
1

CISC 275: Introduction to Software Engineering

Lab 8:
Handling Exceptions in Java

!!!
Charlie Greenbacker

University of Delaware
Fall 2010

2

Overview
l Walkthrough of basic example
l Defining & throwing custom Exceptions

l Lab exercise

3

Walkthrough of basic
l Let's say we want to read from a file...

FileInputStream input = new
	 FileInputStream("/path/to/file.txt");

4

Walkthrough of basic
l Let's say we want to read from a file...

FileInputStream input = new
	 FileInputStream("/path/to/file.txt");

l But FileInputStream constructor throws
FileNotFoundException, which we must handle!

5

Walkthrough of basic
l Surround it with a try/catch block...

	 try {
	 	 FileInputStream input = new
	 	 	 FileInputStream("/path/to/file.txt");
	 } catch (FileNotFoundException e) { ...

6

Walkthrough of basic
l Surround it with a try/catch block...

	 try {
	 	 FileInputStream input = new
	 	 	 FileInputStream("/path/to/file.txt");
	 } catch (FileNotFoundException e) { ...

l Inside catch statement, we need to do
something as a result of the Exception
l We can print an error, or return some default

value, but for now we'll just print out the
Exception we caught...
} catch (FileNotFoundException e) {
	 System.out.println("Could not open file, "
	 	 + "cause: " + e);
}

7

Walkthrough of basic
l Since we've opened the file, let's read from it...

FileInputStream input = new
	 FileInputStream("/path/to/file.txt");
BufferedReader reader = new
	 BufferedReader(new InputStreamReader(input));
System.out.println(reader.readLine());

8

Walkthrough of basic
l Since we've opened the file, let's read from it...

FileInputStream input = new
	 FileInputStream("/path/to/file.txt");
BufferedReader reader = new
	 BufferedReader(new InputStreamReader(input));
System.out.println(reader.readLine());

l But BufferedReader.readLine() throws
IOException, which we must handle!
l We can either add a new catch block to our

existing try/catch statement, but since
FileNotFoundException extends IOException,
and we want to handle them the same, we
can just modify catch

9

Walkthrough of basic
l So here's what will work...

try {
	 FileInputStream input = new
	 	 FileInputStream("/path/to/file.txt");
	 BufferedReader reader = new
	 	 BufferedReader(new InputStreamReader(input));
	 System.out.println(reader.readLine());
} catch (IOException e) {
	 System.out.println("Could not open file, cause: "
	 	 + e);
}

l Use bad path to cause FileNotFoundException,
or call input.close() before readLine() to get
IOException: Bad file descriptor

l Review complete code: BasicException.java

http://www.cis.udel.edu/~charlieg/labs/BasicException.java
http://www.cis.udel.edu/~charlieg/labs/BasicException.java

10

Define & throw custom
l Defining your own custom Exception is as easy as

this:
	
 public class NegativeException extends Exception {
	 	 public NegativeException(String s) {
	 	 	 super(s);
	 	 }
	 }

l Review class file: NegativeException.java

http://www.cis.udel.edu/~charlieg/labs/NegativeException.java
http://www.cis.udel.edu/~charlieg/labs/NegativeException.java

11

Define & throw custom
l We can now throw our new Exception by calling

the constructor & passing a String message

	
 new NegativeException("number is negative!");

12

Define & throw custom
l In a new class called MilliDate we'll write a method

that throws NegativeException...
public static Date millisecondDate(int num)

throws NegativeException {
	 if (num < 0) {
	 	 throw new NegativeException("number is "
 + "negative!");
	 } else {
	 	 return new Date(num);
	 }
}

13

Define & throw custom
l If we want to call millisecondDate(), we'll have to

catch the Exception it throws...
public static void main(String[] args) {

	 try {
	 	 Date date = millisecondDate(987983607);
	 	 System.out.println(date);
	 } catch (NegativeException e) {
	 	 System.out.println("Couldn't create Date, "
 + e);
	 }
}

l Review complete code: MilliDate.java

http://www.cis.udel.edu/~charlieg/labs/MilliDate.java
http://www.cis.udel.edu/~charlieg/labs/MilliDate.java

14

Lab Exercise
l Define a new Exception named OddException, that

will be just like NegativeException

l Create a new class named EvenOdd
l Write a method called halfOf(), which takes an

int, throws an OddException if the int is odd or
zero, otherwise returns (int / 2)

l Write a main method that calls halfOf() three
times (once each with an even int, an odd int, and
zero), with three try/catch blocks, and prints
either the output of halfOf() or the caught
OddException

l Work alone, show me before leaving or email

15

Lab Exercise
l Hints:

l Use a different Exception message string
depending on whether the int is odd or zero

l Use the modulus operator to test if the int is
odd: if (num % 2 != 0)...

