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javaScript Tutorial 4 
Functions 
Using the length of an Array: 

Look at the following code.  Can you tell what it does? 

<!DOCTYPE html> 
<html> 
<head><meta charset= "utf-8" > 
   <script > 
   var picArray = new Array() 
   picArray[0]= "safari1.jpg" 
   picArray[1]="safari2.png" 
   picArray[2]="safari3.jpg" 
   picArray[3]="safari4.jpg" 
   picArray[4]="safari5.jpg" 
 
       function displaypic() 
       { var num = Math.floor(Math.random()*5) 
  document.getElementById("pic1").src = picArray[num] 
       } 
   </script> 
</head> 
<body> 
    <h1> Vacation Pics </h1>   
    <p><img src = "Leopard.jpg" height = "300" width = "390"  

alt = "vacation pics" id = "pic1" > </p> 
     <input type = "button" value = "Click for more pics" onClick = "displaypic()"> 
</body> 
</html> 
 

The code above is a web page with an image on it with the id ‘pic1’ and a button on it.  When the button is clicked 

on, the function displaypic() is called and executed.  In the function, a random number between 0 and 5 (not 

including 5) is generated.  That random number is used to change the element on the web page with the id ‘pic1’ 

(the image) src (or picture) to whatever picture is stored in the array picArray at that random number.   

How would we add a picture? Well, if you remember from previous tutorials, we can add a picture fairly easily by 

saying, 

picArray[5]=’safari6.jpg’ 

I could even write a simple function to add a picture: 

function addpic() 
{ 
 var x = prompt(‘Enter the name of a picture to be added to the array’) 
 picArray[5] = x 
} 

 
However, there is a problem with this.  What if we want to add more than one picture to the array?  What if we 

call this function more than once?  Each time it is called, the user will be asked to enter the name of a picture they 
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want to add to the array.  But then, each time the new picture will be placed in the picArray at location 5, 

overwriting the picture that was there before.  So with this function, at most the user can add only one new 

picture to the array.  Yet we can call this function again and again.  Most users would assume that each time they 

enter a new picture, it is added to the array as opposed to replacing the previous picture they added. 

So how can we always add a picture to the end of the array, regardless of the number of items in the array?  We 

need a way to find out the current number of items in the array.  Luckily javaScript gives us a way to do that easily: 

picArray.length 

the .length method tells us the current length (the number of elements) in any array.  To use it, you must say the 

name of the array, and add .length to it.  

For example: 

var myArray = new Array() 
myArray[0]= "safari1.jpg" 
myArray[1]="safari2.png" 
myArray[2]="safari3.jpg" 
 
var num = myArray.length 
 

In the above code, Num now holds 3  because there are 3 elements in myArray. 

Now let’s write a function that adds a picture to the array: 

<!DOCTYPE html> 
<html> 
<head>  

<meta charset= "utf-8" > 
    <script> 
    var picArray = new Array() 
    picArray[0]= "Images/safari1.jpg" 
    picArray[1]="Images/safari2.png" 
    picArray[2]="Images/safari3.jpg" 
    picArray[3]="Images/safari4.jpg" 
    picArray[4]="Images/safari5.jpg" 
 

function addpic() 
      {  

var newpic = prompt("Enter new picture") 
   var num = picArray.length 
   picArray[num] = newpic 
            } 
    </script> 
</head> 
<body> 
     <h1> Vacation Pics </h1>   
     <p><img src = "Images/Leopard.jpg" height = "300" width = "390"  

alt = "vacation pics" id = "pic1" > </p> 
     <input type = "button" value = "Click here to add a pic" onClick = "addpic()"> 
</body> 
</html> 
 

Now in the above code, whenever we click on the button that calls the function addpic(), the code prompts the 

user to enter a new picture.  Then we find out the latest number of pictures in the picArray using picArray.length.  

Whatever that number is goes into the variable num.  Because the number of elements in an array is always one 

more than the last location in the array (because we placed the first element at location 0), we can put the newest 

picture into the array at the location of num.  For example, in the array picArray, above, the first time we use 
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picArray.length, num will hold 5 because there are 5 pictures in the array picArray.  Yet the last location address in 

the array is picArray[4].  So if we want to add a new picture to the end of the array, we would want to add it at 

picArray[5].  5 is the number of elements in the array, or picArray.length. 

Remember this code? 

   <script > 
   var picArray = new Array() 
   picArray[0]= "safari1.jpg" 
   picArray[1]="safari2.png" 
   picArray[2]="safari3.jpg" 
   picArray[3]="safari4.jpg" 
   picArray[4]="safari5.jpg" 
 
       function displaypic() 
       { var x = Math.floor(Math.random()*5) 
  document.getElementById("pic1").src = picArray[x] 
       } 
   </script> 

 

In this script, the function generates a random number between 0 and 5, not including 5.  Then the picture in 

picArray at that random number’s location will be displayed.  This works fine, as long as the picArray only has 5 

pictures in it.  But if we start adding pictures to the array, the code will only display the pictures between locations 

0 and 4.  It will never display the new pictures we added to the end of the array.   

To fix that, we again use picArray.length.  This time we’ll use it to get the length of the array before we generate a 

random number, and, instead of generating a random number between 0 and 5, we’ll generate a random number 

between 0 and the length of the array picArray. 

 
 
 
 
 
 
 
<!DOCTYPE html> 
<html> 
<head>  

<meta charset= "utf-8" > 
<script > 

var picArray = new Array() 
picArray[0]="Images/safari1.jpg" 
picArray[1]="Images/safari2.png" 
picArray[2]="Images/safari3.jpg" 
picArray[3]="Images/safari4.jpg" 
picArray[4]="Images/safari5.jpg“ 
 
function addpic() 
{ var newpic = prompt("Enter new picture") 

   var num = picArray.length 
   picArray[num] = newpic 

} 
    
    function displaypic() 

{ var num = Math.floor(Math.random()*picArray.length) 
document.getElementById("pic1").src = picArray[num] 
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       } 
      </script> 
</head> 
<body> 
   <h1> Vacation Pics </h1>   
   <p><img src = "Leopard.jpg" height="300" width="390" alt="vacation pics" id="pic1" >  
              </p> 
   <input type="button" value="Click here for more vacation pics" onClick="displaypic()"> 
   <input type="button" value="Click here to add a pic" onClick="addpic()"> 
</body> 
</html> 

 

Now we can add as many pictures as we want to the array using the addpic() function.  Each time a new picture 

will be added to the end of the array, and the length of the array will increase by 1.  Then, when we call the 

function displaypic(), it will always first determine the current number of elements in the array, and use that 

number to generate a random number between 0 and that current length, and that random number will be used 

to choose the picture from picArray that is to be displayed in the src of the image with the id of ‘pic1’. 

Going through an array in order: 
In the example above, we are able to click on a button and randomly see one of the pictures in the array of 
pictures.  But what if we want to see the images in the array in the order in which they occur in the array, e.g., we 
want to see safari1.jpg first, then safari2.png second, then safari3.jpg third, etc.?  Think of your vacation pictures.  
Probably you would want to see them in order – otherwise it might be hard to figure out where you were and 
what you were doing in the picture.  The order of pictures can matter, and there are times when we want to go 
through things in order.   
 
To do that, we need another variable.  We’ll start this variable at 0.  Then, each time we call the function and make 
the code inside of it run, we will increase the variable’s value by 1 and display the image in the array at that 
variable.  This way we will see the pictures in the array in order. 
 
 
 
 
 
 
<!DOCTYPE html> 
<html> 
<head>  

<meta charset= "utf-8"> 
<script > 

  var picArray = new Array() 
    picArray[0]="Images/safari1.jpg" 
    picArray[1]="Images/safari2.png" 
    picArray[2]="Images/safari3.jpg" 
    picArray[3]="Images/safari4.jpg" 
    picArray[4]="Images/safari5.jpg" 
    
    var count = 0    /* We’ll change this value later*/ 
    function displaypic() 
     { count = count + 1 
   document.getElementById("pic1").src = picArray[count] 
         } 
    
    </script> 
</head> 
<body> 
   <h1> Vacation Pics </h1>   
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   <p><img src="Leopard.jpg" height="300" width="390" alt="vacation pics" id="pic1" > </p> 
   <input type="button" value="Click here for more vacation pics" onClick="displaypic()"> 
</body> 
</html> 

 

A couple of things should be pointed out.  First, the variable count is created outside and above the function it is 

used in.  Why?  Because if I put it inside the function, e.g.,: 

    function displaypic() 
     { var count = 0     

count = count + 1 
   document.getElementById("pic1").src = picArray[count] 
         } 

Every time the function displaypic() was called and the code was executed, the first thing that would happen is that 

the variable count would be set to hold 0.  We don’t want that.  We want the function displaypic() to increase the 

count variable by 1 only, and then display the picture in picArray at the new count value.  We don’t want it to be 

set back to 0 each time we call it and the code runs.  By placing var count=0 outside of the function, it will only 

happen one time, and not every time the function is called (because only code between the opening and closing { } 

happens when the function is called.) 

The other thing that might look confusing is: 

 count = count + 1 

This is really the same thing as saying: 

 var x = count + 1 
 count = x 
 

Or, our new variable x holds the value inside of count + 1.  So if count is 0, x will hold 1.  If count is 1, x will hold 2, 

etc.  Then I’m setting the count variable to hold whatever is inside of x.  So if x holds 1, count will now hold 1.  If x 

holds 2, count will now hold 2, etc. 

Another way to look at it is that we do the addition on the right side first.  So count+1 gives us a number.  

Whatever that number is, it goes into the variable on the left side (regardless of the name of the variable.  So given 

the following code: 

    var count = 0     
    function displaypic() 
     { count = count + 1 
   document.getElementById("pic1").src = picArray[count] 
         } 

The first time displaypic is called, the count variable has already been set to hold the value 0.  So when we get to 

the line, count = count + 1, the right side of the equation, or count + 1, can be replaced with 0+1, or the number 1.  

That is the number that goes into the variable on the left.  So now count will hold 1. 

What have we created in total?  Well, before anything happens, a variable count is set to 0.  Then, every time the 

user clicks on the button on the web page, the function displaypic() is called, at which point the value inside of 

count goes up by 1.  Then the src of the image with the id of ‘pic1’ on the web page is changed to the picture in 

picArray at the count value.  Thus, each time the user clicks on the button, s/he sees the next image in the 

picArray. 

Going back to the beginning… 
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So far, the code we’ve written will show the pictures in the array from first to last.  But there’s a problem.  What 

happens when the count variable’s value gets to 5?  There’s no picture at picArray[5].  What do we probably want 

to happen now?  In most cases, we probably want to go back to the picture at the beginning of the array and start 

over.  That will mean resetting the count variable to 0 when it gets to the location of the last element in the array.  

To do this, we can add an if condition to our code: 

<!DOCTYPE html> 
<html> 
<head><meta charset= "utf-8"> 
   <script > 
   var picArray = new Array() 
   picArray[0]="safari1.jpg" 
   picArray[1]="safari2.png" 
   picArray[2]="safari3.jpg" 
   picArray[3]="safari4.jpg" 
   picArray[4]="safari5.jpg" 
    
   var count = -1    
   function displaypic() 

  { count = count + 1 
if (count >= picArray.length) 

     {   count = 0 
    } 
         document.getElementById("pic1").src = picArray[count] 
        } 
    
   </script> 
</head> 
<body> 
   <h1> Vacation Pics </h1>   
   <p><img src="Leopard.jpg" height="300" width="390" alt="vacation pics" id="pic1"> </p> 
   <input type="button" value="Click here for more vacation pics" onClick="displaypic()"> 
</body> 
</html> 
 

Now when we get to the end of the array of pictures, the count variable’s value is set back to 0, and the picture 
displayed is the picture in the picArray[0].  Thus when we get to the end of the picArray, we loop back to the 
beginning. 
 
Notice that outside the function I’ve set var count = -1, as opposed to how I had it previously with var count = 0.  
The reason for this is that when the function displaypic() is called, the first line of code that is executed increases 
the count variable’s value by 1.  That means if count = 0, then the very first time displaypic() is called, the count 
value changes to 1.  After it has been changed to 1, the picArray[count] picture is displayed.  That means that the 
first picture to be displayed and seen will be the picture in picArray[1].  But most likely we’d want to see the 
picture in picArray[0] first.  To make that happen, I needed to start the count variable’s value outside of the 
function at -1.  Then the very first time the function displaypic() is called, and the first line in the function is 
executed, the count variable’s value is increased by 1, which will make it 0.  Then when the picture at 
picArray[count] is displayed, it will be the picture at location 0 in the array. 
 

Adding  pictures: 

<!DOCTYPE html> 
<html> 
<head><meta charset= "utf-8"> 
   <script > 
   var picArray = new Array() 
   picArray[0]="safari1.jpg" 
   picArray[1]="safari2.png" 
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   picArray[2]="safari3.jpg" 
   picArray[3]="safari4.jpg" 
   picArray[4]="safari5.jpg" 
    
   var count = -1    
   function displaypic() 
        { count = count + 1 
  if (count >= picArray.length) 
  { count = 0 
  } 
            document.getElementById("pic1").src = picArray[count] 
        } 
 
   function addpic() 
        { var newpic = prompt("Enter new picture") 
  var num = picArray.length 
  picArray[num] = newpic 
  document.getElementById("pic1").src = picArray[num] 
        }    
   </script> 
</head> 
<body> 
   <h1> Vacation Pics </h1>   
   <p><img src="Leopard.jpg" height="300" width="390" alt="vacation pics" id="pic1"></p> 
   <input type="button" value="Click here for more vacation pics" onClick="displaypic()"> 
   <input type="button" value="Click here to add a pic" onClick="addpic()"> 
</body> 
</html> 
 

Can you see in the above code that using picArray.length everywhere instead of using the number 5 to represent 

the number of pictures in picArray allows this code to work properly and allows all the images to be displayed, 

regardless of how many pictures we add to the array? 

 

Going Backwards 

Finally, when you’re going through your gallery of vacation pictures, you often want the ability to go backwards as 

well as forwards.  You’d first need another button, representing the ability to go backwards through your pictures.  

You’d also need another function, that went backwards instead of forwards. 

To go backwards, instead of increasing the value inside of the count variable, you’d want to decrease it by 1. So 

you’d have: 

count = count -1 

Now when we were going forward, when we got to the last picture in the array, we went back to the beginning by 

setting the count variable to 0.  But now we’re going backwards.  So when the count value gets lower than 0 

(because there is a picture at picArray[0]), we want to set it to the last picture in the array’s location, which is at 

picArray.length – 1 (remember, picArray.length gives us the number of pictures in the array, which is always 1 

larger than the last location in the array).   So the if condition would be: 

    if (count < 0) 
    {   count = picArray.length-1 
    } 
 

That’s it.  Now we have a function that will take us through your vacation slides backwards as well as forwards. 

<!DOCTYPE html><html> 
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<head><meta charset= "utf-8"> 
   <script > 
   var picArray = new Array() 
   picArray[0]="safari1.jpg" 
   picArray[1]="safari2.png" 
   picArray[2]="safari3.jpg" 
   picArray[3]="safari4.jpg" 
   picArray[4]="safari5.jpg" 
    
   var count = -1   
 
   function displaypic() 
        { count = count + 1 
  if (count >= picArray.length) 

{   count = 0 
} 
document.getElementById("pic1").src = picArray[count] 
document.getElementById("p1").innerHTML = count 

        } 
 
   function displaybak() 
        { count = count - 1 
  if (count < 0) 
  {   count = picArray.length-1 
  } 
       document.getElementById("pic1").src = picArray[count] 
  document.getElementById("p1").innerHTML = count 
        } 
 
   function addpic() 
        { var newpic = prompt("Enter new picture") 
  var num = picArray.length 
  picArray[num] = newpic 
  document.getElementById("pic1").src = picArray[num] 
        } 
    
   </script> 
</head> 
<body> 
   <h1> Vacation Pics </h1>   
   <p><img src="Leopard.jpg" height="300" width="390" alt="vacation pics" id="pic1"></p> 
   <input type="button" value="Go Forward" onClick="displaypic()"> 
   <input type="button" value="Go Back" onClick="displaybak()"> 
   <input type="button" value="Click here to add a pic" onClick="addpic()"> 
   <p id="p1">Image number </p> 
</body> 
</html> 
 

setTimeout()  
In order to have a function called automatically, we can use JavaScript’s built-in function called 

setTimeout().  Settimeout does 2 things:  It pauses javaScript for a certain number of milliseconds, and 

then after those milliseconds pause, it then calls a function to make it happen.  If setTimeout is inside of 

a function and it calls that function, it will make that function happen again and again.  Here is an 

example of using setTimeout to call the function displaypic after pausing 2000 milliseconds.   

var picArray = new Array() 

picArray[0] = “cat.jpg”; 
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picArray[1] = “dog.jpg”; 

picArray[2] = “bunny.jpg”; 

picArray[3] = “bird.jpg”; 

var num = -1 

    function displaypic() 

    {            num = num + 1 

    if (num >= picArray.length) 

    {   num = 0 

    } 

    document.getElementById("pic1").src = picArray[num] 

    document.getElementById("p1").innerHTML = num 

    setTimeout(function(){displaypic()},2000) 

    } 

 

setTimeout calls the function setTimeout, which causes javascript to STOP running – just freeze! It stops 

for the number specified (in milliseconds).  After that many milliseconds, it calls the function specified 

setTimeout(   function(){displaypic()}  ,  2000  ) 

So in the above example, setTimeout freezes javascript for 2000 milliseconds (or 2 seconds), and then 

after 2 seconds, it calls the function displaypic(), just as if you’d clicked on a button calling it. 

************************************************************************************ 

NOTE:  Using function(){displaypic()} in setTimeout to call the function displaypic is currently the 

preferred way of using setTimeout.  However, technically it is part of HTML5, which is nonstandard and 

thus may not work on some browsers.  If you have used the above code EXACTLY as I have it above, and 

your code doesn’t work, you should either try running your code in Firefox, or, as an alternative, you can 

use a deprecated version of setTimeout as follows: 

 setTimeout(displaypic(),2000) 

************************************************************************************* 

Example: 

<script> 

function setToRed ( ) 

{ document.getElementById("colorButton").style.color = "#FF0000"; 

   setTimeout ( function(){setToBlack()}, 2000 ); 

} 

function setToBlack ( ) 

{ document.getElementById("colorButton").style.color = "#000000"; 

} 

</script> 

</head> 

<body>  
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<input type="button" name="clickMe" id="colorButton"  

  value="Click me and wait!" onclick="setToRed()"/> 

 

In the above example, when you click on the button, the function setToRed is called, which sets the text 

color to be red, and then pauses 2000 milliseconds.  After 2000 milliseconds, it will call the function 

setToBlack, which will set the text color back to black. 

Here is another example, in which setTimeout is used to make an image of a lightbulb appear and 

disappear.  Before you start, the count variable is set to 0.  Once you click on the body, the function 

myfunc is called and starts executing.  Since count holds 0, count gets changed to hold the value 1.  Then 

the picture in the image with the id ‘img1’ is changed to that of a lightbulb.  The function then pauses for 

1000 milliseconds, and then the function myfunc() is called again.  Since this time, the count variable 

holds the value 1, the count variable’s value is set to 0 and ‘img1’s image src is changed to nothing.  

Again, we pause for 1000 milliseconds, and then myfunc is called again.  This time count holds 0, so its 

value is changed to 1, and ‘img1’s src image is set to be the lightbulb.  This calling the function with the 

count being 1 or 0 will continue indefinitely. 

<script > 

           var count = 0 

           function myfunc() 

           {    if (count == 1) 

                 { count = 0 

                     document. getElementById(“img1”).src = " " 

                 } 

    else if (count == 0) 

                 {           count = 1 

                     document. getElementById(“img1”).src = "Images/lightbulb.jpg" 

                 } 

                 setTimeout(function(){myfunc()},1000) 

           } 

       </script> 

    </head> 

    <body  onClick = “myfunc()”> 

        <p> <img src = "" width = "189" height = "267"  id = "img1"> 

        </p> 

   </body> 

 

In the following example, the script causes each image in the array to be displayed in order continuously 

and automatically. Each time the function is called, the num variable is increased by 1.  If the num’s 

value is greater than or equal to the length of the array picArray, num will be set back to the value of 0.  

Then the image with the id of ‘pic1’s src will be set to the image in picArray at whatever value num 

holds.  This is all like the cycling through an array that we did in the previous Tutorial.  The difference 

now is that setTimeout will pause the javaScript for 2000 milliseconds, and then automatically call the 
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displaypic function for us, so the images will be displayed in order automatically, looping back to the 

beginning of the array when we get to the end. 

<!DOCTYPE html><html><head>  

<meta charset= "utf-8" /> 

   <script > 

 var picArray = new Array() 

 picArray[0]="Images/ kittyfur-back.jpg " 

 picArray[1]=“Images/kittyhimself.jpg" 

 picArray[2]="Images/kittybreakfast.jpg" 

 picArray[3]="Images/kittyno-regrets.jpg" 

 picArray[4]="Images/kttylemon.jpg"  

   

 var num = -1   

function displaypic() 

       {    num = num + 1 

    if (num >= picArray.length) 

    {   num = 0 

    } 

    document.getElementById("pic1").src = picArray[num] 

    document.getElementById("p1").innerHTML = num 

    setTimeout(function(){displaypic()},2000) 

       } 

    

   </script> 

</head> 

<body> 

   <h1> Vacation Pics </h1>   

   <p><img src = "Images/Leopard.jpg" height = "300" width = "390" alt = "vacation pics" id = "pic1" > </p> 

   <input type = "button" value = “Start Slide Show" onClick = "displaypic()"> 

   <p id = "p1">Image number </p> 

</body> 

</html> 

Onload 
 

So far we’ve started function in a couple of ways, primarily onClick and onMouseOver and onMouseOut.  

But with slide shows showing images, we may want the slide show not only to go to the next picture 

automatically, but also to start automatically.  We can do that by making the function be called when 

the web page loads into the browser.  For that we’ll use onLoad. 

For example, 

<body onload = “func()”> 

Means that when the body of your html page loads into the browser, func() will be executed. 

So now we’d have: 
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<script > 

           var count = 0 

           function myfunc() 

           { if (count == 1) 

                  { count = 0 

                     document. getElementById(“img1”).src = " " 

                  } 

           else if (count == 0) 

                 { 

                     count = 1 

                     document. getElementById(“img1”).src = "Images/lightbulb.jpg" 

                 } 

                 setTimeout(function(){myfunc()},1000) 

           } 

       </script> 

    </head> 

    <body  onLoad = “myfunc()”> 

        <p><img src = "" width = "189" height = "267"  id = "img1"> 

        </p> 

   </body> 

 

And the function myfunc() will be started automatically when the web page loads into the browser, and 

then it will continue automatically because of the setTimeout function. 

 

In the following example, we’re again cycling through the arrays automatically.  In this case, however, 

we’re setting the h1 element with the id ‘h11’s background style to a background image in the picArray.  

We’re simultaneously setting ‘h11’s text color to be a corresponding hex color from clrArray.  Again, 

each background image and font color will show up for 2000 milliseconds, and then the next background 

image and font color will show up.   

<!DOCTYPE html><html><head>  

<meta charset= "utf-8" /> 

   <script > 

   var picArray = new Array() 

   picArray[0]="Images/Images/bg1.jpg" 

   picArray[1]="Images/Images/bg2.jpg" 

   picArray[2]="Images/Images/bg3.jpg" 

   picArray[3]="Images/Images/bg4.jpg" 

   picArray[4]="Images/Images/bg5.jpg“ 

    

   var clrArray = new Array() 

   clrArray[0]="#FFFF66" 

   clrArray[1]="#FF0033" 

   clrArray[2]="#FFFFFF" 
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   clrArray[3]="#112200" 

   clrArray[4]="#88AA44“ 

    

   var num = -1   

   function displaypic() 

       {    num = num + 1 

    if (num >= picArray.length) 

    {   num = 0 

    } 

    document.getElementById("h11").style.background = "url("+picArray[num]+")" 

    document.getElementById("h11").style.color = clrArray[num]     

    setTimeout(function(){displaypic()},2000) 

   } 

    

   </script> 

</head> 

<body onLoad = "displaypic()"> 

 <h1 id = "h11"> Different Styles</h1>   

</body> 

</html> 

 

In the following code, the count variable is set to 0 and the xcoord is set to be 800 before any function is 

called.  Then when the page is loaded, the image with the id ‘img1’ style gets set to an absolute 

positioning.  10 is subtracted from the xcoord.  And then the ‘img1’ image is moved to that new 

position.  After 400 milliseconds (about half a second), the function is called again and again 10 is 

subtracted from the xcoord and the image ‘img1’ is repositioned again.  This happens again and again.  

Thus each time the function is called (with setTimeout) the image is moved across the page.  Notice that 

this all only happens when count is not 50.  When the count variable reaches 50, it is set back to 0 and 

the xcoord value is set back to 800, thus restarting the image’s position back on the other side of the 

screen (think of a train moving automatically across your screen). 

<!DOCTYPE html><html><head>  

<meta charset= "utf-8" /> 

<script>  

           var count = 0 

           var xcoord = 800 

           function myfunc() 

           {     if (count == 50) 

                 { count = 0  

  xcoord = 800                 

    } 

    else  

                 { document.getElementById('img1').style.position = "absolute" 

  xcoord = xcoord - 10 

  document.getElementById('img1').style.left = xcoord+"px" 
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  count = count + 1 

                   } 

      setTimeout(function(){myfunc(),400)  

           } 

 </script> 

 </head> 

 <body onLoad = "myfunc()"> 

        <p><img src = "Images/train.jpg" width = "189" height = "267"  id = "img1" ></p> 

 </body> 

</html> 

 

Parameters: 
Parameters are another way of having something hold a value. 

 E.g., var x = 3 

Now the variable x holds 3.  We can use x as if it is the number 3 

var narr = new Array() 

narr[0] = “cat” 

narr[1] = “dog” 

Now the array narr at location 1 holds the word “dog”, and we can use narr[1] as if it is the word “dog” 

Parameters are another way of placing values into variables.  So, for instance, you could have: 

function func(easyorhard) 

{  If (easyorhard == ‘easy’) 

 

<p onclick = “func(‘easy’)”> click here to call the function with the parameter ‘easy’ </p> 

 

Now when you click on the paragraph, the word ‘easy’ is placed in the parameter easyorhard, so 

easyorhard can be used as if it is the word ‘easy’ 

 

In the following example, depending on the paragraph you click on, the parameter param will hold a 

different value.  So if you click on the paragraph that says, “Click here for snow”, param will hold the 

word ‘snow’.  If you click on the paragraph that says, “Click here for rain”, param will hold rain.  If you 

click on the paragraph that syas, “click here for sun”, param will hold sun.   

We’re putting whatever value is within the () in the function call into the parameter. 

e.g., 

onClick = showparam(‘rain’) -> function showparam(param) 
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‘rain’ goes into param 

so now param can be used as if it is the word ‘rain’ 

This is just like variables.  We are just putting a value into the parameter when we call the function. 

<!DOCTYPE html><html><head>  

<meta charset= "utf-8" /> 

   <script > 

   function showparam(param) 

       {    if (param == 'snow') 

    { document.getElementById("h11").innerHTML = "it's snowing!" 

    } 

    else if (param == 'rain') 

    { document.getElementById("h11").innerHTML = "it's raining!" 

    } 

     else if (param == 'sun') 

    { document.getElementById("h11").innerHTML = "it's sunny!" 

    } 

   } 

   </script> 

</head> 

<body> 

 <h1 id = "h11"> Different Styles</h1>   

 <p id = "p1" onClick = "showparam('snow')">click here for snow</p> 

 <p id = "p2" onClick = "showparam('rain')">click here for rain</p> 

 <p id = "p3" onClick = "showparam('sun')">click here for sun</p> 

</body> 

</html> 

 

In the following function, the value in par1 is dependent on which picture you roll your mouse over.  If 

you roll your mouse over the image with the id ‘img1’, the function changepic is called with the value 

‘pic1.jpg’.  That is the value that will go into par1, so par1 will hold ‘pic1.jpg’ and can be used as if it is 

the value ‘pic1.jpg’.  If you run your mouse over the image with the id ‘img2’, the function changepic is 

called with the value ‘pic2.jpg’, so now par1 will hold ‘pic2.jpg’ and can be used as if it is ‘pic2.jpg’. 

Calling changepic(‘anything.jpg’) will put ‘anything.jpg’ into par1, so inside the function changepic, par1 

can be used as if it is ‘anything.jpg’. 

 

<!DOCTYPE html><html><head>  

<meta charset= "utf-8" /> 

 <script>  

         function changepic(par1) 

         {   document.getElementById('bigpic').src = par1; 

 } 

 function changebak() 

         {   document.getElementById('bigpic').src = ""; 
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 } 

    </script> 

    </head> 

    <body > 

 <table ><tr><td colspan = "4" height = "300" width = "300"> 

  <img src = "frog.jpg" width = "250" height = "250" id = "bigpic"> 

 </td></tr> 

 <tr><td > 

          <img src = "pic1.jpg" width = "40" height = "40"  id = "img1"  

  onMouseOver = "changepic('pic1.jpg')" onMouseOut = "changebak()"> 

 </td><td> 

      <img src = "pic2.jpg" width = "40" height = "40"  id = "img2"  

  onMouseOver = "changepic('pic2.jpg')" onMouseOut = "changebak()"> 

 </td><td> 

      <img src = "pic3.jpg" width = "40" height = "40"  id = "img3"  

  onMouseOver = "changepic('pic3.jpg')" onMouseOut = "changebak()"> 

 </td><td> 

      <img src = "pic4.jpg" width = "40" height = "40"  id = "img4"  

  onMouseOver = "changepic('pic4.jpg')" onMouseOut = "changebak()"> 

 </td></tr></table> 

   </body> 

</html> 

 

Functions can have more than one parameter.  When they do, the first value goes into the first 

parameter, and the second value goes into the second parameter.  In the following code, when you click 

on the first button, myfunction is called with (‘Harry Potter’,’Wizard’).   

In the function inside the script (the function definition), we see 2 parameters, name and job, i.e., 

function myFunction(name,job) 

‘Harry Potter’ goes into the parameter name, and  

‘Wizard’ goes into the parameter job. 

This happens because ‘Harry Potter’ came first and ‘Wizard’ was second.  So the first value goes into the 

first parameter, or name, and the second value goes into the second parameter, or job. 

In the second example, when we call myFunction(‘Bob’,’Builder’), ‘Bob’ boes into name and ‘Builder’ 

goes into job, again, because ‘Bob’ was first and ‘Builder’ was second, just as name was the first 

parameter and job was the second parameter. 

<!DOCTYPE html><html><head>  

<meta charset= "utf-8" /> 

<script> 

 function myFunction(name,job) 

 { document.getElementById('p1').innerHTML = "Welcome " + name + ", the " + job; 
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 } 

</script> 

</head> 

<body>  

 <p id = "p1">Results go here.</p>   

 <button onclick="myFunction('Harry Potter','Wizard')">Try it</button> 

 <button onclick="myFunction('Bob','Builder')">Try it</button> 

</body> 

</html> 

 

In this case, we have a function with 2 parameters.  The first, par1, will hold the id of an image.  The 

second will hold a number, which will be used to position the image down from the top of the page. 

In this example, when you click on the start button, and the startfunc() is called.  Now, the startfunc() is 

what calls the function myfunc().  It first calls the function myfunc() with ‘img1’ and 20.  So myfunc’s first 

parameter, par1, holds ‘img1’.  Its second parameter, par2, holds 20.  Now in the function, the image 

with the id ‘img1’ (inside of par1) position is set to be absolute, and 20 (inside of par2) pixels down from 

the top.  Its left position is set to be a random number between 0 and 100, which is added to the old left 

position.  Thus the img1 moves across the page at random speeds.   

Back to startfunc.  It then calls myfunc() with ‘img2’ and 160.  ‘img2’ goes into par1 and 150 goes into 

par2.  So now myfunc sets the position of the image wit the id of img2 (inside of par1) to be absolute, 

and sets it to be down from the top 160 (inside of par2) pixels down from the top.  It then generates 

another random number and starts moving the ‘img2’ image across the screen randomly.  So, in 

essence, you end up with a racing condition between the two images. 

<!DOCTYPE html><html><head><meta charset= "utf-8" /> 

  

<script>  

           var ycoord = 5 

           function myfunc(par1,par2) 

          {  document.getElementById(par1).style.position = "absolute" 

  document.getElementById(par1).style.top = par2 + "px" 

  ycoord = ycoord + Math.floor(Math.random()*100) 

  document.getElementById(par1).style.left = ycoord+"px" 

  setTimeout(function(){myfunc(par1,par2)},400) 

           } 

           function startfunc() 

 { myfunc('img1',20) 

  myfunc('img2',160) 

  } 

</script> 

</head> 

<body> 

         <p ><img src = "Images/train.jpg" width = "189" height = "267"  id = "img1"  

  style = "position: absolute; top: 20px; left: 5px"></p> 
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 <p ><img src = "Images/train.jpg" width = "189" height = "267"  id = "img2"  

  style = "position: absolute; top: 160px; left: 5px"></p> 

 <h1 style="color:white;" id = "h11">  </h1> 

 <p style = "position: absolute; top: 270px; left: 5px"> 

 <input type = "button" onclick = "startfunc()" value = "start" ></p> 

   </body> 

</html> 

 

Using Parameters to move things: 

In the following example, when you click on the image with the left arrow (with the id ’i1’), the function 

Movecar is called with the value ’left’.  Now inside the function, the parameter direction holds ’left’.  So 

inside the function, the variable rightleft gets reduced by 10, and the image on the page with the id of 

’car’ is repositioned 10 pixels to the left.   

If you click on the right arrow on the page (the image with the id ’i2’) the function Movecar is called with 

the value ’right’.  Now inside the function, the parameter direction holds ’right’.  So inside the function, 

the variable rightleft gets increased by 10, and the image on the page with the id of ’car’ is repositioned 

10 pixels to the right.   

var rightleft =0 

function Movecar(direction) 

{ if (direction == "right") 

 { rightleft = rightleft +10 

  document.getElementById(“car").style.left = rightleft + "px" 

 } 

 else if (direction == "left") 

 { rightleft = rightleft - 10 

  document.getElementById(“car").style.left = rightleft + "px" 

 } 

}  

</script> 

</head> 

<body> 

<img src = "Images/left.gif" width= "25px" height = "25px" jd = ‘i1’ onclick = "Movecar('left')">  

<img src = "Images/right.gif" width= "25px" height = "25px" id = ‘i2’ onclick = "Movecar('right')"><br> 

 

What if we want to move the car over something? Now if we have something else on the page, how do 

we tell whether one image has been moved over the other?  In other words, let’s say we have a frog 

image on the road.  The following code includes a function called Movefrog that places the frog image 

somewhere randomly on the road.  We can use the arrows to move the car back and forth, including 

over the frog.  So when you click on the button in the web page, the function startit() is called.  The 

function startit() calls Movefrog(), which generates a random number and then positions the frog at that 

random position on the road.  Every 20 seconds, it repositions the frog.  In the meantime, we are still 

able to move the car using the arrows (as described above).  So now we can move the car over the frog. 
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var rightleft =0 

var xpos =0 

 

function startit() 

{    Movefrog() 

} 

function Movecar(direction) 

{ if (direction == "right") 

 { rightleft = rightleft +10 

  document.getElementById(“car").style.left = rightleft + "px" 

 } 

 else if (direction == "left") 

 { 

  rightleft = rightleft - 10 

  document.getElementById(“car").style.left = rightleft + "px" 

 } 

} 

  

function Movefrog() 

{ xpos = Math.floor(Math.random() * 650)  

 document.getElementById(‘frog').style.left = xpos + "px" 

 setTimeout(function(){Movefrog()},20000) 

}  

</script> 

</head> 

<body> 

<div id = "hi" style = "position: relative;"> 

    <img src = “frog.png" id = “frog" width= "150" height = "150" style = "position: absolute; top: 0px; left: 

0px;"> 

    <img src = “car.png" id = “car" width = "150" height = "150" style = "position: absolute; top: 0px; left: 

0px; "> 

</div 

<img src = "Images/left.gif" width= "25px" height = "25px" onclick = "Movecar('left')">  

<img src = "Images/right.gif" width= "25px" height = "25px" onclick = "Movecar('right')"> 

<input type = "button" value = "start" onClick = "startit()"> 

 

How do we check if the car is over the frog?  We must add code that looks at the position of the car and 

the position of the frog.  Every time we move the car, we want to check if the car is over the frog by 

looking to see if the rightleft variable (the position of the car) is between the xpos (the position of the 

frog) – 11 and xpos + 11 (I made up 11 – it’s my range for saying that the car is over the frog.  I could 

have made it be exact, in which case the car would have to have been exactly over the frog, by saying, 

If rightleft == xpos… 

But I wanted to allow a bit of leeway. 



20 
 

var rightleft =0 

var xpos =0 

Totalscore = 0 

function startit() 

{    Movefrog() 

} 

function Movecar(direction) 

{ if (direction == "right") 

 { rightleft = rightleft + 10 

  document.getElementById(“car").style.left = rightleft + "px" 

 } 

 else if (direction == "left") 

 { 

  rightleft = rightleft - 10 

  document.getElementById(“car").style.left = rightleft + "px" 

 } 

 if ((rightleft > (xpos - 11)) && (rightleft < (xpos + 11)) )   

 { document.getElementById(‘frog').src="Images/splat.png" 

  totalscore = totalscore + 10 

  document.getElementById('tot').innerHTML = "Total Score: "+totalscore    

  xpos = 0 

 } 

} 

  

function Movefrog() 

{ document.getElementById(‘frog').src="Images/frog.png“ 

 xpos = Math.floor(Math.random() * 650)  

 document.getElementById(‘frog').style.left = xpos + "px" 

 setTimeout(function(){Movefrog()},20000) 

}  

</script> 

</head> 

<body><p id = “tot”>Score goes here<p> 

<div id = "hi" style = "position: relative;"> 

    <img src = “frog.png" id = “frog" width= "150" height = "150" style = "position: absolute; top: 0px; left: 

0px;"> 

    <img src = “car.png" id = “car" width = "150" height = "150" style = "position: absolute; top: 0px; left: 

0px; "> 

</div 

<img src = "Images/left.gif" width= "25px" height = "25px" onclick = "Movecar('left')">  

<img src = "Images/right.gif" width= "25px" height = "25px" onclick = "Movecar('right')"> 

<input type = "button" value = "start" onClick = "startit()"> 

 

That’s it.  Now you know parameters, setTimeout 


