Java:

class HelloWorldApp {
public static void main(Stringl]
System.out.println ("Hello World!
}
}
C++:

#include <iostream>
finclude <stdlib.h>

//technically you don’t need this library for this program,

args) |

"); // Display the string.

but

//for most programs you will need the standard library so it’s
//good to get into the habit of including it.

using namespace std;

int main() |
cout <<"Hello world!" << endl;
return (0);

Java Primitive Types: C++ Primitive types:
byte 8 bits
short usually a 1l6-bit int *
int usually a 32-bit int int usually a 32-bit int
long usually a 64-bit int *
float floating decimal point float floating decimal point
number number
double double the size of a float double double the size of a float
boolean true/false bool true/false
char single unicode character char single unicode character

bits, whereas if it is a long int, it would be 64 bits.
Try the following:

*Note that in C++, you can make chars and ints signed (the default) or unsigned. By making an int unsigned, you get an extra
bit (and thus larger numbers are possible) but you can’t have a negative number.
You can also specify that the int is either short or long. If it is short, it uses 16 bits, whereas if it a default int, it would be 32

cout << "Size of char " << sizeof (char) << " byte" << endl;
cout << "Size of int " << sizeof (int) << " bytes" << endl;
cout << "Size of short int " << sizeof (short int) << " bytes" << endl;
cout << "Size of long int " << sizeof (longint) << " bytes" << endl;
cout << "Size of signed long int " << sizeof (signed long int) << " bytes" <<
endl;
cout << "Size of unsigned long int " << sizeof (unsigned int) << " bytes" <<
endl;
cout << "Size of float " << sizeof (float) << " bytes" <<endl;
cout << "Size of double " << sizeof (double) << " bytes" << endl;
Java Operators: C++ Operators:
postfix X++, x—— postfix X++, Xx——
Multiplication: * Multiplication:
Division / Division /
Modulus: % Modulus: %
Addition: + Addition: +
Subtraction Subtraction -
Relational: >, <, >=,<= Relational: >, <, >=,<=
Equality: ==, = Equality: ==, =
Logical and: && Logical and: &&
Logical Or: || Logical Or: |
Assignments: =, +=,-=,%=, /=, Assignments: =, +=,-=,%=, /=,

Java if:

int testscore = 76;

char grade;

if (testscore >= 90) {
grade = 'A';

} else if (testscore >= 80)
grade = 'B';

} else if (testscore >= 70)
grade = 'C';

} else if (testscore >= 60)
grade = 'D';

} else {
grade = 'F';

}
System.out.println ("Grade

C++if:

int testscore = 76;

char grade;

if (testscore >= 90) {
grade = 'A';

} else if (testscore >= 80)
grade = 'B';

} else if (testscore >= 70)
grade = 'C';

} else if (testscore >= 60)
grade = 'D';

} else {
grade = 'F';

}

cout << "Grade = " << grade

" + grade);

<< endl;

Java Comments:

C++ Comments:

/* comments go
here

*/

Or

//comments go here

/* comments go
here

*/

Or

//comments go here

Java While Loop:

C++ While Loop:

int count =

int tot 0;

while (count < 11) {
tot += count;
count++;

1;

}
System.out.println (tot);

int count = 1;
int tot = 0;
while (count < 11) {

tot += count;
count++;

}
cout << tot << endl;

Java Do-While Loop:

C++ Do-While Loop:

int count 1;

int tot

do {
tot += count;
count++;

} while (count < 11);

System.out.println (tot);

0;

int count 1;

int tot

do {
tot += count;
count++;

} while (count < 11);

cout << tot << endl;

0;

Java For Loop:

C++ For Loop:

for(int 1i=1; i<11l; i++){
System.out.println ("Count: "+1i);

}

//NOTE: you can skip any of the 3

conditions if defined elsewhere

for (int 1i=1; i<11;
cout << "Count:

i++) {

" << I << endl;

}

//NOTE: you can skip any of the 3 conditions if defined
elsewhere

Java Arrays:

C++ Arrays:

int[] anArray;

1 = 100;
] = 200;
] = 300;
1 = 400;
1 = 500;

OR

int[] ints2 = new int([]{1,2,3,4,5};

Multidimensional:

int[][] intArray = new int[10][20];

int c[5];

c[0]=100;

c[1]1=200;

c[2]=300;

c[3]1=400;

c[4]1=500;

OR:

int al[5] = {3,2,4,1,7};
Multidimensional:

int marr[10][20];

you can do:

int marr2[3][4] = {
{61312}1
(8,1,3},
{3,5,1},
{7,8,9} }i

C++ Functions (Java doesn’t have functions — it only has methods):

C++ requires function declarations before you use the function. So above the main function in your file (and below the include
libraries) you should declare each function you will write and use. A function declaration consists of the return type, the name
of the function, the number and type of the input parameters, and a semicolon; See below for an example.

There is another (usually better) way to do this. We'll discuss that later in the class. For now include all function declarations
above the main function in your file.

Your file should look something like this (date and time don’t have to look exactly like this — | know
eclipse automatically inserts the date in a different way and that’s fine):

/* Debra Yarrington

* TA’s name

* 8/14/17

* This file contains functions for lab 1. The functions aren’t necessarily related
* in any way other than that they are required for lab 1.

*/

#include <iostream>
#include <stdlib.h>
using namespace std;

int func(int k[], int size) ; //function declaration

int main() {
//call functions here
return(0);

}

/* This function takes as an input parameter an array of integers and an integer. The second
parameter is the number of elements in the first parameter (the array) Tue function sums the
integers in the array. It then returns an int, the sum of the values in the array

int func(int k[], int size) { //function definition

int a = 9;

for (int 1 = 0; i < size; i++) {
a += k[i];

}

return a;

