Buffer |~
Read |
Cortrd
_” gﬂ“ﬂ;m {:} = Programmable Processor

—
Lecture 15 Department ot Computer and Information Science

Shader Review

Programming GPU:
— Store data as texture (similar to 2D array)

— RoOT: data structures, kernels, matrices, reduce
communication, reduce conditionals

int glutDisplay()

{

glClear{GL_COLOE_BUFFER_EIT |

GL_DEFTH_BUFFEE_EIT):

glloadIdentity();

glTranslatef{-1.5f . 0.0f. -6.0f);

gJlBegin(GL_TRIAHGLES)
glColor3f{l . 0f.0.0f.0.0f);
glVertexidf(0.0f, 1.0f, 0.0f);
glColor3f{0.0£.1.0£.0.0£);
glVertexdf(-1.0f -1 .0f, 0.0f);
glColor3f{0.0£.0.0£.1.0f);
glVertex3df(1.0f.-1.0f, 0.0f):

glEndi }:

Triangle

~3,042 pixels

Each pixel
processed by
fragment processor
each frame

B
8. S Lecture 15 Department of Computer and Information Science

Shader Review

GPU uses:

— Games often use for Example Shader
custom lighting, dynamigzs == v

uniform sawmplerlD clutTexture;

ContraSt, etC. uniform float alphaThresh;

woid main(wvoid)

— Shader programs: 3-100]" s coor;

float mainIndex:

lines of code (10 avg.)

gl FragColor=vecd4 (0.325, 0.95, 0.95, 1.0}:
else if (viewIndex==4) {

== General uses: par'“CIe if (gl _TexCoord[0] .x<0) discard:

{fCompute the RGEA color

. . . . inTndex = clamp (gl TexCoord[0].x,0.0,1.0);
engines, illumination, i e T :

texturelD (clutTexture, mainIndex)]) !

signal processing, O
image CompreSSion’ , gl FragColor = color;
computer vision,

sorting/searching
(www.gpgpu.org) A _

0.5
7 F‘h,
CONPITER 2
Grarizos

Fiker Equation

ﬂ|!||||||||||||||||IIIIIIIIIIIIII

Lecture 15 Department of Computer and Information Science

Enter the GPU IDE

|8 RenderMonkey =& x|
File Edit View Preview Window Help

2 H

| & Water Effects Group\Ocean Water Effect

n Water Effect\Ocean Water Pass\ps . =] 1

[Eﬁect Warkspace Oosan Sky Pass Deean Waler Pass |

| ;géﬂor:;)t"\fgcnt Constant [Name [initil value [E|
0
Lﬂiﬁfﬂﬂx cl specular color (0.129, 0.314, ...
view_matrix {#]
@ standard mapping S
Default Effect =
=423 Water Effects Group o2 3
= Bl Ocean Water Effect =
commonConst & =
eyePos (Eye Space) @ »
lightPos {Eve Space)} ci0 - LI
time
sin{time) eiid =
psConstVec

3 Ocean Sky Pass ‘def =0, 0.5, 0.5, 0.5, 1.0

=[P Ocean Water Pass

texld r0, t0 /7 bump map 0

Iyeiis texld rl, tl #7 bump map 1
sin7 texcrd r2.rgh. t2 -/ view vec
cosB texcrd r3 rgb. t3 -/ tangemt
freFixup texcrd r4.rgb, t4 7 binormal
waveHeights temcrd r§orgb. 5 o/ normal
waveSpeed add_d4 r0.zy. r0_bx2, rl bx2 ~~ scaled avg of 2 bumpmap zv offsets
waveDirX
waveDiry mul rl.rgbh, r0.x, r3 #7 put bump maps into world space
et nad rl.rgb. rl.y. v, rl
bumpSpesd nad zrl.rgb, rl0.z, r&%. rl
texCoord distortion dp3 r0.rgbh. rl, r2 RN

-4 oceanBump mad r2.rgb, rl, r0_x2, -r2 -~ R = 2H(V.H)-V

Bl oconcrant b r0 rgh, r0_x2 PETRR 1 £ 1D

E oceanEnvMap mov_sa r0.rgbh, r0_x (=anple over range o map)
specular calor phase

~[* Render State
vs texld r2, r2 77 env map

-4 ps texld r3. r0 #/ index frenel map using 2%H.V

¢ Ocean Surface nul 12 vgb, rZ, T2 s/ square env nap

- Texture 0 +mul r2.a, r2.g. r2.g /¢ use gresn of env as spscular

T Texture 1 nul r2.rgh, r2, l-rl.r s/ fresnel term

=T, Texture 2 4mul r2.a, r7.a. rl.a s/ specular "4

T Texture 3

add_dd4_sat r2.rgbh, r2, ri_z2 - += water color
+mul r2.a, ri2.a. rZ.a #7 specular "8

nad_sat r0., r2.a. cl, r2 #7 += specular * specular color

1

ATI RENDERMONKEY

‘Loading 3ds model (D:~3dargTools RenderMonkeyheffects™. “nodel.3ds)..

Loading 3ds model (D:“3darg“Tools“Renderlonkey‘effects™. “ocean“screenilignedQuad.3ds).
Loading Texture (D:“3darg~Tools RenderHonkewy“effects™ “ocean~cloud.tga)..

Loading Textures (D:>3darg~Tools RenderMonkey effects™ ~ocsan~oceanHorizion. tga). ..
Loading 3ds model (D:s3darg~Tools-RendsrMonkey effectss “ocsan~oceanSurface. 3ds)
Loading Texture (D:“3darg-Tools RenderMonksyeffects™ . “ocean~ocsanBunp. tga)

Loading Texture (D:“3darg Tools RenderMonkey effects™ “ocean“ocsanEnvMap. tga)

Loading Texture (D:“3ddarg Tools RenderMonkey“effects™ “ocean“oceanGradient tga)

< | »

ncsYdy Lecture 15 Department of Computer and Information Science

ATl RenderMonkey

Integrated Shader Development Environment

— Interactive Preview window-- lets you see the impact of your shader
changes immediately

— Supports HLSL, Cg, and OpenGL Slang

— Separate editor windows for vertex and fragment shading code

— Support generation of artwork (textures, color palettes, MIPmaps)
— Built-in host application that allows loading geometry

— Built-in disassembler

— Error checking but not Debugging

Free download at

— http://www.ati.com/developer/sdk/radeonSDK/html/Tools/RenderMonkey.ht
ml

RREERECI. - W Lecture 15 Department of Computer and Information Science

ATl RenderMonkey

iﬁ!»l)TERE&J
S < S Lecture 15 Department of Computer and Information Science

GLSL Data Types

hree basic data types in GLSL.:
float, bool, int

float and int behave just like in C,and bool types can take on the
values of true or false.

ectors with 2,3 or 4 components, declared as:
vec{2,3,4}. a vector of 2, 3,or 4 floats
bvec{2,3,4}. bool vector
ivec{2,3,4}. vector of integers
guare matrices 2x2, 3x3 and 4x4:
mat2
mat3
mat4

RO . N Lecture 15 Department of Computer and Information Science

GLSL Data Types

A set of special types are available for texture
access, called sampler

— samplerlD - for 1D textures
— sampler2D - for 2D textures
— sampler3D - for 3D textures
— samplerCube - for cube map textures

Arrays can be declared using the same syntax as
In C, but can't be initialized when declared.
Accessing array's elements is done as in C.

Structures are supported with exactly the same
syntax as C

struct dirlight
{

vec3 direction;

vec3 color;
ML Lecture 15 Department of Computer and Information Science

GLSL Variables

Declaring variables in GLSL is mostly the same asin C

float a,b; // two vector (yes, the comments are like in C)
int c = 2; // cis initialized with 2
bool d = true; // d is true

Differences: GLSL relies heavily on constructor for
Initialization and type casting

float b = 2; // incorrect, there is no automatic type casting

float e = (float)2;// incorrect, requires constructors for type casting
inta=2;

float ¢ = float(a); // correct. cis 2.0

vec3 f; // declaring f as a vec3

vec3 g = vec3(1.0,2.0,3.0); // declaring and initializing g

GLSL is pretty flexible when initializing variables using

other variables vec2 a = vec2(1.0,2.0);

vec2 b = vec2(3.0,4.0);
vec4 c = vecd(a,b) // c = vec4(1.0,2.0,3.0,4.0);
vec2 g = vec2(1.0,2.0);

float h = 3.0;
vec3d j = vec3(g,h);
SN, 1S Lecture 15 Department of Computer and Information Science

GLSL Variables

atrices also follow this pattern

mat4 m = mat4(1.0) /[initializing the diagonal of the matrix with 1.0
vec2 a = vec2(1.0,2.0);

vec2 b = vec2(3.0,4.0);

mat2 n = mat2(a,b); /[matrices are assigned in column major order
mat2 k = mat2(1.0,0.0,1.0,0.0); // all elements are specified

he declaration and initialization of structures is
lemonstrated below

struct dirlight { // type definition
vec3 direction;
vec3 color;
b
dirlight d1;
dirlight d2 = dirlight(vec3(1.0,1.0,0.0),vec3(0.8,0.8,0.4));

A Lecture 15 Department of Computer and Information Science

GLSL Variables

ccessing a vector can be done using letters as well as
tandard C selectors. vec4 a=vec4(1.0,2.0,3.0,4.0);

float posX = a.x;
float posY = a[1];
vec2 posXY = a.xy;
float depth = a.w;

Jne can the letters x,y,z,w to access vectors components;
,0,b,a for color components; and s,t,p,q for texture
oordinates.

s for structures the names of the elements of the
tructure can be used as in C

d1.direction = vec3(1.0,1.0,1.0);

- Lecture 15 Department of Computer and Information Science

GLSL Variable Qualifiers

Qualifiers give a special meaning to the variable. In
GLSL the following qualifiers are available:
— const - the declaration is of a compile time constant

— attribute — (only used in vertex shaders, and read-only in
shader) global variables that may change per vertex, that are
passed from the OpenGL application to vertex shaders

— uniform - (used both in vertex/fragment shaders, read-only
In both) global variables that may change per primitive (may
not be set inside glBegin,/glEnd)

— varying - used for interpolated data between a vertex shader
and a fragment shader. Available for writing in the vertex
shader, and read-only in a fragment shader.

RREERECI. - W Lecture 15 Department of Computer and Information Science

GLSL Statements

ontrol Flow Statements: pretty much the same as in C.

if (bool expression)

else
for (initialization; bool expression; loop expression)
while (bool expression)

do

while (bool expression)

Note: only “if” are available on most current hardware

- Lecture 15 Department of Computer and Information Science

GLSL Statements

few jumps are also defined:

econtinue - available in loops, causes a jump to the next iteration of the loop
*break - available in loops, causes an exit of the loop

*Discard - can only be used in fragment shaders. It causes the termination of the
shader for the current fragment without writing to the frame buffer, or depth.

- Lecture 15 Department of Computer and Information Science

GLSL Functions

As in C, a shader is structured in functions. At least each type of
shader must have a main function declared with the following
syntax: void main()

User defined functions may be defined.

As Iin C a function may have a return value, and use
the return statement to pass out its result. A function
can be void. The return type can have any type,
except array.

The parameters of a function have the following
gualifiers:
— In - for input parameters

— out - for outputs of the function. The return statement is also
an option for sending the result of a function.

— Inout - for parameters that are both input and output of a
function

: %If no qualifier is specified, by default it is considered to be in.

Lecture 15 Department of Computer and Information Science

GLSL Functions

few final notes:

A function can be overloaded as long as the list of parameters is
different.

Recursion behavior is undefined by specification.
Inally, let’s look at an example

vec4 toonify(in float intensity)
{
vec4 color;
if (intensity > 0.98)
color = vec4(0.8,0.8,0.8,1.0);
else if (intensity > 0.5)
color = vec4(0.4,0.4,0.8,1.0);
else if (intensity > 0.25)
color = vec4(0.2,0.2,0.4,1.0);
else color = vec4(0.1,0.1,0.1,1.0);
return(color);

S0 1 S Lecture 15 Department of Computer and Information Science

GLSL Varying Variables

Let’s look at a real case, shading
— Current OGL does Gouraud Shading

— Phong shading produces much higher visual quality, but turns out
to be a big deal for hardware

lllumination takes place in vertex transformation, then
shading (color interpolation) goes in the following stage

But Phong shading basically requires per fragment
i I I um | N at| on | Vertex Connectivity

Transiormed
Vertices

Primitive
Assembly and
Rasterization

Vertices
Vertex

Transformation

Pixel Fragments
Positions

Fragment
D e Texturing and
Colored Coloring
Fragments

Pixel Updates
UTER
S TR Lecture 15 Department of Computer and Information Science

Raster

Operations

GLSL Varying Variables

Varying variables are interpolated from vertices, utilizing
topology information, during rasterization

GLSL has some predefined varying variables, such as
color, texture coordinates etc.

Unfortunately, normal is not one of them

In GLSL, to do Phong shading, let’'s make normal a varying
variable

Vertex Connectivity

Transformed
Verices

Vertices Primitive
Assembly and
Rasterization

Vertex
Transformation

Pixel Fragments
Positions

Raster Fragment
. Texturing and
Operations Colored Coloring

Fragments

Pixel Updates
I TER
AP ICS

Lecture 15 Department of Computer and Information Science

GLSL Varying Variables

Jefine varying variables in both vertex and fragment
haders

varying vec3 normal;

arying variables must be written in the vertex shader
arying variables can only be read in fragment shaders

Vertex Connectivity

Transformed
Vertices

Vertices Primitive
Assembly and
Rasterization

Vertex
Transformation

Pixel Fragments

Positions

Fragment
Texturing and

Colored Coloring
Fragments

Raster
Operations

Pixel Updates

1=)
S8k, S Lecture 15 Department of Computer and Information Science

More Setup for GLSL- Uniform
Variables

* Uniform variables, this is one way for your C program
to communicate with your shaders (e.g. what time is it
since the bullet was shot?)

* A uniform variable can have its value changed by
primitive only, i.e., its value can't be changed between
a glBegin / glEnd pair.

e Uniform variables are suitable for values that remain
constant along a primitive, frame, or even the whole
scene.

e Uniform variables can be read (but not written) in both
vertex and fragment shaders.

- Lecture 15 Department of Computer and Information Science

The Overall Process

Vertex Shader
giCreateShaderObjeciARB
Program giShaderSourceARB [o——
glCreateProgramObjectARB Il =
ﬂ gliCompileShaderARB
glAttachObjectARB |[<———
ﬂ,— Fragment Shader
IAttachObjectARB Fo———
E Jfl giCreaieShaderObjeciARB
glLinkProgramARB ﬂ \
JVL giShaderSourceARB (<—— .
gluseProgramObjectARB ; U’
glCompileShaderARB

Lecture 15 Department of Computer and Information Science

Creating a Shader

The first step is creating an object which will act as a
shader container. The function available for this purpose
returns a handle for the container

GLhandleARB glCreateShaderObjectARB(GLenum shaderType);
Parameter:

shaderType - GL_VERTEX_SHADER_ARB or
GL_FRAGMENT_SHADER_ARB.

You can create as many shaders as needed, but there can
only be one single main function for the set of vertex
shaders and one single main function for the set of
fragment shaders in each single program.

glCreateShaderObjectARB

l

| glShaderSourceARB)¢=
Tlﬂl% I
~~ ICompileShaderARB
S TR Lecture 15 Department of Computer and Lo

"

Creating a Shader

he second step is to add some source code (like this is a
urprise ©).
The source code for a shader is a string array, although you can
use a pointer to a single string.
he syntax of the function to set the source code for a
hader is

void glShaderSourceARB(GLhandleARB shader, int numOfStrings, const char
**strings, int *lenOfStrings);

Parameters:
shader - the handler to the shader. ,
glCreateShaderObjectARB

numOfStrings - the number of strings in the array. Il
strings - the array of strings. |gSnadersouneARd (o= E
lenOfStrings - an array with the length of each string, or giCompileShaderARB
NULL, meaning that the strings are NULL terminated.

S0 1 S Lecture 15 Department of Computer and Information Science

Creating a Shader

he final step, the shader must be compiled.
he function to achieve this is:

void glCompileShaderARB(GLhandleARB program);
Parameters:

program - the handler to the program.

Weriex Shader
| giCreateshaderbjectARB |
R | gishadersourceARB jo=== |';
| gicreateProgramobjectars |
| gicompileshaderaRs |
' <— :
| giatiacnOblectARS | glCreateShaderObjectARB
Fragment Shader ﬂ

[2 R [—— | giCreateShaderObjectARS |

‘ glShaderSourceARB |c='

| glLinkProgramaRs |

| gShaderSourceARB <= [; giCompileShaderARS

| gluseProgramObjectARS |

| gicompileshaderaRs |

T Lecture 15 Department of Computer and Information Science

Creating a Program

The first step is creating an object which will act as a
program container.

The function available for this purpose returns a handle
for the container GLhandieARB giCreateProgramObjectARB(void):

One can create as many programs as needed. Once
rendering, you can switch from program to program,
and even go back to fixed functionality during a single
frame.

— For instance one may want to draw a teapot with refraction
and reflection shaders, while having a cube map displayed for

background using OpenGL's fixed functionality.

gICreateProgramObjectARB

|

olAttachObjectARB

J

glAttachODjectARB

J

glLinkProgramARB
VTER I
LPRICS Lecture 15 Department of Computer and Inforr | gUseProgramObjectARB

Creating a Program

The 2" step is to attach the shaders to the program you've just
created.

The shaders do not need to be compiled nor is there a need to
have src code. For this step only the shader container is required

void glAttachObjectARB(GLhandleARB program, GLhandleARB shader);

Parameters:
program - the handler to the program.
shader - the handler to the shader you want to attach.

If you have a pair vertex/fragment of shaders you'll need to attach
both to the program (call attach twice).

You can have many shaders of the same type (vertex or fragment)

attached to the same program (call attach many times) gCreateProgramOBciAR
J
As in C, for each type of shader there can only be one shader =T
Ith a main function. You can attach a shader to multiple AT——
ograms, e.g. to use the same shader in several programs. I
glLinkProgramARB
WITER Il

AL Lecture 15 Department of Computer and Inforr | gUseProgramObjectARB

Creating a Program

The final step is to link the program. In order to carry
out this step the shaders must be compiled as

described in the previous subsection.
void glLinkProgramARB(GLhandleARB program);

Parameters:

program - the handler to the program.

After link, the shader's source can be modified and

recompiled without affecting the program.

giCreateProgramObjectARB

|

olattachObjectARB

J

glAttachODjectARB

J

glLinkProgramARB
UTER I
APRICS Lecture 15 Department of Computer and Infor: | gluseProgramObjectARB

Using a Program

e After linking, the shader's source can be modified and
recompiled without affecting the program.

« Because calling the function that actually load and use
the program , glUseProgramODbjectARB, causes a

program to be actually loaded (the latest version then)
and used.

e Each program is assigned an handler, and you can
have as many programs linked and ready to use as
you want (and your hardware allows).

void glUseProgramObjectARB(GLhandleARB prog); giCreateProgramObjectARB
Parameters: ﬂ.
glAttachObjectARB
prog - the handler to the program to use, or zero to return to fixed functionality 1l

glAtiachObjectARB
A program in use, if linked again, will automatically be placed in use]

U,",a-% No need to useprogram again. glLinkPrjiramARB

Lecture 15 Department of Computer and Inforr | gUseProgramObjectARB

Setting up - setShaders

Here is a sample function to setup shaders. You can

call this in your main function

void setShaders() /* GLhandleARB p,f,v; are declared as globals */

{
char *vs,*fs;
const char * vv = vs;
const char * ff = fs;
v = glCreateShaderObjectARB(GL_VERTEX_SHADER_ARB);
f = glCreateShaderObjectARB(GL_FRAGMENT_SHADER_ARB);
vs = textFileRead("toon.vert");
fs = textFileRead("toon.frag");
glShaderSourceARB(v, 1, &vv, NULL);
glShaderSourceARB(f, 1, &ff, NULL);
free(vs); free(fs); . . .
gICo(mr))iIeSha(de)rARB(v); textFileRead is prOVIded
glCompileShaderARB(f); in the class directory
p = glCreateProgramObjectARB();
glAttachObjectARB(p,v);
glAttachObjectARB(p,f);
glLinkProgramARB(p);

glUseProgramObjectARB(p);
APRICS Lecture 15 Department of Computer and Information Science

Cleaning Up

A function to detach a shader from a program is:

void glDetachObjectARB(GLhandleARB program, GLhandleARB shader);
Parameter:
program - The program to detach from.

shader - The shader to detach.

Only shaders that are not attached can be deleted

To delete a shader use the following function:

void glDeleteShaderARB(GLhandleARB shader);
Parameter:

shader - The shader to delete.

AP ‘:‘fh Lecture 15 Department of Computer and Information Science

Getting Error

ere is an info log function that returns compile & linking
ormation, errors

void glGetinfoLogARB(GLhandleARB object,
GLsizei maxLength,
GLsizei *length,G
GLcharARB *infoLog);

s Lecture 15 Department of Computer and Information Science

ore Setup for GLSL- Uniform
Variables

he first thing you have to do is to get the memory location
)f the variable.

Note that this information is only available after you link the
program. With some drivers you may be required to be using the
program, i.e. glUseProgramObjectARB is already called

he function to use is:

GLint glGetUniformLocationARB(GLhandleARB program, const char *name);
Parameters:

program - the handler to the program

name - the name of the variable.

The return value is the location of the variable, which can be used to assign values to it.

ERR . N Lecture 15 Department of Computer and Information Science

More Setup for GLSL- Uniform
Variables

Then you can set values of uniform variables with a family
of functions.

A set of functions is defined for setting float values as
below. A similar set is available for int’s, just replace “f”
with “i”

void glUniform1fARB(GLint location, GLfloat vO);

void glUniform2fARB(GLint location, GLfloat vO, GLfloat v1);

void gluniform3fARB(GLint location, GLfloat vO, GLfloat v1, GLfloat v2);

void glUniform4fARB(GLint location, GLfloat vO, GLfloat v1, GLfloat v2, GLfloat v3);

GLint glUniform{1,2,3,4}{vARB(GLint location, GLsizei count, GLfloat *v);
Parameters:

location - the previously queried location.

vO,v1,v2,v3 - float values.

count - the number of elements in the array

v - an array of floats.
wen)
- Lecture 15 Department of Computer and Information Science

ore Setup for GLSL- Uniform
Variables

atrices are also an available data type in GLSL, and a set
)f functions is also provided for this data type:

GLint glUniformMatrix{2,3,4}f{vARB(GLint location, GLsizei count, GLboolean transpose, GLfloat *v);
Parameters:
location - the previously queried location.

count - the number of matrices. 1 if a single matrix is being set, or n for an array of n
matrices.

transpose - wheter to transpose the matrix values. A value of 1 indicates that the matrix
values are specified in row major order, zero is column major order

Vv - an array of floats.

Lecture 15 Department of Computer and Information Science

ore Setup for GLSL- Uniform
Variables

ote: the values that are set with these functions will keep
elr values until the program is linked again.

ce a new link process is performed all values will be
set to zero.

Lecture 15 Department of Computer and Information Science

ore Setup for GLSL- Uniform
Variables

A sample:

In the OpenGL application, the code for setting the variables could
sume that a shader with the following be:
lables is being used:

GLint locl,loc2,loc3,loc4;

form float specintensity; float specintensity = 0.98;

form vec4 specColor; float sc[4] = {0.8,0.8,0.8,1.0};

form float t[2]; float threshold[2] = {0.5,0.25};

form vec4 colors[3]; float colors[12] = {0.4,0.4,0.8,1.0, 0.2,0.2,0.4,1.0, 0.1,0.1,0.1,1.0};
locl = glGetUniformLocationARB(p,"speclintensity");
glUniform1fARB(locl,speclintensity);

loc2 = glGetUniformLocationARB(p,"specColor");
glUniform4fvARB(loc2,1,sc);

loc3 = glGetUniformLocationARB(p,"t");
glUniform1fvARB(loc3,2,threshold);

loc4 = glGetUniformLocationARB(p,"colors");
glUniform4fvARB(loc4,3,colors);

Lecture 15 Department of Computer and Information Science

More Setup for GLSL- Attribute
Variables

Attribute variables also allow your C program to
communicate with shaders

Attribute variables can be updated at any time, but
can only be read (not written) in a vertex shader.

Attribute variables pertain to vertex data, thus not
useful in fragment shader

To set its values, (just like uniform variables) it is
necessary to get the location in memory of the
variable.

— Note that the program must be linked previously and
some drivers may require the program to be in use.

GLint glGetAttribLocationARB(GLhandleARB program,char *name);

Parameters:
Oz IJ,":'% program - the handle to the program.

e P name - the i . .
I 1S LEIWS Eggt\lﬂ?géj‘[%leDepartment of Computer and Information Science

ore Setup for GLSL- Attribute
Variables

As uniform variables, a set of functions are provided to set
attribute variables (replacing “f” with “i” gives the API for
INt’s)

void glVertexAttrib.fARB(GLint location, GLfloat v0);

void glVertexAttrib2fARB(GLint location, GLfloat vO, GLfloat v1);

void glVertexAttrib3fARB(GLint location, GLfloat vO, GLfloat v1,GLfloat v2);
void glVertexAttrib4fARB(GLint location, GLfloat vO, GLfloat v1,,GLfloat v2, GLfloat v3);

or
GLint glVertexAttrib{1,2,3,4}fvARB(GLint location, GLfloat *v);
Parameters:
location - the previously queried location.
vO,v1,v2,v3 - float values.

v - an array of floats.

SBEE LPNICS Lecture 15 Department of Computer and Information Science

ore Setup for GLSL- Attribute
Variables

\ sample snippet

Assuming the vertex shader has:

attribute float height;

In the main Opengl program, we can do the following:

loc = glGetAttribLocationARB(p,"height");
glBegin(GL_TRIANGLE_STRIP);
glVertexAttrib1fARB(loc,2.0);
glVertex2f(-1,1);
glVertexAttrib1fARB(loc,2.0);
glVertex2f(1,1);
glVertexAttrib1fARB(loc,-2.0);
glVertex2f(-1,-1);
glVertexAttrib1fARB(loc,-2.0);
glVertex2f(1,-1); glEnd();

s Lecture 15 Department of Computer and Information Science

Appendix

ample Shaders
st of commonly used Built-in’'s of GLSL
hader Tools

R N Lecture 15 Department of Computer and Information Science

lvory — vertex shader

form vec4 lightPos;

ying vec3 normal;
ying vec3 lightVec;
ying vec3 viewVec;

d main({

gl Position = gl ModelViewProjectionMatrix * gl Vertex;
ec4 vert = gl ModelViewMatrix * gl Vertex;

ormal = gl NormalMatrix * gl Normal;

lightVec = vec3(lightPos - vert);
iewec = -vec3(vert);

- Lecture 15 Department of Computer and Information Science

lvory — fragment shader

) vec3 normal;
) vec3 lightVec;
) vec3 viewVec;

3 norm = normalize(normal);

3 L = normalize(lightVec);
3 V = normalize(viewVec);
3 halfAngle = normalize(L + V);

at NdotL = dot(L, norm);
)at NdotH = clamp(dot(halfAngle, norm), 0.0, 1.0);

"Hal f-Lambert'” technique for more pleasing diffuse term
at diffuse 0.5 * NdotL + 0.5;
at specular = pow(NdotH, 64.0);

at result = diffuse + specular;

FragColor = vec4(result);

Lecture 15 Department of Computer and Information Science

Gooch — vertex shader

form vec4 lightPos;

ing vec3 normal;
ing vec3 lightVec;
ing vec3 viewVec;

d main(){

I Position = gl ModelViewProjectionMatrix *
I Vertex;

ecd vert = gl ModelViewMatrix * gl Vertex;

ormal = gl NormalMatrix * gl Normal;
ightVec vec3(lightPos - vert);
iewec = -vec3(vert);

R s~ N Lecture 15 Department of Computer and Information Science

Gooch — fragment shader

m vec3 ambient;

g vec3 normal;
g vec3 lightVec;
g vec3 viewVec;

ainQO{

st float b = 0.55;
st float y = 0.3;
st float Ka = 1.0;
st float Kd = 0.8;
st float Ks = 0.9;

3 specularcolor = vec3(1.0, 1.0, 1.0);

norm = normalize(normal);
L = normalize (lightVec);
V = normalize (viewVec);
halfAngle = normalize (L + V);

Lecture 15 Department of Computer and Information Science

Gooch — fragment shader (2)

vec3(.88,.81,.49);
vec3(.58,.10,.76);

purple;
orange;

loat NdotL = dot(L, norm);
loat NdotH = clamp(dot(halfAngle, norm), 0.0, 1.0);
loat specular = pow(NdotH, 64.0);

loat blendval = 0.5 * NdotL + 0.5;
ec3 Cgooch = mix(kWarm, kCool, blendval);

ec3 result = Ka * ambient + Kd * Cgooch + specularcolor * Ks *
pecular;

I_FragColor = vec4(result, 1.0);

Lecture 15 Department of Computer and Information Science

Built-in variables

A\ttributes & uniforms
or ease of programming
JpenGL state mapped to variables

>s0me special variables are required to be
ritten to, others are optional

Gu ‘Eh Lecture 15 Department of Computer and Information Science

Special bullt-ins

ertex shader

4 gl _Position; // must be written
4 gl ClipPosition; // may be written
at gl PointSize; // may be written

ragment shader

at gl FragColor; // may be written

at gl FragDepth; // may be read/written
4 gl _FragCoord; // may be read

I gl FrontFacing; // may be read

A Lecture 15 Department of Computer and Information Science

Attributes

3uilt-in

ribute vec4d gl Vertex;

ribute vec3 gl Normal;

ribute vec4d gl Color;

ribute vec4 gl _SecondaryColor;
ribute vec4 gl MultiTexCoordn;
ribute float gl FogCoord;

ser-defined
ribute vec3 myTangent;
ribute vec3 myBinormal;

ol Ik Lecture 15 Department of Computer and Information Science

Built-in Uniforms

iform mat4 gl ModelViewMatrix;

iform mat4 gl ProjectionMatrix;

iform mat4 gl ModelViewProjectionMatrix;
iform mat3 gl _NormalMatrix;

iform mat4 gl TextureMatrix|[n];

ruct gl MaterialParameters {
ec4 emission;

ec4 ambient;

ec4 diffuse;

ecd4d specular;

loat shininess;

iform gl MaterialParameters gl _FrontMaterial;
iform gl MaterialParameters gl BackMaterial;

wen)
S TR Lecture 15 Department of Computer and Information Science

=2c4
=2c4
=2c4
=2c4
=2c4

oat
oat
oat
oat
oat
oat

orm

Built-in Uniforms

ct gl LightSourceParameters {

ambient;

diffuse;

specular;

position;
halfVector;
spotDirection;
spotExponent;
spotCutofTf;
spotCosCutofTf;
constantAttenuation
I inearAttenuation
quadraticAttenuation

gl _LightSourceParameters

I LightSource[gl MaxLights];

Lecture 15

Department of Computer and Information Science

Built-in Varyings

vecd gl FrontColor // vertex
vecd4d gl BackColor; // vertex
vecd gl FrontSecColor; // vertex
vec4d gl BackSecColor; // vertex

vecd4d gl Color; //

vecd4d gl SecondaryColor; //

vecd gl TexCoordl[]; // both
float gl FogFragCoord; // both

Lecture 15 Department of Computer and Information Science

Built-in functions

Angles & Trigonometry

radians, degrees, sin, cos, tan, asin, acos,
atan

Xponentials
pow, exp2,log2, sqgrt, inversesqrt
ommon

abs, sign, floor, ceil, fract, mod, min, max,
clamp

Gu ‘Eh Lecture 15 Department of Computer and Information Science

Built-in functions

nterpolations
mix(Xx,y,a) x*(1.0-a) + y*a)
step(edge,x) X<=edge?0.0:1.0
smoothstep(edge0,edgel,x)
t = (x-edge0)/(edgel-edge0);
t =clamp(t, 0.0, 1.0);
return t*t*(3.0-2.0*t);

el Lecture 15 Department of Computer and Information Science

Built-in functions

eometric

length, distance, cross, dot, normalize,
faceForward, reflect

atrix
matrixCompMult

ector relational

lessThan, lessThanEqual, greaterThan,
greaterThanEqual, equal, notEqual, any, all

LG L
ey -Eh Lecture 15 Department of Computer and Information Science

Built-in functions

exture

texturelD, texture2D, texture3D, textureCube

texturelDProj, texture2DProj, texture3DProj,
textureCubeProj

shadowlD, shadow2D, shadowl1DProj,
shadow2Dproj

ertex
ftransform

R Lecture 15 Department of Computer and Information Science

Tools

OpenGL Extensions Viewer

— http://www.realtech-vr.com/glview/download.html

Simple Shaders
— Og|2br|Ck (http://developer.3dlabs.com/downloads/glslexamples/)
— Hello GPGPU (http://www.gpgpu.org/developer/)

ShaderGen

— http://developer.3dlabs.com/downloads/shadergen/

Shader data structures — Brook, glift

Recommended literature — OpenGL RedBook,
OpenGL OrangeBook, GPU Gems 2

ol Lecture 15 Department of Computer and Information Science

