
1

CISC 275: Introduction to Software Engineering

Lab 2:
Unit Testing with

JUnit

Charlie Greenbacker
University of Delaware

Fall 2011

2

Overview

l What is Unit Testing?
l JUnit at a Glance

l Setting Up JUnit
l Basic Example of Running a Test

l More Methods
l Lab Exercise

3

What is Unit Testing?
l You already know the answer...
l Isolate & test individual units of code

l A unit is the smallest testable part of a program
l In OOP, individual methods would be the units

l Tests show individual parts are correct
l Multiple tests can check larger parts of programs

l Can begin testing before entire program is done
l Properly designed tests demonstrate proper

functionality of code, but bugs may still exist!

4

JUnit at a Glance

l Unit testing framework for Java language
l Free & Open Source under CPL

l Lets programmers write & run repeatable tests
l Key Features:

l Assertions for checking expected results
l Fixtures for sharing test data

l Framework for running tests

5

Setting Up JUnit

l As always, there are multiple options...
l JUnit can be run from command line (tricky)

l Eclipse comes with JUnit built-in
l This is the option we'll use

l Or install Java SDK, Ant build tool, & JUnit

6

Basic Example – Math.java

l Let's say we want to test a method in a class:
public class Math {

public static int add(int a, int b) {
return a + b;

}
}

l Looks good, right?

7

Basic Example – JUnit test

l Create a new JUnit test case in Eclipse
l Select File/New/JUnit Test Case

l Select “New JUnit 4 test” radio button
l Enter Name (usually <classToBeTested>Test)

l Add JUnit 4 library to the build path
l Click Finish

l Eclipse will create a skeleton test case .java file for
you to start filling in

8

Basic Example –

l Here's our very simple test case:
import static org.junit.Assert.*;
import org.junit.Test;

public class MathTest {

@Test
public void testAdd() {

int sum = Math.add(3, 2);

AssertEquals(5, sum);

}
}

9

Basic Example – Running a
l So we've got Math.java and TestMath.java
l Now we can run our test:

l We can do this from right inside Eclipse
l With the focus on TestMath.java, select

Run/Run As/JUnit Test
l The JUnit test will be executed, exercising your

code by running the test cases
l Results will be displayed in system message panel

at bottom of screen

l Success: green bar; otherwise: red bar & messages

10

More Methods
l Assertion statements:

l assertEquals(expected, actual)

l assertEquals(message, expected, actual)
l assertTrue(message, condition) [or assertFalse]

l assertNull(message, object) [assertNotNull]
l assertSame(expected, actual) [assertNotSame]

l etc.
l Using messages can help clarify what went wrong

when complicated/compound tests fail

11

Lab Exercise – Overview

l Objective: get practice writing JUnit test cases
l On your own (or with a partner), you will write &

run test cases for a family history parser class
l This class contains methods for parsing family

history event listings (e.g. births, marriages, etc.)
into an output format specifying the event type,
one or more participants' names, & the date

l Many of the tests have been written for you; you
will write tests for a single, simple helper method

12

Lab Exercise – Preparation

l Open Eclipse & start a new Java project named
“Familiar”

l Create a new Java class named “Parser”
l www.cis.udel.edu/~charlieg/labs/Parser.java

l Create a new JUnit test case named “ParserTest”
l www.cis.udel.edu/~charlieg/labs/ParserTest.java

l Carefully read & understand the Parser class &
methods, as well as the existing test cases

http://www.cis.udel.edu/~charlieg/labs/Parser.java
http://www.cis.udel.edu/~charlieg/labs/Parser.java
http://www.cis.udel.edu/~charlieg/labs/ParserTest.java
http://www.cis.udel.edu/~charlieg/labs/ParserTest.java

13

Lab Exercise – Writing Test Cases
l Most methods already have test cases
l You only need to write tests for capitalizeFirst()

l This method takes a String & returns a new String
with the first letter of each word capitalized

l Examine the existing test cases to get ideas about
what kinds of tests to write

l Be sure to include some with good input, “weird”
input, test out the boundaries & null input too

l Your testCapitalizeFirst() should contain at least 4
assertions at a minimum

l Only need to use assertEquals()

14

Lab Exercise (cont...)
l Links to lots of useful additional information about

JUnit are available on my website...

l Cookbook, tutorial, using JUnit with Eclipse, etc.
l File containing several examples of “good” input for

the parser:
l www.cis.udel.edu/~charlieg/labs/ParserSamples.txt

l Email your test cases (the ParserTest.java file) to
charlieg@cis.udel.edu by Tuesday, Sept. 13
l Be sure your name[s] (2 people max) are in the

email and in all attached files

http://www.cis.udel.edu/~charlieg/labs/ParserSamples.txt
http://www.cis.udel.edu/~charlieg/labs/ParserSamples.txt
mailto:charlieg@cis.udel.edu
mailto:charlieg@cis.udel.edu

