Transition help from DrScheme and Python to Java

Racket version 5.3.6
· set DrScheme to use the Advanced Student language

for the examples in this guide, add these helper functions to the top of your program:

;; displayln: ANY --> VOID
;; will act similar to System.out.println in Java
(define (displayln line)
 (begin (display line)
 (newline)))

;; in-range: NaturalNumber --> (listof NaturalNumber)
;; in-range consumes a NaturalNumber N and returns a list
;; counting up from 0 to (N-1).
(define (in-range x)
 (build-list x identity))

Python version 3.3.2
Java version 1.6.0_22
· since Java requires all code to belong to a class, and include a main method as the entry point to run code, all Java code snippets (unless otherwise stated) belong within the body of the main method. For example, the actual runnable code in Java for the first and second example would look like this:

public class Transition {
 public static void main(String[] args) {
 System.out.println(5 + 10);

 double LBS_TO_KILO = 0.45359237;
 System.out.println(175 * LBS_TO_KILO);
 }
}

· To run the code, first save the file, and then click on the Run tab at the top (Ctrl + F11). You should see the output of the code in the window at the bottom of Eclipse.

Note that you only need and should only have one main method -- you can put many of the different code snippets into the same main method and they will run in order.

Transitional Information between Languages:
	Expression

	Racket(DrScheme)
	(displayln (+ 5 10))

	Python
	print(5 + 10)

	Java
	System.out.println(5 + 10); (Note the semicolon at the end of the line!)

	

Definition/Variable assignment

	Racket(DrScheme)
	(define LBS_TO_KILO #i0.45359237)
(displayln (* 175 LBS_TO_KILO))

	Python
	LBS_TO_KILO = 0.45359237
print(175 * LBS_TO_KILO)

	Java
	double LBS_TO_KILO = 0.45359237;
System.out.println(175 * LBS_TO_KILO);

	Variable re-assignment (mutation)

	Racket(DrScheme)
	(define age 19)
(displayln age)
(set! age (+ age 1))
(displayln age)

	Python
	age = 19
print(age)
age = age + 1
print(age)

	Java
	
int age = 19;
System.out.println(age);
age = age + 1;
System.out.println(age);
	// ALTERNATIVE 1
int age = 19;
System.out.println(age);
age += 1;
System.out.println(age);
	// ALTERNATIVE 2
int age = 19;
System.out.println(age);
age++;
System.out.println(age);

	Selection (conditional)

	Racket(DrScheme)
	(define JOE_AGE 25)
(cond [(< JOE_AGE 18) (displayln "minor")]
 [(< JOE_AGE 65) (displayln "adult")]
 [else (displayln "senior")])

	Python
	JOE_AGE = 25
if JOE_AGE < 18:
 print("minor")
elif JOE_AGE < 65:
 print("adult")
else:
 print("senior")

	Java
	int JOE_AGE = 25;
if (JOE_AGE < 18) {
 System.out.println("minor");
}
else if (JOE_AGE < 65) {
 System.out.println("adult");
}
else {
 System.out.println("senior");
}

	Function (Java only has methods -- functions that belong to classes)

	Racket(DrScheme)
	(define (celsius-to-fahrenheit cdeg)
 (+ 32.0 (* cdeg 1.8)))
(displayln (celsius-to-fahrenheit 25.0))

	Python
	def celsius_to_fahrenheit(cdeg):
 return 32 + (cdeg * 1.8)
print(celsius_to_fahrenheit(25.0))

	Java
	public class Transition {
 public static double celsius_to_fahrenheit(double cdeg) {
 return 32.0 + (cdeg * 1.8);
 }
 public static void main(String[] args) {
	/*place this line below what is already in your main method */
 System.out.println(celsius_to_fahrenheit(25.0));
 }
}

	Repetition (definite/fixed iteration loop)

	Racket
(DrScheme)
	;; ALTERNATIVE 1
;; Definite FOR loop with mutation
(define total 0)
;; for each i from 0 to 9, set total to total + i
(for-each
 (lambda (i)
 (set! total (+ total i)))
 (in-range 10))
(displayln total)
	;; ALTERNATIVE 2
;; FOR loop as a recursive function,
;; accumulator style.
(define (sum-accum i total)
 (cond [(>= i 10) total]
 [else (sum-accum (+ i 1)
 (+ total i))]))
(displayln (sum-accum 0 0))

;; ALTERNATIVE 3
;; FOR loop using abstraction
(displayln (foldl + 0 (in-range 10)))

	Python
	total = 0
for x in range(10):
 total = total + x
print(total)

	Java
	int total = 0;
for (int i = 0; i < 10; i++) {
 total += i;
}
System.out.println(total);

	Repetition (indefinite/conditional loop)

	Racket(DrScheme)
	;; recursive function "WHILE" or "DO" conditional loop
(define (div-seven-guess guess)
 (cond [(= 0 (modulo guess 7)) guess]
 [else (div-seven-guess
 (random 100))]))
(displayln (div-seven-guess 1))

	Python
	import random
guess = 1
while guess % 7 != 0:
 guess = random.randint(0, 99)
print(guess)

	Java
	int guess = 1;
while (guess % 7 != 0) {
 guess = new java.util.Random().nextInt(100);
}
System.out.println(guess);

	Repetition (recursive function, performs root find midpoint algorithm on exponential functions)

	Racket(DrScheme)
	(define (root n start end base)
 (cond [(<= end start) start]
 [else
 (local [(define mid (floor (/ (+ end start) 2)))
 (define guess (expt mid base))]
 (cond [(< guess n) (root n (+ mid 1) end base)]
 [(> guess n) (root n start mid base)]
 [else mid]))]))
(displayln (root 16 0 16 2))
(displayln (root 24 0 24 2))

	Python
	def root(n, start, end, base):
 if end <= start:
 return int(start)
 else:
 mid = int((end + start) / 2)
 guess = mid ** base
 if guess < n:
 return root(n, mid + 1, end, base)
 elif guess > n:
 return root(n, start, mid, base)
 else:
 return mid
print(root(16, 0, 16, 2))
print(root(24, 0, 24, 2))

	Java
	public static int root(int n, int start, int end, int base) {
 if (end <= start) {
 return start;
 }
 else {
 int mid = (end + start) / 2;
 int guess = (int) Math.pow(mid, base);
 if (guess < n) {
 return root(n, mid + 1, end, base);
 }
 else if (guess > n) {
 return root(n, start, mid, base);
 }
 else {
 return mid;
 }
 }
}

public static void main(String[] args) {
 System.out.println(root(16, 0, 16, 2));
 System.out.println(root(24, 0, 24, 2));
}

	Object creation, field access (struct for Racket)

	Racket(DrScheme)
	(define-struct xyvector (x y))
(define (xyvector-midpoint v)
 (xyvector (/ (xyvector-x v) 2)
 (/ (xyvector-y v) 2)))
(define (xyvector-magnitude v)
 (sqrt (+ (expt (xyvector-x v) 2)
 (expt (xyvector-y v) 2))))
(define SAMPLE-XY (xyvector 10 24))
(displayln (xyvector-midpoint SAMPLE-XY))
(displayln (xyvector-magnitude SAMPLE-XY))

	Python
	class xyvector:
 def __init__(self, x, y):
 self.x = x
 self.y = y
 def midpoint(self):
 return xyvector(self.x / 2, self.y / 2)
 def magnitude(self):
 return (self.x ** 2 + self.y ** 2) ** .5
 def __str__(self):
 return "xyvector(" + str(self.x) + ", " + str(self.y) + ")"

SAMPLE_XY = xyvector(10.0, 24.0)
print(SAMPLE_XY.midpoint())
print(SAMPLE_XY.magnitude())

	Java
	//Made in a different file with name xyvector.java (Note the class and file have the same name
// Make sure xyvector.java is in the same folder as Transitions.java
// You can drag and drop it over in the left sidebar.
public class xyvector {
 double x;
 double y;
 public xyvector(double x, double y) {
 this.x = x;
 this.y = y;
 }
 public xyvector midpoint() {
 return new xyvector(this.x / 2,
 this.y / 2);
 }
 public double magnitude() {
 return Math.sqrt(Math.pow(this.x, 2)
 + Math.pow(this.y, 2));
 }
 public String toString() {
 return "xyvector(" + this.x + ", "
 + this.y + ")";
 }
}
// This should be put in Transition.java in the main method
public static void main(String[] args) {
 xyvector SAMPLE_XY = new xyvector(10.0, 24.0);
 System.out.println(SAMPLE_XY.midpoint());
 System.out.println(SAMPLE_XY.magnitude());
}

	Test driven development

	Racket(DrScheme)
	(define (celsius-to-fahrenheit cdeg)
 (+ 32.0 (* cdeg 1.8)))

(check-within (celsius-to-fahrenheit 25.0) 77.0 0.01)

	Python
	from cisc106 import *

def celsius_to_fahrenheit(cdeg):
 return 32.0 + (cdeg * 1.8)

assertEqual(celsius_to_fahrenheit(25.0), 77.0)

	Java
	public class Transition {
 public static double celsius_to_fahrenheit(double cdeg) {
 return 32.0 + (cdeg * 1.8);
 }

[bookmark: _GoBack] System.out.println(Celsius_to_fahrenheit(25.0)) // should give you 77.0
}

