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A Generalized Chinese Remainder Theorem for
Residue Sets With Errors and Its Application
in Frequency Determination From Multiple

Sensors With Low Sampling Rates
Xiang-Gen Xia and Kejing Liu

Abstract—The Chinese remainder theorem (CRT) has been re-
cently generalized from determining a single integer from its re-
mainders to determining multiple integers from their sets (residue
sets) of remainders. In this letter, we consider the generalized CRT
when the residue sets have errors. We first obtain a sufficient con-
dition on the number of erroneous residue sets so that multiple in-
tegers still can be uniquely determined from their residue sets. We
then propose a determination algorithm of multiple integers from
their residue sets with errors. Finally, we apply the newly proposed
algorithm to multiple frequency determination from multiple sen-
sors with low sampling rates and show the effectiveness of the pro-
posed algorithm with considering residue set errors over the one
without considering residue set errors.

Index Terms—Chinese remainder theorem (CRT), multiple
frequency determination, remainder errors, sensor networks,
undersampling.

I. INTRODUCTION

THE conventional Chinese remainder theorem (CRT) is to
determine a single integer from its remainders from a set of

modulos. It has tremendous applications in various areas, such
as cryptography [11] and digital signal processing [10]. CRT has
various generalizations [11]. A different generalization of CRT
has been recently proposed in [1]–[3], where (instead of a single
integer in CRT) multiple integers need to be determined from
(not a sequence of remainders but) a sequence of sets, residue
sets, of remainders. A residue set consists of the remainders of
multiple integers modulo a modulus integer, and the residue set
is not ordered, i.e., the correspondence between the elements in
the residue set and the multiple integers is not specified. The
generalized CRT studied in [1] was motivated from the deter-
mination of multiple frequencies in a superpositioned signal of
multiple sinusoids from its multiple undersampled waveforms.
This has applications in a sensor network, where multiple sen-
sors have low power and low transmission rates, and their sam-
pling rates may be low and much lower than the Nyquist rate of
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a signal of interest in the field. The generalized CRT has been
used in synthetic aperture radar (SAR) imaging of moving tar-
gets [4] and polynomial phase signal detection [5].

In the study of the generalized CRT in [1]–[3] and [6], it is as-
sumed that the residue sets do not have errors, i.e., all remainders
are assumed error free. In some applications, such as the mul-
tiple frequency determination studied in [1], errors may occur
in the remainders. The main goal of this letter is to consider the
generalized CRT when some of the remainders in residue sets
have errors. We first present a sufficient condition on the number
of residue sets with errors so that the multiple integers still can
be uniquely determined from the residue sets with errors and
the corresponding modulos. We then present a determination al-
gorithm. Finally, we apply the proposed algorithm for the gen-
eralized CRT with residue set errors to the multiple frequency
determination in a superpositioned signal contaminated by addi-
tive noise from its undersampled signals at multiple sensors. Our
simulation results show that the error rates of multiple frequen-
cies can be significantly reduced with the proposed algorithm
considering residue errors compared to the one in [3] without
considering residue set errors. Note that the conventional CRT
with remainder errors has been nicely studied in [7]–[9].

This letter is organized as follows. In Section II, we describe
the problem. In Section III, we first present a sufficient condition
on the number of residue sets of errors for the unique determina-
tion and then present an algorithm for the unique determination.
In Section IV, we apply the proposed algorithm in a sensor net-
work with low sampling rates.

II. PROBLEM FORMULATION

Let be a set of distinct positive inte-
gers and be a set of positive integers that,
without loss of generality, is assumed relatively coprime, i.e.,
any two of are coprime, and .
The remainder (or residue) of modulo is

mod for (1)

For , define the residue set of modulo

(2)

Thus, there are residue sets .
Furthermore, some of these residue sets may have errors.
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What we know is , that are
, contaminated with errors.

Suppose the correspondence between error contaminated
residue set and for is
specified, but the correspondence between and its remainder

is not known.
The problem is to determine set of multiple integers

from the error contaminated residue
sets and their corresponding modulos

.
There are three questions associated with the above problem.

1) What is the dynamic range of these multiple integers so
that they can be uniquely determined? 2) How many errors of
the residue sets can be corrected? 3) How can these multiple
integers be determined? When and there are no errors
in remainders, CRT provides a complete solution for the above
problem. When but there are errors in remainders, it is
the CRT with errors [7]. When and there are no errors in
remainders, it is the generalized CRT studied in [1]–[3] and [6].
In [1], a dynamic range for the uniqueness of the determination
of the multiple integers when the residue sets do not have any
errors is given: If

(3)

where

lcm

(4)
where

(5)

for some . In [3], based on the above dynamic
range, an efficient determination algorithm is proposed. In the
following, the results obtained in [1] and [3] are generalized to
the case when residue sets have errors.

III. UNIQUENESS AND A DETERMINATION ALGORITHM

We first have a uniqueness result on the determina-
tion of , from their erroneous residue sets

and .
For with defined in (5), let

(6)

and let denote the size of the following set (i.e., the number of
residue sets with errors):

(7)

Then, we have the following result.
Theorem 1: If integers and the number of residue sets

with errors satisfy, respectively

(8)

(9)

where and are defined in (5), then integers ,
can be uniquely determined from and

.
Proof: Assume there are two sets of integers

and satisfying the above condi-
tions with the same residue sets and modulos

. From condition (9), we have ,
and thus, these two sets of integers share at least common
residue sets without errors. By noticing the dynamic range (8),
one may replace in the proof in [1] with and the rest of the
proof to show is the same as
the one in [1].

We next generalize the algorithm proposed in [3] to residue
sets with errors, which will also confirm the result in Theorem
1. Based on the known error contaminated residue sets

, we define their product set

(10)

A. Determination Algorithm

Step 1: Arbitrarily take a vector
in (10). We know that there are at most

remainders in the residue vector wrong, i.e., there
are at least correct remainders in this residue vector.

Step 2: For each , define the coset of

and integers

(11)

where is defined in (6). Note that all the numbers in set
have the same remainder modulo .

Step 3: From (9), it is easy to check that , i.e.,
there are at least error-free residue sets, but there are only

different integers . Thus, there are at least correct
remainders sharing a common integer in , i.e., there exist in-
tegers with such that the
remainders are error free and from a common in-
teger, which means that

Based on this observation, Step 3 is to look for indices
such that . Due to the dynamic range

condition (8) and (11), by the conventional CRT, set
has only one element, i.e., . Note that, for indices

such that , its remainders
may not be necessarily remainders of a single in-

teger in . If they were remainders of a single integer in , we
would have . The next step is to check when .

Step 4: Check whether is a valid integer; check how many
remainders mod belong to for

. Let be the cardinality of the set
. If

(12)

then is a valid integer, i.e., .
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In fact, when (12) holds, due to (9), the remainder set has
at least

correct remainders. Since there are only integers in , there
exist at least remainders in sharing a common integer
in . With the same argument as in Step 3, we conclude that

.
If is not a valid integer, take another index set

such that

until is a valid integer. Denote the valid integer as . Note
that the existence of such a valid is ensured by the analysis
in Step 3.

Step 5: For , remove mod
from the residue set to form a new residue set

given in (13), shown at the bottom of the
page, for , where denotes the cardinality of
a set. If , an erroneous residue set is
detected, and it is removed from the residue sets for any further
consideration. We replace by and by , or it is kept
unchanged for the next iteration because some of its elements
may be correct remainders. We also remove from and set

.
Step 6: Go to Step 1 by replacing with and changing

the residue product set into .
Repeat this process until is determined.

End of the algorithm.
Note that the above validation of the algorithm also con-

firms that when the dynamic range (8) holds and the number
of erroneous residue sets satisfies (9), multiple integers can
be uniquely determined from their residue sets with errors.
Comparing with the generalized CRT without residue set errors
obtained in [1] and [3], the robustness to the residue set errors
studied in this letter comes from the sacrifice of the dynamic
range of uniquely determinable integers , which is
reduced from to with . As a remark,
the above algorithm may have high complexity when the pa-
rameters are large. Any faster algorithm would be interesting.

As an example, consider two integers, i.e., and
relatively coprime integers: 11, 13, 17, 19, 23, 29, 31, 37, 41,
43, 47, 53, 59, 61, or 67. Choose . In this case, .
Then, according to the above results, if two positive integers

; then, these two in-
tegers can be uniquely determined from their 15 residue sets,
even when three of these 15 residue sets are erroneous. Cor-
responding to the multiple frequency determination application

studied in [1], two frequencies as high as 46 188 Hz in a superpo-
sitioned signal can be uniquely determined from 15 undersam-
pled waveforms with the highest sampling rate 67 Hz, where any
three of the undersampled waveforms may be completely dam-
aged. Note that if there are no errors in residue sets, from the
results obtained in [1] and [2], two uniquely determinable fre-
quencies can go as high as

Hz with the same sampling rates as above.

IV. FREQUENCY DETERMINATION FROM MULTIPLE

SENSORS WITH LOW SAMPLING RATES

In this section, we apply the proposed algorithm in Section III
to determine multiple frequencies from multiple sensors with
undersampling rates. Consider sensors with sampling rates

Hz and to satisfy the assumptions made in the beginning
of Section II, . Consider multiple frequencies

Hz in a superpositioned waveform.
At the th sensor, the received analog signal is of the following
form:

(14)

where are nonzero complex coefficients, and
is the additive white noise. The sampled signal at the th

sensor with sampling rate Hz is

(15)

which also can be thought of as a received signal at a base station
from the th sensor. The problem is to determine the multiple
frequencies , from the above sampled
data , where the sampling rates may be
much lower than the signal frequencies . Note that the above
undersampling may be necessary when the transmission rates of
multiple sensors are low.

Based on the sampled data at the th sensor, we take
-point discrete Fourier transform (DFT) and obtain

DFT

(16)
for , where is the remainder of modulo .
which is the same as in Section II. Clearly, if the noise power
of is not too high, i.e., the signal-to-noise ratio (SNR) is
not too low, the remainder can be correctly detected from
the DFT coefficients through (16). Otherwise, the re-
mainder may have an error, which precisely corresponds to
the problem studied in Sections II and III. Thus, we may apply
the algorithm developed in Section III to the above multiple fre-
quency determination problem.

if and
if and

(13)
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Fig. 1. Multiple frequency estimation comparison between generalized CRT
with errors proposed in this letter and without errors proposed in [3].

We next see a simulation. In the simulation, consider three
frequencies, i.e., , and 15 sensors with the sampling
rates of primes from 11 to 67 (the same as the previous ex-
ample) and choose . Thus, the dynamic range in (8) is

. The SNR is defined as
the ratio of the variance of over the variance of the additive
white Gaussian noise . In the simulation, three dis-
tinct frequencies are randomly chosen in the range
between 2000 and 2431. The coefficients are randomly
chosen from zero-mean complex Gaussian distributions, inde-
pendently and identically in terms of and . From the theory we
developed in Section III, three frequencies can be determined
when any three signal waveforms from sensors are damaged or
any three residue sets have errors. Two kinds of frequency detec-
tion error rates are calculated. One is the error rate of individual
frequencies (FrER), and the other is the error rate of a frequency
set (FrSER), i.e., when any of the three frequencies in the set is
wrong, the set is counted wrong. In the simulation, for conve-
nience, three remainders in are selected after
the -point DFT from the three largest absolute values of the
DFT coefficients for . Also, when no valid integer
can be found in Step 4, a frequency set error and three frequency
errors are counted, respectively. It is similarly done for the al-
gorithm in [3]. The proposed algorithm (solid lines in Fig. 1)
in Section III is compared with the algorithm (dashed lines in
Fig. 1) in [3], where residue errors are not considered. From
Fig. 1, one can see that the newly proposed algorithm signifi-
cantly outperforms the one in [3] with a comparable complexity.

V. CONCLUSION

In this letter, we considered the generalized CRT with erro-
neous residue sets, i.e., the determination of multiple integers
from a set of modulos and the corresponding residue sets with
errors. We obtained a sufficient condition on the number of erro-
neous residue sets when a dynamic range of multiple integers is
given, so that the multiple integers can be uniquely determined.
We then presented an algorithm for the determination. The re-
sults in this letter are generalizations of the ones in [1] and [3]
from error-free residue sets to erroneous residue sets, and the ro-
bustness to the errors in residue sets comes from the sacrifice of
the dynamic range of multiple uniquely determinable integers.
We finally applied the proposed algorithm to determine mul-
tiple frequencies from multiple sensors with much lower sam-
pling rates than the Nyquist rate of a signal. Our simulation re-
sult shows that the error rates of the detected frequencies can
be significantly reduced by using the algorithm proposed in this
letter with considering residue errors from the ones using the
algorithm proposed in [3] without considering residue errors.
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