
Charlie Greenbacker CISC 475/675 Spring 2009 http://cis.udel.edu/~charlieg 1

CISC 475/675: Advanced Software Engineering

Lab 10:
Code Coverage with

Cobertura

Charlie Greenbacker
University of Delaware

Spring 2009

Charlie Greenbacker CISC 475/675 Spring 2009 http://cis.udel.edu/~charlieg 2

Overview
● What is Code Coverage?
● Cobertura at a Glance
● Installing Cobertura
● Running Cobertura
● Analyzing Cobertura Results
● Lab “Exercise”

Charlie Greenbacker CISC 475/675 Spring 2009 http://cis.udel.edu/~charlieg 3

What is Code Coverage?
● A measure of the degree to which a piece of

source code has been tested
● Analyzes unit testing to determine exactly

which classes, methods, & individual lines of
code have been executed during the test

● Enables programmers to identify which parts of
their programs are lacking test coverage

● Note: doesn't tell you how good your tests are,
just whether all parts of your code are touched
● Bad tests can have good coverage, but good tests
will have good coverage

Charlie Greenbacker CISC 475/675 Spring 2009 http://cis.udel.edu/~charlieg 4

Cobertura at a Glance
● Open source Java code coverage analysis tool

● Calculates % of code exercised by unit tests
● Designed to work closely with Ant & JUnit
● Helps you find “holes” in your testing so that you

can create new & more thorough test cases
● Automatically generates detailed reports

● Works by inserting temporary instrumentation
into your classes to track which methods &
lines of code are accessed during testing

● Name is “coverage” in Spanish/Portuguese

Charlie Greenbacker CISC 475/675 Spring 2009 http://cis.udel.edu/~charlieg 5

Installing Cobertura
● Installing Cobertura is as easy as downloading

& unzipping the distribution package
● http://cobertura.sourceforge.net/download.html
● Move/rename the unzipped directory to a location of

your choosing for future access
– For example, /usa/<username>/cobertura is a good

name & location for the Cobertura directory

http://cobertura.sourceforge.net/download.html

Charlie Greenbacker CISC 475/675 Spring 2009 http://cis.udel.edu/~charlieg 6

Running Cobertura
● Cobertura runs as a custom Ant task and

interacts with JUnit testing
● Adding/editing a few targets, plus some odds &

ends, in the existing build.xml file from Lab 9 for
the sample Student project will get us started

● First, add a couple of new properties to the top:
 <property name="instrumented"
 location="instrumented"/>
 <property name="cobertura"
 location="/path/to/cobertura"/>

● Change the “cobertura” property to point to
whichever directory contains cobertura.jar, etc.

Charlie Greenbacker CISC 475/675 Spring 2009 http://cis.udel.edu/~charlieg 7

Running Cobertura (cont...)
● Next, we'll set up a classpath to allow Ant to

access the necessary Cobertura files:
 <path id="cobertura.classpath">
 <fileset dir="${cobertura}">
 <include name="cobertura.jar"/>
 <include name="lib/**/*.jar"/>
 </fileset>
 </path>

 <taskdef classpathref="cobertura.classpath"
 resource="tasks.properties"/>

Charlie Greenbacker CISC 475/675 Spring 2009 http://cis.udel.edu/~charlieg 8

Running Cobertura (cont...)
● We'll need to modify the build target so that

javac can access the Cobertura classpath:
<target name="build" depends="init">
 <javac srcdir="${source}" destdir="${build}"
 debug="yes">
 <classpath refid="cobertura.classpath"/>
 </javac>
</target>

Charlie Greenbacker CISC 475/675 Spring 2009 http://cis.udel.edu/~charlieg 9

Running Cobertura (cont...)
● We'll add a couple of actions to the init target:
 <target name="init" depends="clean">
 <mkdir dir="${build}"/>
 <mkdir dir="${reports}"/>
 <mkdir dir="${reports}/raw/"/>
 <mkdir dir="${reports}/html/"/>
 <mkdir dir="${reports}/cobertura-html/"/>
 <mkdir dir="${instrumented}"/>
 </target>

Charlie Greenbacker CISC 475/675 Spring 2009 http://cis.udel.edu/~charlieg 10

Running Cobertura (cont...)
● And some new actions to the clean target too:
 <target name="clean">
 <delete dir="${build}"/>
 <delete dir="${reports}"/>
 <delete dir="${instrumented}"/>
 <delete file="cobertura.log"/>
 <delete file="cobertura.ser"/>
 </target>

Charlie Greenbacker CISC 475/675 Spring 2009 http://cis.udel.edu/~charlieg 11

Running Cobertura (cont...)
● The first new target will add instrumentation to

the Java classes to determine which lines of
code have been executed and which have not:

<target name="instrument" depends="init,build">
 <delete file="cobertura.ser"/>
 <delete dir="${instrumented}"/>
 <cobertura-instrument
 todir="${instrumented}">
 <ignore regex="org.apache.log4j.*"/>
 <fileset dir="${build}">
 <include name="**/*.class"/>
 <exclude name="**/*Test*.class"/>
 </fileset>
 </cobertura-instrument>
</target>

Charlie Greenbacker CISC 475/675 Spring 2009 http://cis.udel.edu/~charlieg 12

Running Cobertura (cont...)
● The next new target will actually run the

Cobertura task to perform the code coverage
analysis of the unit testing, using the
instrumentation we just added:

 <target name="coverage-check">
 <cobertura-check branchrate="34"
 totallinerate="100"/>
 </target>

Charlie Greenbacker CISC 475/675 Spring 2009 http://cis.udel.edu/~charlieg 13

Running Cobertura (cont...)
● The next target generates the Cobertura report:
 <target name="coverage-report">
 <cobertura-report
 destdir="${reports}/cobertura-html/">
 <fileset dir="${source}">
 <include name="**/*.java"/>
 </fileset>
 </cobertura-report>
 </target>

Charlie Greenbacker CISC 475/675 Spring 2009 http://cis.udel.edu/~charlieg 14

Running Cobertura (cont...)
● We also need to modify the run-tests target to

make JUnit aware of the instrumented classes
and Cobertura files:

 <target name="run-tests" depends="build">
 <junit printsummary="yes" haltonfailure="no"
 showoutput="yes">
 <classpath location="${instrumented}"/>
 <classpath location="${build}"/>
 <classpath refid="cobertura.classpath"/>
 <batchtest fork="yes" todir="${reports}/raw/">
 <formatter type="xml"/>
 <fileset dir="${source}">
 <include name="**/*Test*.java"/>
 </fileset>
 </batchtest>
 </junit>
 </target>

Charlie Greenbacker CISC 475/675 Spring 2009 http://cis.udel.edu/~charlieg 15

Running Cobertura (cont...)
● The final new target is a wrapper for all of the

Cobertura tasks & is the one we'll run by name:
<target name="coverage"
 depends="build,instrument,test,coverage-report"/>

● Now we can finally execute the Cobertura
analysis by running ant coverage from the
command line
● Recall from the previous lab, you need to use the

-lib ~/junit option on the EECIS lab computers, so
the command would instead be:
ant -lib ~/junit coverage

Charlie Greenbacker CISC 475/675 Spring 2009 http://cis.udel.edu/~charlieg 16

Analyzing Cobertura Results
● Cobertura produces reports in HTML format

● Open “reports/cobertura-html/index.html” to view

● Report summary will have 3 columns per class
● Line Coverage = % of lines executed by test
● Branch Coverage = % of logical branches executed
● Complexity ≈ number of different paths per method

Charlie Greenbacker CISC 475/675 Spring 2009 http://cis.udel.edu/~charlieg 17

Analyzing Results (cont...)
● Clicking on a class link will bring up the

individual coverage report for that class
● Lines highlighted in red are those not executed, to

help you create more tests to improve coverage

/* Omitted for space... */

Charlie Greenbacker CISC 475/675 Spring 2009 http://cis.udel.edu/~charlieg 18

Analyzing Results (cont...)
● Live demonstration...

Charlie Greenbacker CISC 475/675 Spring 2009 http://cis.udel.edu/~charlieg 19

Analyzing Results (cont...)
● For example, the coverage report for the

Student class indicates that the tests did not
execute the single line of code inside toString(),
as well as several branches within compareTo()
● If we were to write a test case calling the

Student.toString() method, and additional test cases
designed to comprehensively exhaust the different
branch conditions in Student.compareTo(), we'd see
fewer lines highlighted in red, and the coverage
scores would increase accordingly

Charlie Greenbacker CISC 475/675 Spring 2009 http://cis.udel.edu/~charlieg 20

Lab “Exercise”
● You've all got enough to work on for the class

project right now, so I'm not going to add a lab
assignment on top of that

● However, please DO try out the example for
yourself (available on my website)
● Try writing new test cases to modify the output
● Consider using Cobertura to analyze CourseCheck
● Let me know if you run into any problems/questions

● Nothing to submit to me this week

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

