
1

CISC 275: Introduction to Software Engineering

Lab 7:
Doing More with

SUBVERSION

Charlie Greenbacker
University of Delaware

Fall 2011

2

Overview
l Additional collaboration problems

l Locking vs Merging

l Merging & resolving conflicts
l Recommended repository layout

l More commands
l Exploring revision history

l Checking out previous revisions
l Repository web access
l Instructions for Lab Exercise

3

Additional collaboration problems

l Preventing problems caused by simultaneous edits
l Lock-Modify-Unlock

l Pros: no overwrites, no conflicts
l Cons: forget to unlock, no concurrency = slow

l Copy-Modify-Merge
l Pros: work in parallel, concurrency

l Cons: complicated, have to deal with conflicts
l SVN & CVS mostly follow Copy-Modify-Merge

l Locking may be needed in special situations

4

Merging & resolving conflicts
l What if svn update reports conflict with foo.c?

l SVN detected changes intersecting local edits

l 3 new temp files created: foo.mine, foo.r1, foo.r2
(your version, previous version, updated version)

l Can't commit until you remove them
l Conflict markers inserted in working copy (foo.c)

l 3 ways to fix: by hand, pick one, or punt with revert
l Once resolution is implemented:
> svn resolved foo.c
> svn commit -m “commit message”

5

Merging & resolving conflicts

 > cat sandwich.txt
 Slice of bread
 Lettuce
 Tomato
 <<<<<<< .mine
 Provolone
 Roast Beef
 =======
 Sauerkraut
 Spicy brown mustard
 Pastrami
 >>>>>>> .r2
 Slice of bread

l Fix conflicts by hand in working copy file (foo.c)
l Examine conflict markers & take proper action

l Need to communicate
with teammates

l Use all, one, or subset
l Might not want both

pastrami & roast beef
on same sandwich!

6

Locking files for modification
l Merging is for text-based files, like source code
l What if we need to modify a non-text file?

l Example: editing an image
l Concurrent editing & merging changes = bad idea

l Instead, use locks to prevent simultaneous work
l First: svn lock foo.png -m “message”

l Later: svn commit foo.png -m “message”

l commit removes lock, but delete does not!

l Or: svn unlock foo.png

7

Repository layout

l Subversion doesn't force any specific design
l However, “best practices” offer suggestions

l Inside root directory of repository
l Trunk: main line of development

l Branches: special features, major tweaks, etc.
l Tags: “static” revisions for release packages, etc.

l Checkout/modify/commit mostly to/from trunk

8

Repository layout
l Branches: like a shared sandbox

l Can try big changes w/ multiple authors without
involving everyone or affecting main trunk

l Or, create version of package for new platform or
with a unique extended feature

l Copy or merge files between trunk & branches

l Likely merge individual files & specific revision
numbers to maintain compatibility

l Can eventually merge back with trunk, fork into
entirely new project, or “crawl into hole”	

svn copy trunk branches/mac_osx

9

Repository layout
l Tags: “snapshot” of project frozen at certain point

l Enables packaging of releases

l Easier than checking out specific revision
l Remembering “release 1.0” vs “revision 4822”

l Future commits won't affect tags
l Note: this is a convention, not enforced by SVN

l Nothing to stop modification (effectively
becomes branch)

l So, once created, leave tags alone!
svn copy trunk tags/release1.0

10

More commands
l Exploring revision history
svn log [path]
 > svn log sandwich.txt

 r3 | sally | Mon, 15 Jul 2002 18:03:46 -0500 | 1 line

 Changed type of cheese to provolone.

 r2 | harry | Mon, 15 Jul 2002 17:47:57 -0500 | 2 lines

 Added lettuce & tomato.

 r1 | sally | Mon, 15 Jul 2002 17:40:08 -0500 | 4 lines

 Initial import

11

More commands

l Checking out previous revision
svn checkout -r 1729

l Creates working copy of previous revision for
inspection or modification

l Updating to later revision (since last checkout)
svn update -r 1729

l Updates working copy with changes committed
between last checkout and given revision

12

Repository web access

l Browse files & directories via web browser
l Quickly view contents of text files

l Conveniently download individual files
l But, use command-line for non-trivial interaction

l You can use URL for checkout, etc. instead of path
> svn checkout http://svn.apache.org/repos/asf/
subversion/trunk/ svn

l Example: http://svn.apache.org/viewvc/subversion/

http://svn.apache.org/viewvc/subversion/
http://svn.apache.org/viewvc/subversion/

13

Lab Exercise (in pairs)
l First step: getting started...
l Both partners will checkout the repo
svn co https://shuebox.nss.udel.edu/cisc275/shared

l Then cd into local copy of shared dir (cd shared)

l One partner will create & add a new file named
“[username].txt” with his/her name in the text
svn add [username].txt (after creating file locally)
svn commit [username].txt -m “initial check-in”

l Other partner will grab a copy, edit it by adding
his/her name to the list & commit it back
svn up [then edit the file locally]
svn commit [username].txt -m “added my name”

14

Lab Exercise (in pairs)
l Second step: dealing with conflicts & merges...
l Ensure both partners have latest revision (svn up)

l Now, simultaneously edit the same line of code
l Then, one partner commits & the other updates

l Update will report conflict, re: intersecting edits
l File now contains conflict markers like in Slide 5

l Copy snippet of file showing conflict markers
into submission email

l Resolve as you see fit & commit with message

15

Lab Exercise (in pairs)
l Email partner names, filename, & snippet showing

conflict markers to me by Tuesday, Oct 18

l I’ll inspect your code in the svn repo, making sure
each partner made commits w/ good messages

l You're certainly welcome to use the subclipse SVN
plug-in for Eclipse to access the repository

l However, I want everyone to be comfortable
using the command-line svn too

l If you choose to do this, try to install the
subclipse plug-in on your own... email me if you
run into any problems

16

Notes on Authentication
l If you receive a validation warning when checking-

out for the first time, you should permanently
accept the validation

l Depending on where & how you're logged-in, svn
may initially try to use your local username to
authenticate with the repository

l Might not be same as your udel username
l If svn prompts for a password for this incorrect

local username, hit enter & you'll then be asked to
specify the correct udel username & password

l svn will cache the correct info for future use

Reminder: 275 Repos

• https://shuebox.nss.udel.edu/cisc275/shared/

• https://shuebox.nss.udel.edu/cisc275/group0/
...
https://shuebox.nss.udel.edu/cisc275/group7/

https://shuebox.nss.udel.edu/cisc275/shared/
https://shuebox.nss.udel.edu/cisc275/shared/
https://shuebox.nss.udel.edu/cisc275/group0/
https://shuebox.nss.udel.edu/cisc275/group0/
https://shuebox.nss.udel.edu/cisc275/group7/
https://shuebox.nss.udel.edu/cisc275/group7/

