Chocolate Code-Off 3:
1, Given the following classes, fill in the blanks with public, private, and/or static:(PU for public, PR for private, and S for static)
public class mainClass {
	public static void main(String[] args) {
		TestStatus obj = new TestStatus (3);
		System.out.println(obj.getval());
		System.out.println(obj.c);
		//CANNOT DO System.out.println(obj.x);
		System.out.println(TestStatus.z)
}	}
public class TestStatus {
	_______ int z = 3;
 	_______ int x = 1;
	_______ char c = ‘t’;
	
	_______ TestStatus (int k) {
		x = k;
		z --;
	}
	_______ int getval() {
		return(x);
	}
}

2. Given the following classes, write out what is printed out?
public class StaticExample {
	private int x=0;
	private static int y=0;
	public int n;
	
	public StaticExample(int n) {
		x ++;
		y ++;
		this.n = n;
	}
	
	public int getX() {
		return(x);
	}
	public static int getY() {
		return(y);
	}
}

public class mainClass {

	public static void main(String[] args) {
		StaticExample[] x = new StaticExample[5];
		for (int i = 0; i < 5; i++) {
			x[i] = new StaticExample(i);
			System.out.print(x[i].n + " ");
			System.out.print(x[i].getX()+" ");
			System.out.println(StaticExample.getY());
		}
	}
}

3. Problem 3: fill in the blanks below:
class SuperClass {
protected int x;
private int y;
public int z;

public SuperClass()
{
X = 0;
y = 1;
z = 2;
}
private void increment() {
x++;
}
protected void add(int y2)
{
x += y2;
}
public void display()
{
System.out.println(x);
System.out.println(y);
Xyxtem.out.println(z);
}
}
Which of the following are valid?

public class SubClass extends SuperClass {
protected int a = 1;
private int b = 2;
public int c = 3;
//...
	public void getSuper() {
		System.out.println(x); // ________________
		System.out.println(y); // ________________
		System.out.println(z); // ________________
		increment(); // ________________
		add(3);			 // ________________
		display();			 // ________________
	}
}
Which of the following are valid?

public class SubSubClass extends SubClass {
//...
	public void getAll() {
		System.out.println(x); // ________________
		System.out.println(y); // ________________
		System.out.println(z); // ________________
		increment(); // ________________
		add(3);			 // ________________
		display();			 // ________________
		System.out.println(a); // ________________
		System.out.println(b); // ________________
		System.out.println(c); // ________________

	}
}

4. To count the number of lines in a file, fill in the blank lines with the correct letter from below to make the code open a file for reading, then read in a file and count the number of lines.
public class WordList {
	
	public WordList(String filename) {

__________________________________ {

			int row = 0;

			while (________________________) {
				row ++;

			}
			fn.close();
	 }
__________________________________{
	 System.out.println(e.getMessage());
	 System.exit(0);
	 }
		wl = ls;
	}

1. if (fn == true) {
2. Scanner fn = new Scanner(System.in);
3. try {
4. fn.println();
5. Scanner fn = new Scanner(fl);
6. PrintStream fn = new PrintStream(fn)(
7. else if (EOF(fn)) {
8. fn.hasNext()
9. fn.next();
10. fn.nextInt();
11. fn.nextString();
12. File fl = new File(filename);
13. fn.nextLine();
14. catch (FileNotFoundException e)
15. for (int i=0; i < rows; i++) {
	

###
public class Student {
	private String first;
	private String last;
	private int grade;
	public Student(String first, String last) {
		this.first = first;
		this.last = last;
		grade = 0;
	}
	public String getName() {
		return(first + " " + last);
	}
	public void setGrade(int x) {
		grade = x;
	}
	public int getGrade() {
		return(grade);
	}
}
public class Group {
	public String name;
	public Student[] group;
	
	public Group(String name, String n1, String n1b,
				 String n2, String n2b, String n3, String n3b,
				 String n4, String n4b) {
		this.name = name;
		group = new Student[4];
		group[0] = new Student(n1,n1b);
		group[1] = new Student(n2,n2b);
		group[2] = new Student(n3,n3b);
		group[3] = new Student(n4,n4b);	
	}
	public void setScore(int x) {
		for (int k = 0; k < 4; k++) {
	//5.ADD CODE HERE TO CHANGE THE GRADE OF EACH STUDENT IN THE GROUP TO THE INT x

		}
	}
}
public class roster {
	private Group[] r;
	public int ave;
	
	public roster(String[] s) {
		r= new Group[s.length/8];
		int z = 0;
		for (int i = 0; i < s.length;i+=8) {
			r[z] = new Group("group"+Integer.toString(z),s[i],s[i+1],
					s[i+2],s[i+3],s[i+4],s[i+5],s[i+6],s[i+7]);
			z++;
		}
		ave = 0;
	}
	
	public void setScore(int group, int score) {
//6. ADD CODE HERE TO SET THE SCORE OF GROUP group (the int representing which group in the array) TO score
		__
	}
	

(continued from previous page)
 public void setAve(){
		int numstudents = 0;
		for (int i = 0; i < r.length;i++) {
			for (int j = 0; j < r[i].group.length;j++) {
#7. ADD CODE TO GET THE AVERAGE OF EACH STUDENT IN EACH GROUP AND ADDS IT TO THE #AVERAGE SCORE
			ave += __
				numstudents++;
			}
		}
		ave = (ave/numstudents);
	}
	public int getAve() {
		return(ave);
	}
}
	public static void main(String[] args) {
		String[] ls ={"bob","jones","ann","miller",
		 "tim","cruz","jan","smith",
		 "wayne","burns","sue","chen",
		 "mark","beam","beth","clark",
		 "jake","denn","emma","flint",
		 "chris","green","sam","neill"};
		roster r = new roster(ls);
		r.setScore(1, 80);
		r.setScore(0, 77);
		r.setScore(2, 86);
		r.setAve();
		System.out.println(r.getAve());
	}
8. Part B: What is the above code an example of? ________________________________

##
class SuperClass {
public int x;
private int y;

public SuperClass(int x) {
this.x = x;
y = 1;
}
public void increment() {
x++;
}
public void add(int y2) {
x += y2;
}
public void display() {
System.out.println(x);
System.out.println(y);
}
}
public class SubClass extends SuperClass {
	public int a;
	public int b;
	public SubClass(int a, int b) {
		this.a = a;
		this.b = b;
		//9. ADD CODE SO THAT x in the superclass is set to a+b

	}
	
(continued from previous page)
//10. ADD A METHOD THAT OVERRIDES THE increment METHOD SO THAT IT ADDS 2 to x
	

	// 11. write a method with the following signature:
	// public void display(); that prints out a and b, and then uses the display
// method in the super class to print out x and y

##
public abstract class Course {
	boolean passed;
	String cname;
	
	public Course(String n, int a, int b, int c) {
		cname = n;
		if (getScore(a,b,c) > 70) {
			passed = true;
		}
		else {
			passed = false;
		}
	}
	public abstract int getScore(int l, int p, int t);

	public String toString() {
		String s = cname + " Passed: " + passed;
		return s;
	}	
}
public class C1 extends Course {
	public C1(int a, int b, int c) {
		super("CISC181",a,b,c);
	}
	public int getScore(int l, int p, int t) {
		int x = 0;
		x += (int)((double)l * .2 + (double)p * .3 + (double)t*.5);
		return(x);
	}
}
public class C2 extends Course {
	int ec = 0;
	
	public C2(int a, int b, int c){
		super("ENG101",0,a,b);
		ec = c;
	}
	public int getScore(int l, int p, int t) {
		int x = 0;
		x += (int)((double)p * .5 + (double)t*.5 + (double) ec * .1);
		return(x);
	}
	public String getEC() {
		String s = Double.toString((double)ec * .1);
		return(s);
	}
}
public class C3 extends Course {
	public C3(int a, int b, int c) {
		super("ART240",a,b,c);
	}
	public int getScore(int l, int p, int t) {
		int x = 0;
		x += (int)((double)l * .1 + (double)p * .8 + (double)t*.1);
		return(x);
	}
}
public static void main(String[] args) {
	Course[] x = new Course[3];
	x[0] = new C1(60,80,70);
	x[1] = new C2(70,90,40);
	x[2] = new C3(20,60,90);
	for (Course k: x) {
		System.out.println(k);
	}
	// 12 What is printed out in the above loop?

	

// 13 How can you access x[1]’s getEC method?

##
14 Draw the tree created with the following Integers:
[44, 8, 95, 86, 75, 22, 77, 84, 97, 6, 17, 96]

Given the following Code:
TreeSet<Integer> tree = new TreeSet();
tree.add(44);
tree.add(8);
tree.add(95);
tree.add(86);
tree.add(75);
tree.add(22);
tree.add(77);
tree.add(84);
tree.add(97);
tree.add(6);
tree.add(17);
tree.add(96);

Iterator<Integer> it = tree.iterator();
while (it.hasNext()) {
 System.out.print(it.next() + ", ");
}
//15 WHAT IS PRINTED HERE??
__

System.out.println(tree.first());
//16 WHAT IS PRINTED HERE?

System.out.println(tree.tailset(94);
//17 WHAT IS PRINTED HERE?

##

Boolean add(Object o);
void add(int index, Object o);
Boolean addAll(Collection<AnyType> c);
Void clear();
Boolean contains(Object o);
Boolean containsAll(Collection<AnyType> c);
AnyType get(int index);
Int indexOf(Object o);
Boolean isEmpty();
Boolean remove(Object o);
Boolean removeAll(Collection<AnyType> c);
Boolean retainAll(Collection<AnyType> c);
Boolean set(int index, Object o);
Int size();

18 Given the (partial) List Interface, which methods are NOT part of the set interface?
(Ignore the caps at the beginning of each line)

__

19. Which of the collections we’ve looked at is best for:
1. Adding an array of objects to an existing array of objects (at the end)__________________
2. Checking to see if an object exists in the collection already ______________________
3. Finding the closest integer in a collection to the integer 42 ______________________
4. Recording seismic activity every 10 minutes and storing each measurement in a collection (in the order of recording), and then finding the measurement at the 40th minute.__________________________

	

[bookmark: _GoBack]20. Which collection does the following code implement?
public class Coll{
	String[] s;

	public Coll() {
		s = new String[100];
	}
	public boolean add(String str) {
		int num = funk(str);
		if (s[num]== null) {
			s[num] = str;
			System.out.println("adding " + str);
			return(true);
		}
		else {
			System.out.println("not adding " + str);
			return(false);
		}
	}
	public int funk(String st) {
		int f = 0;
		for (int x = 0; x < st.length(); x++) {
			f += (int)st.charAt(x);
		}
		f = f%s.length;
		return(f);
	}
	public static void main(String[] args) {
		Coll g = new Coll();
		g.add("cat") ;
		g.add("dog");
		g.add("cat");
	}
}

