
1

CISC 275: Introduction to Software Engineering

Lab 1:

Getting Started with

eclipse
Charlie Greenbacker

University of Delaware
Fall 2011



2

Introduction

l Teaching Assistant:  Charlie Greenbacker
l Email:  charlieg@cis.udel.edu

l Website:  http://www.cis.udel.edu/~charlieg
l Office hours in Smith 103:  TBA

l Weekly labs will introduce new tools, etc. for use in 
class & labs

l Lab slides will always be posted to my website on 
the Teaching page

mailto:charlieg@cis.udel.edu
mailto:charlieg@cis.udel.edu
http://www.cis.udel.edu/~charlieg
http://www.cis.udel.edu/~charlieg
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Overview
l What is Eclipse?
l Starting up Eclipse

l Walkthough of interface
l Creating a new project

l Creating a new class
l Entering code

l Running a Java program
l Other helpful features
l Lab exercise
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What is Eclipse?
l An integrated development environment (IDE)

l Source code editor + compiler/interpreter + 
build tools + debugger & more

l Organizes & manages software projects

l Lots of automated tools to make the programmer's 
job easier

l Specifically designed for Java but also works with 
other languages

l Analogy: IDE is to text editor as word processor is 
to typewriter

l Many plug-ins available to extend feature set



5

Starting up Eclipse

l Eclipse is pre-installed on lab machines
l Albeit an older version (3.3.2) from 2008

l Likely missing from desktop or Launch menu
l To start Eclipse, run 'eclipse' from terminal

l The first time you run Eclipse, you may be asked to 
“Select a Workspace”... the suggested location is 
fine... click “Use as default” and OK

l You are strongly encouraged to install 
Eclipse on your laptop & bring it to lab!
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Walkthrough of interface

l Here's a snapshot of the initial Eclipse window:
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Left panel shows different 
views of project, initially 

Package Explorer & 
Hierarchy
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Big middle panel is the code 
editor, no files are open to 

start
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Right panel shows class 
Outline
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Bottom panel displays system 
messages
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Menus appear at the top of 
the window... file, search, run 
& window will likely prove 

to be the most useful
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Walkthrough of interface

l I find the Navigator view to be the most helpful, far 
more useful than Package Explorer or Hierarchy

l Close these other views by clicking on the X for 
each in the right panel

l Open the Navigator view by clicking on Window/
Show View/Navigator

l Your Eclipse window should now look like this:
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Creating a new project
l Click on File/New/Java Project
l Enter as project name: HelloWorldApp

l We have the option to select from different 
versions of Java if available on the system (everyone 
should be using at least Java 1.6 by now)

l Let Eclipse manage folders for source code & class 
files (default option on new versions)
l On lab machines, in New Java Project dialog, 

under Project Layout, be sure to select 
“Create separate source and output folders”

l The new project dialog looks like this:
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Creating a new project

l Click on Finish to create the new project
l Click on the arrow next to HelloWorldApp in the 

Navigator to see the src & bin directories 
generated by Eclipse
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Creating a new class
l Right-click on HelloWorldApp in Navigator
l Select New/Class

l Enter as name: HelloWorldApp
l Ignore default package warnings

l We have some options for class modifiers, 
superclass, interfaces & generating method stubs, 
but the defaults are fine for now

l Click Finish to create the new class
l The new class dialog looks like this:
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Entering code

l With the shell of a new class automatically 
generated by Eclipse, we can start filling in the 
pieces...
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Entering code
l Inside the class definiton, hit Tab & start typing:
public static void main(

l Notice how Eclipse automatically inserts a close 
parenthesis & adds main to the Outline

l Continue inside the parentheses with:
String[] args

l Eclipse inserted a close bracket too

l Type an open curly brace & hit Enter... Eclipse auto-
indents & adds a close curly brace

l Your window should now look like this:
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Entering code
l Now start typing System.

l See the friendly help menu listing lots of options to 
choose from to complete the method call

l In this case, we want the out PrintStream, so select 
it or just continue typing

l Again, typing a period after out opens a new list of 
suggested methods

l We'll select println, Eclipse will automatically 
add the parentheses, and if this method had any 
parameters, it would generate those too
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Entering code

l Type “Hello World!” in double-quotes inside the 
parentheses for System.out.println()

l Add a semi-colon to the end of the line
l Your window should now look like this:
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Running a Java program

l Now we're ready to test out our darling program
l We can run the Java application directly inside of 

Eclipse, no need to invoke javac from the console
l Select Run/Run As/Java Application

l You will be prompted to save (always a good idea)
l Just like calling javac from the terminal, output & 

errors displayed in console message panel
l Should look something like this:
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Other helpful features

l Eclipse can automatically detect & fix many 
common errors

l To test this, change println to println2

l A light bulb/red X appears to the left of the line

l Clicking this icon brings up a list of suggested fixes, 
including changing back to println
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Other helpful features

l Notice that when Eclipse detects an error or 
errors in your code, a red box will appear at the 
top along the right side of your code

l Red dashes indicate the lines of code containing 
these errors

l There are similar yellow dashes for warnings

l Fixing the error replaces the light bulb/red X icon 
with a blue dot, which will disappear the next time 
the program is successfully run
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Other helpful features
l For another example, add these lines of code:
String temp = “hello world”;
temp.indexOf(3, “world”);

l Eclipse will detect an error in the second line & 
suggest some possible fix actions

l Multiple versions of String.indexOf() have 
different sets of parameters

l Eclipse suggests removing arguments to match 
indexOf(String) or indexOf(int), or 
swapping the order of the arguments, which is what 
we want for indexOf(String, int)
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Other helpful features

l Eclipse can also organize & manage your import 
statements

l It can automatically generate stubs for constructors 
& other methods

l You’ll pick up some advanced features & plug-ins for 
Eclipse throughout the semester
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Lab exercise

l Most labs include an exercise designed to 
demonstrate an understanding of the material

l Today, I just want to see that you can run a Java 
program in Eclipse

l Enter the “Hello World” code
l Run it as a Java application

l Show me the output before you leave the lab
l I always look for comments & will often deduct 

points for poorly documented code


