
1

CISC 275: Introduction to Software Engineering

Lab 1:

Getting Started with

eclipse
Charlie Greenbacker

University of Delaware
Fall 2011

2

Introduction

l Teaching Assistant: Charlie Greenbacker
l Email: charlieg@cis.udel.edu

l Website: http://www.cis.udel.edu/~charlieg
l Office hours in Smith 103: TBA

l Weekly labs will introduce new tools, etc. for use in
class & labs

l Lab slides will always be posted to my website on
the Teaching page

mailto:charlieg@cis.udel.edu
mailto:charlieg@cis.udel.edu
http://www.cis.udel.edu/~charlieg
http://www.cis.udel.edu/~charlieg

3

Overview
l What is Eclipse?
l Starting up Eclipse

l Walkthough of interface
l Creating a new project

l Creating a new class
l Entering code

l Running a Java program
l Other helpful features
l Lab exercise

4

What is Eclipse?
l An integrated development environment (IDE)

l Source code editor + compiler/interpreter +
build tools + debugger & more

l Organizes & manages software projects

l Lots of automated tools to make the programmer's
job easier

l Specifically designed for Java but also works with
other languages

l Analogy: IDE is to text editor as word processor is
to typewriter

l Many plug-ins available to extend feature set

5

Starting up Eclipse

l Eclipse is pre-installed on lab machines
l Albeit an older version (3.3.2) from 2008

l Likely missing from desktop or Launch menu
l To start Eclipse, run 'eclipse' from terminal

l The first time you run Eclipse, you may be asked to
“Select a Workspace”... the suggested location is
fine... click “Use as default” and OK

l You are strongly encouraged to install
Eclipse on your laptop & bring it to lab!

6

Walkthrough of interface

l Here's a snapshot of the initial Eclipse window:

7

8

Left panel shows different
views of project, initially

Package Explorer &
Hierarchy

9

10

Big middle panel is the code
editor, no files are open to

start

11

12

Right panel shows class
Outline

13

14

Bottom panel displays system
messages

15

16

Menus appear at the top of
the window... file, search, run
& window will likely prove

to be the most useful

17

18

Walkthrough of interface

l I find the Navigator view to be the most helpful, far
more useful than Package Explorer or Hierarchy

l Close these other views by clicking on the X for
each in the right panel

l Open the Navigator view by clicking on Window/
Show View/Navigator

l Your Eclipse window should now look like this:

19

20

Creating a new project
l Click on File/New/Java Project
l Enter as project name: HelloWorldApp

l We have the option to select from different
versions of Java if available on the system (everyone
should be using at least Java 1.6 by now)

l Let Eclipse manage folders for source code & class
files (default option on new versions)
l On lab machines, in New Java Project dialog,

under Project Layout, be sure to select
“Create separate source and output folders”

l The new project dialog looks like this:

21

22

Creating a new project

l Click on Finish to create the new project
l Click on the arrow next to HelloWorldApp in the

Navigator to see the src & bin directories
generated by Eclipse

23

Creating a new class
l Right-click on HelloWorldApp in Navigator
l Select New/Class

l Enter as name: HelloWorldApp
l Ignore default package warnings

l We have some options for class modifiers,
superclass, interfaces & generating method stubs,
but the defaults are fine for now

l Click Finish to create the new class
l The new class dialog looks like this:

24

25

Entering code

l With the shell of a new class automatically
generated by Eclipse, we can start filling in the
pieces...

26

27

Entering code
l Inside the class definiton, hit Tab & start typing:
public static void main(

l Notice how Eclipse automatically inserts a close
parenthesis & adds main to the Outline

l Continue inside the parentheses with:
String[] args

l Eclipse inserted a close bracket too

l Type an open curly brace & hit Enter... Eclipse auto-
indents & adds a close curly brace

l Your window should now look like this:

28

29

Entering code
l Now start typing System.

l See the friendly help menu listing lots of options to
choose from to complete the method call

l In this case, we want the out PrintStream, so select
it or just continue typing

l Again, typing a period after out opens a new list of
suggested methods

l We'll select println, Eclipse will automatically
add the parentheses, and if this method had any
parameters, it would generate those too

30

Entering code

l Type “Hello World!” in double-quotes inside the
parentheses for System.out.println()

l Add a semi-colon to the end of the line
l Your window should now look like this:

31

32

Running a Java program

l Now we're ready to test out our darling program
l We can run the Java application directly inside of

Eclipse, no need to invoke javac from the console
l Select Run/Run As/Java Application

l You will be prompted to save (always a good idea)
l Just like calling javac from the terminal, output &

errors displayed in console message panel
l Should look something like this:

33

34

Other helpful features

l Eclipse can automatically detect & fix many
common errors

l To test this, change println to println2

l A light bulb/red X appears to the left of the line

l Clicking this icon brings up a list of suggested fixes,
including changing back to println

35

Other helpful features

l Notice that when Eclipse detects an error or
errors in your code, a red box will appear at the
top along the right side of your code

l Red dashes indicate the lines of code containing
these errors

l There are similar yellow dashes for warnings

l Fixing the error replaces the light bulb/red X icon
with a blue dot, which will disappear the next time
the program is successfully run

36

Other helpful features
l For another example, add these lines of code:
String temp = “hello world”;
temp.indexOf(3, “world”);

l Eclipse will detect an error in the second line &
suggest some possible fix actions

l Multiple versions of String.indexOf() have
different sets of parameters

l Eclipse suggests removing arguments to match
indexOf(String) or indexOf(int), or
swapping the order of the arguments, which is what
we want for indexOf(String, int)

37

Other helpful features

l Eclipse can also organize & manage your import
statements

l It can automatically generate stubs for constructors
& other methods

l You’ll pick up some advanced features & plug-ins for
Eclipse throughout the semester

38

Lab exercise

l Most labs include an exercise designed to
demonstrate an understanding of the material

l Today, I just want to see that you can run a Java
program in Eclipse

l Enter the “Hello World” code
l Run it as a Java application

l Show me the output before you leave the lab
l I always look for comments & will often deduct

points for poorly documented code

