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An Orthogonal Space–Time Coded CPM System
With Fast Decoding for Two Transmit Antennas

Genyuan Wang and Xiang-Gen Xia, Senior Member, IEEE

Abstract—Trellis-coded space–time (TC-ST) coding for con-
tinuous-phase modulation (TC-ST-CPM) was recently proposed
by Zhang and Fitz. In this paper, we propose an orthogonal
space–time coding for CPM (OST-CPM) systems and two
transmit antennas. In the proposed OST-CPM, signals from
two transmit antennas at any time are orthogonal while both
of them have continuous phases. Similar to Alamouti’s OST
coding for phase-shift keying (PSK) and quadrature amplitude
modulation (QAM) systems, the newly proposed OST-CPM has
a fast decoding algorithm.

Index Terms—Alamouti’s scheme, continuous-phase modula-
tion, orthogonality, space–time coding.

I. INTRODUCTION

SPACE–TIME coding for multiple transmit antennas has at-
tracted considerable attention due to its potential capacity

increase, see, for example, [1]–[8]. Due to a large number of
codewords for a reasonable rate space–time code, its decoding
complexity may be prohibitively high. Alamouti [5] recently
proposed an orthogonal space–time (OST) code design for two
transmit antennas such that the decoding is fast, i.e., symbol-by-
symbol decoding, and has the full diversity. This idea has been
extended to a general number of transmit antennas by Tarokh,
Jafarkani, and Calderbank [6], and further generalized in [8].
The key reason for the fast decoding of OST codes is the or-
thogonality that enables maximum-likelihood (ML) decoding of
multiple symbols to be reduced into ML decoding of individual
symbols.

Note that the above mentioned space–time coding schemes
are for phase-shift keying (PSK) and quadrature amplitude mod-
ulation (QAM) modulation systems. Continuous-phase modula-
tion (CPM), on the other hand, has also been widely used due to
its spectral efficiency and wireless fading resistance [8], such as
in the Global System for Mobile Communications (GSM) stan-
dard. Zhang and Fitz in [10] recently proposed a trellis-coded
space–time CPM (TC-ST-CPM) system. The goal of this paper
is to design an orthogonal space–time coding for CPM system
similar to the OST for PSK and QAM systems. The difficulty
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for the OST code design for CPM systems arises due to the con-
straint of the continuous phase of a transmitted signal.

In this paper, by modifying Alamouti’s scheme, an OST code
design for two transmit antennas and both full and partial re-
sponse CPM systems (OST-CPM) is given. For the newly pro-
posed full response OST-CPM, we develop a fast decoding algo-
rithm that is not simply the one for Alamouti’s scheme, which
is briefly explained as follows. Because of the memory in the
CPM, the symbols sent by different transmit antennas cannot be
separated independently at the receiver, which is different from
Alamouti’s scheme for QAM systems. These symbols, however,
can be separated into several independent subsets of indepen-
dent symbols on each branch of a CPM trellis and these sub-
sets depend on the modulation indexes used in the CPM system.
Then, the joint ML decoding of multiple symbols becomes a
subset index searching and a symbol-by-symbol searching on
each branch at a state. Furthermore, the number of states is the
number of subsets, i.e., the coset size, which is at most the same
as the one in a single-antenna CPM system as we shall see later
in details. Because the coset size only depends on the CPM in-
dexes and does not depend on the size of CPM symbols, it is usu-
ally small compared to the CPM symbol constellation size. For
example, the coset size is two for the CPM with index .
Therefore, the demodulation complexity can be significantly re-
duced.

The paper is organized as follows. In Section II, we describe
the system model. In Section III, we present the OST-CPM de-
sign for a full-response CPM system. In Section IV, we propose
a fast demodulation scheme. In Section V, we study the perfor-
mance. In Section VI, we generalize the OST-CPM design for
full-response CPM systems obtained in Section III to partial-re-
sponse CPM systems. In Section VII, we present some simula-
tion results.

II. SYSTEM MODEL

We adopt some notations from [10]. In this paper, we consider
a mobile communication system with two transmit antennas

and receive antennas, which is shown in Fig. 1.
Let denote the information symbol se-
quence for the th transmit antenna (after the channel coding
if there is any). The signal received by the th receive
antenna can be written as [9], [10]

(1)
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Fig. 1. Space–time CPM diagram.

where is the additive noise, is the channel gain
from the th transmit antenna to the th receive antenna, and

(2)

and

(3)

and

is the th modulation symbol sequence of the th transmit an-
tenna and comes from the signal constellation set

(4)

is an even number, is the modulation index of the CPM,
is the symbol time duration, and is the phase smoothing

response function.
When , where and are relatively prime inte-

gers, the phase can be expressed as [9], [10], for

(5)
where is the modulation memory size and

(6)

which belongs to the set defined as (after modulo )

(7)

When , this system is called a full response system. In
this case, for the phase is

(8)

Thus, has a trellis structure with states
in . For the space–time coded CPM, the phase

has a trellis structure with states in
the product set , i.e., the number of states increases
exponentially with the number of transmit antennas.

The ML demodulation of the information sequences
of length is [9], [10]

(9)

One can see that, in the above ML demodulation, for both se-
quences and there are branches leaving and coming to
each state in the trellis structure, which is large with large . In
addition, as we explained earlier, the number of states increases
exponentially with the number of transmit antennas. We next
propose an OST-CPM scheme so that the symbols coming from
different transmit antennas can be separated at the receivers and
therefore the ML demodulation complexity can be reduced. For
convenience, we first study the full response CPM systems with
simpler notations and then generalize it to partial-response CPM
systems with more complex notations.

III. OST–ENCODED CPM DESIGN FOR FULL-RESPONSE

CPM SYSTEMS

The information sequence is first mapped into the sequence

of symbols . The sequence is then modulated with
the CPM to generate two CPM-modulated signal waveforms

, . These two CPM-modulated signals are
transmitted by the two transmit antennas simultaneously. The
main goal of this section is to design the CPM waveforms

, , such that the rows of the matrix

(10)

are orthogonal for each for the fast demodulation to be studied
in the next section. As a remark, the above orthogonality
is between two waveforms from two transmit antennas and
different from the orthogonality in the minimum shift-keying
(MSK) modulation, where two waveforms corresponding to
two different information symbols are orthogonal. Also note
that, in Alamouti’s OST coding [5], the OST code is

and the first antenna transmits and while the second an-
tenna transmits and . Clearly, the signals between the
two transmit antennas are orthogonal.

To do so, we use two smoothing phase response functions
and with and

The symbols and are jointly encoded. Assume the mod-
ulation index , where and are relatively prime
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integers. At the time slot between and , the fol-
lowing signals are sent through the first transmit antenna:

(11)
where

for (12)

for (13)

and

(14)

(15)

At the time slot between and , the following
signals are sent through the second transmit antenna:

(16)
where

for (17)

for (18)

and

(19)

(20)

and

(21)

where is the modulo operation of with base ,
and are the integers such that

(22)

(23)

Thus, using (21)–(23), the parameters , , and satisfy
the following relationship:

(24)

where is an integer. By noticing , from (21) we
find that has only possible values for all different symbol
values of and , where

if is odd
if is even. (25)

We now want to check that the row vectors of the transmission
signal matrix defined in (10) are orthogonal for each . From
(13) and (18), for any , , we have

Since

we have

(26)

where step follows from (24). Therefore, we have

(27)

i.e., the rows of the matrix in (10) are orthogonal.
We next describe the detailed relationship between

and , which will be used in the next section for the de-
modulation.

We now decompose the set into disjoint subsets
as follows: for

By doing so, it is not hard to see that the value of only depends
on the indexes and of the subsets and
to which the information symbols and belong, respec-
tively. Therefore, can be written as . Let

(28)

denote the set of all subset indexes in representing .
Because for (for full response

CPM systems), it is easy to check that

if the same initial states and are used, for example,
. In this case, using (22) and (23)

(29)
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for some integer . Thus, for simplicity we assume
, . Similar to the discussion on in (21),

there are only possible values of in the
modulo sense, where is defined in (25). As we will see
later, these possible values of are the states in
the ML demodulation trellis of the above proposed OST-CPM
and, therefore, the number of states for the ML demodulation is

.
For convenience, for , let

(30)

(31)

and

(32)

Since and are independent of each other, the above
and are also independent of each other.

By the assumption that , we have

(33)

(34)

where the value of the term

in (34) only depends on the index number of the subset
to which the information symbol belongs. So, (34)

can be rewritten as

(35)

where is a constant and .
Going back to (16), we have

(36)

where

and depends only on the indexes , of sub-
sets and to which the information symbols and

belong, as we explained earlier. Also,

(37)

where

IV. A FAST DEMODULATION ALGORITHM

Consider the OST-CPM with even number proposed in
Section III. Let be the output of the ML demodulator (9)

(38)

By the trellis structure of the CPM, the sequence detection in
(38) can be implemented using Viterbi algorithm. In Viterbi al-
gorithm, one needs to start from a state and select the
survivor path from the incoming branches. There are pre-
vious states , at the last observation
time . Among these incoming branches, there
are branches coming from state for each .
In the following, (39)–(41) are used to provide a fast algorithm
to find the best path among these branches which come
through state . Then, is compared with the
other paths that are from the preceding states and
arrive at the state to find the survivor path, where
is obtained in the same way as , i.e., it is the best path that
comes from state , ar-
rives at state . Next, we give the detailed algorithm for
searching the best path .

In order to search the best path , the input and
the distance from previous state to the current
state need to be obtained, where the input
causes the state transfer from to . Thus,
we need to search all the branch metrics at the stage as follows:

(39)

We next want to simplify the above branch searching by taking
advantage of the orthogonality of the space–time coded CPM
design obtained in Section III.

Assume that the channel is known at the receiver, i.e.,
coherent detection, and constant during a space–time coding
block . So, for convenience, is rewritten
as . Also for convenience, the received signal is
simply written as by dropping the receive antenna index
and the transmitted symbol sequence in the following deriva-
tions. From the orthogonality of the signals and
and the notations from (30)–(37), (39) can be rewritten as (40)
at the bottom of the following page. Because and
are independent of each other, , , , and

only depend on the index of subsets and
, (40) can be decomposed as (41) at the bottom of the fol-

lowing page, where

(42)

(43)



490 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 3, MARCH 2004

The number of comparisons in the original branch searching
(39) is while the one in (41) from one of the previous states

, to the current state is
. Since defined in (25) only depends on the CPM mod-

ulation index and does not depend on the signal constellation
size , it is usually much smaller than . As an example, when

is used, . In this case, the number of branch
searching (from one of the previous states to the current state)
times is while the original one is . Furthermore, all
memories in the decoding are from as we can see from
the above derivations. Thus, from (31), we know that the states
are the possible values of and,
therefore, there are only states in the trellis as we explained
before. From (25), one can see , which is smaller than

, the number of states of a general space–time block coded
full response CPM system. From (28), (29), and (31), it is not
hard to see that, for each fixed pair , all pairs

correspond to a single state .
From a state to a state , there are multiple
parallel paths. The searching in (41) tells us that, using the or-
thogonality, the parallel path searchings from a state to
a state in Viterbi algorithm are reduced to parallel path
searchings as shown in Fig. 2.

The complexities of single-antenna CPM, the existing delay
diversity CPM mentioned in [10], and our proposed OST-CPM,
are listed in Table I.

Since or depends on the CPM index and does not de-
pend on the CPM symbol size , from Table I, one can see
that, when is large, OST-CPM has a lower complexity than
the delay diversity does. Consider the case when that
is used often. In this case, and the complexity of the
OST-CPM is less than that of the delay diversity scheme when

. Another scheme (we call it the mapping scheme) is
mentioned in [10] for two transmit antennas and full-response

Fig. 2. Parallel paths between two states.

TABLE I
COMPLEXITY COMPARISON.

CPM systems. In the mapping scheme, one information symbol
is mapped to two different waveforms and are then transmitted
at the same time from two antennas. This scheme has a lower
complexity than the delay scheme and has the same complexity
as the OST-CPM in the case of full responses. For partial-re-
sponse CPM systems, the complexity of the mapping scheme is
higher than that of the OST-CPM [11].

V. PERFORMANCE ANALYSIS

For the performance analysis, the basic idea is the same as
those in [2]–[6]. We use to denote the transmitted

(40)

(41)
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signal matrix in (10) with information symbol sequence and
to denote the received signal matrix as

...
...

where is a transmitted symbol sequence. Then, the objective
function in the ML demodulation (38)–(40) can be reformulated
as

(44)

where denotes the Frobenious norm, i.e., the sum of all the
magnitudes squared of the matrix, is the channel co-
efficient matrix, and is the additive white Gaussian noise
of the channel.

To analyze the pairwise error probability from to , let us
first see the difference matrix and consider

for convenience. From (11)–(21), we have (45) at the
bottom of the page, where

Note that the smoothing response functions and are
continuous and take all values between and . Therefore,
when for some , there exists a time interval of

in such that the set of values of and the set
of values of are disjoint for and some and .
This means that there exist and such that, the
difference matrix has full rank and its all
singular values , , and furthermore

for

Therefore,

(46)

Then, the pair error probability can be
upper-bounded in a similar way to that developed in the
literature for PAM/PSK/QAM systems as follows:

SNR (47)

where in this case, i.e., the full-rank diversity, and
is a constant. From the preceding derivations, one can see that
the full-rank criterion still holds for the space–time coded CPM
performance.

What we want to mention here is that, similar to Alamouti’s
scheme for a PSK or QAM signal, the diversity product (or
coding gain/advantage) of our design is not small. It is not less
than where is the free distance of one antenna CPM
system. Another remark is that, in order to have a fast decoding
algorithm as developed previously, the orthogonality at each
time is not necessary and it only needs the waveform orthog-
onality in the sense, i.e., the inner product of the two wave-
forms transmitted by two transmit antennas is zero. The ques-
tion, then, becomes whether it is possible to design higher rate
space–time coded system with this relaxed orthogonality con-
dition. So far, this question is still open. As a final remark, in
our OST-CPM designs, the orthogonality constraint forces the
spectrum of the transmitted signals to be extended but it is not
significant for a high data rate system.

VI. OST-ENCODED CPM DESIGN FOR PARTIAL RESPONSE

CPM SYSTEMS

In this section, we want to generalize the OST-CPM design
from full-response CPM systems obtained in Section III to par-
tial-response CPM systems.

Let and be two smoothing phase response func-
tions with modulation memory sizes and , respec-
tively, where , for , and

for . We next want to generalize (11)–(21)
to the above and .

Let be an independent and identically distributed
(i.i.d.) information symbol sequence. In this section, for nota-
tional convenience, we use the notation rather than as in
Section III for the full-response CPM. At the time slot between

and , the following signals are sent through the
first transmit antenna:

(48)

where

for (49)

for (50)

At the time slot between and , the following
signals are sent through the second transmit antenna:

(51)

(45)
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Fig. 3. Performance comparison of CPM and OST-CPM with one receive antenna.

where

for (52)

for (53)

where is defined by

(54)

where is an integer such that is the smallest for a given
sequence . Therefore, depends on . Unlike the case in
(21) when studied in Section III, the above may not
necessarily have only possible values.

We now want to check the orthogonality between vectors
and for each

. It is not difficult to check that the
phases are continuous in terms of . Similar to (6),
we have

(55)

(56)

Furthermore, by evaluating the continuity of at
in its definition in (52) and (53), we have

(57)

Then, similar to (26), the following equality can be verified after
some algebra:

Therefore, we have shown the orthogonality

The partial-response CPM presented above is different from
the full-response CPM in the sense that takes much more
possible values and it is hard to develop a fast decoding algo-
rithm as in the full response case. However, another orthogonal



WANG AND XIA: AN ORTHOGONAL SPACE–TIME CODED CPM SYSTEM 493

space–time code design for partial-response CPM with a fast al-
gorithm is obtained in our current work [11] where an additional
differential encoding is adopted.

VII. SIMULATION RESULTS

In this section, some simulation results of CPM, space–time
CPM with mapping scheme mentioned in [10] and OST-CPM
for two transmit and one receive antennas over fading channels
are given. The fading channel is quasi-static and flat, i.e., con-
stant in the CPM or the OST-CPM symbol duration but fading
in different symbols. In the simulations shown in Fig. 3, we use
full-response CPM modulation with modulation index ,
smoothing phase function when ,
when , when ; smoothing phase function

when ,
when , when . The signal constella-
tion size is . From Fig. 3, we can see that the perfor-
mances of OST-CPM and ST-CPM with mapping scheme [10]
are similar and much better than that of a single-antenna CPM.
Since space–time CPM with delay diversity has almost the same
performance as that of OST-CPM but has a much higher de-
coding complexity, the simulation results of space–time CPM
with delay diversity is not shown here.

VIII. CONCLUSION

In this paper, we proposed an OST-CPM for two transmit
antennas, in which the signals from two transmit antennas are
orthogonal at any time while both of them have continuous
phases. With our proposed OST-CPM, we derived a fast ML
demodulation algorithm.
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