
CISC 275: Introduction to Software Engineering

Lab 5:
Introduction to Revision Control with

SUBVERSION

Charlie Greenbacker
University of Delaware

Fall 2011

Overview

l Revision Control Systems in general
l Subversion at a Glance

l Compare with “another” revision control system
l Main Features

l Typical Use Case
l Basic Commands

l Lab Exercise

Source Code Management

l “Too many cooks spoil the broth”
l Large projects = large teams = lots of source code

l How do you keep everything straight?
l Tracking changes, keeping logs

l Juggling many multiple versions
l Provide “sandbox” for developers

l Integrating different components of project
l Sharing files & tracking w/spreadsheets won't cut it!

Key Services Provided

l Store source code in a repository to work from
l Allow programmers to check-out a working copy

l Modify & commit changes back to repository
l Or release and start over from fresh copy

l Maintain extensive information about revisions
l Enable updating of (sync) changes since checkout

l Merge different sets of changes, resolve conflicts
l Roll-back changes if problems develop

Historical Context
• 1972: Source Code Control System (SCCS)

• Introduced “weaving” for file content revisions

• Early 1980s: Revision Control System (RCS)

• Stored revisions with diff utility, RCS file format

• Operated on individual files, not entire project

• 1986: Concurrent Versions System (CVS)

• Extended manager RCS file sets (a project)

• Client-Server model with central repository

• Allows several developers to work concurrently

Subversion at a Glance
l Designed to fix shortcomings & “misfeatures”

l Goal: (mostly) compatible successor to CVS

l More logical version numbering method
l Better file & directory management

l Web-based repository access
l Machine-readable (parseable XML) output

l Better support for binary files
l Used by Apache, GNU, KDE, Google, SF.net
l Free Open Source Software, Apache License

Comparison with CVS
CVS
l RCS plain file storage

l Works... slowly
l File revision numbers

l Diff file contents only
l Prefers text files

l Interrupted commits!
l Rollback can remove

bad commits

l No new features

Subversion
l Relational database

l Noticeably faster
l Universal numbering

l Diff meta data, dirs, etc.
l Unicode, binaries, ok

l Atomic, “all or nothing”
l New code overwrites,

bad code persists

l Still actively developed

Brief Note...

• Distributed Version Control

• Peer-to-peer vs client-server (SVN, CVS)

• No “canonical copy” in central repository

• Synchronization via exchanging patches

• Most popular: Git & Mercurial

• My take: great for open source & startup firms,
not for traditional enterprise development

Main Features
l “Meant to be a better CVS”

l Similar interface, repository migration tools

l Revision numbers assigned per commit, not file
l Improved revision history management

l Directories, renames, meta-data all versioned
l Not just file existence & contents

l Apache server for WWW repository browsing
l XML-based log output, automated scriptability
l Efficient storage of project branches & binaries

Typical Use Case
l Check-out working copy from repository
l Modify small part of code (add feature, fix bug, etc.)

l Compile & test extensively outside repository
l If modification is successful:

l Are you sure it really works? Test it again!
l If so, add comment & commit to repository

l Now others can get update their w/ your changes
l Else, drop changes and start over
l Rule of Thumb: Commit Early & Commit Often!

Basic Commands
l Checking out project source code:
svn checkout URL [revision] [path]

l Creates a working copy of the project
l Keeps your actions separate from the baseline

l Allows you to tinker with your copy without risk
of messing up the entire project

l Think of it as a 'sandbox'
l Nothing you do is permanent until you say it is

l You can check-out multiple copies to try
different things out

Basic Commands
l Add new file or directory
svn add path

l Schedules item for addition to repository
l Gets added next time you commit

l Use svn add * to add everything you've created

l Delete item
svn delete path

l Schedules item for removal from repository
l Again, no lasting changes until you commit

Basic Commands
l Update your working copy
svn update [path]

l Grabs any new changes from the repository since
your most recent update or checkout

l Keeps your work in sync with latest revision
l For each updated item, prints line w/ status code

l A = Added, D = Deleted, U = Updated,
C = Conflicted, G = Merged

l C means your edits overlap new changes
l M if local edits were compatible with updates

Basic Commands
l Commit local changes
svn commit [path]

l Uploads changes from local copy to repository
l This is how you share your code with the team

l Run svn update first to check compatibility

l Add comments with --file or --message
option, or editor will be launched for comment
l Use descriptive commit messages

l “Latest Revision” is not descriptive enough!

Basic Commands

l View commit log messages
svn log [path]

l Shows messages from repository
l Without specific argument, displays for everything

l Display in-line author & revision information
svn blame path

l Prints code line by line, with name of
programmer and revision number for latest
change

Basic Commands

l Display status of working copy files
svn status [path]

l Find out what modifications you've made so far
l Provides output similar to update

l Show differences between items
svn diff ... (lots of ways to use it)
l Compares working copy to repository, between

separate revisions, etc.

Basic Commands

l Discard local changes to a file
svn revert path

l Lets you start over with a fresh copy
l Use --recursive flag to revert everything

l Also removes scheduled operations (e.g. Add)

l Caution: no way to undo this!

Lab Exercise

• Install SVN on your system (if you need it)

• Make sure you can connect to repository:

• https://shuebox.nss.udel.edu/cisc275/shared/

• https://shuebox.nss.udel.edu/cisc275/group0/
...
https://shuebox.nss.udel.edu/cisc275/group7/

https://shuebox.nss.udel.edu/cisc275/shared/
https://shuebox.nss.udel.edu/cisc275/shared/
https://shuebox.nss.udel.edu/cisc275/group0/
https://shuebox.nss.udel.edu/cisc275/group0/
https://shuebox.nss.udel.edu/cisc275/group7/
https://shuebox.nss.udel.edu/cisc275/group7/

Next Lab

• More with Subversion

• Lab exercise:

• Merging & dealing with conflicts

