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Fast Decoding Based on MDS Codes
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Abstract—In wireless communication systems, signal space
diversity techniques are usually adopted to combat channel
fading by exploiting time diversity, frequency diversity, spatial
diversity or a combination of them. Most existing schemes to
achieve signal space diversity are based on linear constellation
spreading. In this paper, we propose a novel nonlinear signal
space diversity technique based on maximum distance separable
(MDS) codes. The new technique provides a design flexibility for
almost any number of diversity channels and desired diversity
orders. We also propose a simple and suboptimal diversity
channel selection (DCS) decoding for our new scheme. DCS
decoding can greatly reduce the decoding complexity at a cost of
marginal performance loss relative to the optimal detection while
keeping the diversity order. Simulation results show that with
the same throughput but a lower decoding and implementation
complexity, our scheme can have superior performance than the
optimal linear spreading schemes over either independent fading
or additive white Gaussian noise (AWGN) channels.

Index Terms—Coding gain, diversity order, Euclidean distance,
frequency diversity, signal space diversity, Latin square, MDS
codes, modulation diversity, OFDM, product distance, spatial
diversity, time diversity.

I. INTRODUCTION

IN wireless communication systems, signal space diver-
sity or modulation diversity [1]-[3] is usually adopted to

counteract channel fading. For signal space diversity, a fixed
number of information bits are mapped to a multidimensional
signal constellation, i.e., a vector of symbols, at transmitter
side and consequently, multiple copies of each bit are sent
over multiple diversity channels to achieve diversity gains as
well as coding gains. This technique can be utilized to exploit,
for instance, time diversity in a fast fading channel, frequency
diversity in an orthogonal frequency-division multiplexing
(OFDM) system [4]-[7] operating over a multipath channel, or
spatial diversity via a diagonal space-time block code (STBC)
[8]-[15] in a multi-input multi-output (MIMO) channel. The
diversity order and coding gain are the minimum Hamming
distance and the minimum product distance between any two
coordinate vectors of constellation points, respectively.

Most existing methods to achieve signal space diversity are
based on linear constellation spreading or rotation, see [1]-
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[16], for example. To be specific, the information bits are
first sequentially mapped to multiple symbols in a regular
constellation which are subsequently rotated/multiplied by a
square spreading matrix. The resulting rotated symbols are
transmitted over multiple diversity channels. Other than the
linear spreading technique, a nonlinear design from exhaustive
search called multi-QAM modulation was proposed in [17] to
achieve full diversity, where the information bits are directly
modulated over a multidimensional QAM constellation. For
almost all the known schemes, the diversity gain is achieved
at the price of an exponentially increased maximum-likelihood
(ML) decoding complexity. Although some simplified detec-
tion methods such as zero-forcing (ZF) or minimum mean
square error (MMSE) equalizer are feasible, they will suffer
a significant diversity loss [7].

In this paper, we propose a novel nonlinear signal space
diversity technique based on maximum distance separable
(MDS) codes. It is known that a code is called MDS if
it achieves the Singleton bound [18] and hence maximizes
the minimum distance among codeword pairs. The idea un-
derlying the new design is totally different from the linear
constellation rotation method, providing the design flexibility
for almost any number of diversity channels and desired
diversity orders as well as possessing a simple and suboptimal
diversity channel selection (DCS) decoding that we propose
later. Specifically, unlike the traditional linear spreading de-
signs that are over the complex field, our proposed method is
over the binary field, characterized by a MDS code and the
constellation labelling. Our design is flexible in the sense that
it can achieve any diversity order between one (no diversity)
and the number of diversity channels (full diversity). Note that
a higher diversity order usually requires a larger constellation,
and our scheme always has all the modulated/rotated symbols
on a smallest possible regular constellation so that the average
transmit powers for all the diversity channels keep the same.
With such flexibility, it is possible to design a partial diversity
scheme with a reasonably small constellation in order to ease
the practical implementation. At the receiver side, the DCS
decoding can greatly reduce the decoding complexity at a
cost of marginal performance loss relative to the optimal ML
detection while keeping the diversity order. Besides presenting
the systematic design idea above, we also provide some design
examples for three and four diversity channels. Simulation
results show that with the same throughput but a lower
decoding and implementation complexity, our scheme, thanks
to their nonlinear feature, can have superior performance than
the optimal linear constellation spreading schemes over either
independent fading or additive white Gaussian noise (AWGN)
channels.

The rest of this paper is organized as follows. In Section
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information bits
b = (𝑏1, 𝑏2, ⋅ ⋅ ⋅ , 𝑏𝑛) Mapped on �̄� of size 2

𝑛
𝑚

𝑏 (𝑖−1)𝑛
𝑚

+1
, ⋅ ⋅ ⋅ , 𝑏 𝑖𝑛

𝑚
→ 𝑠𝑖

�

symbol vector
s = (𝑠1, 𝑠2, ⋅ ⋅ ⋅ , 𝑠𝑚) Linear spreading

x = s𝑅
�

codeword
x = (𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑚)

Fig. 1. Encoding of a linear spreading/rotation scheme.

II, we briefly review signal space diversity notation and the
existing linear spreading schemes. In Section III, the general
construction for our novel MDS code based technique and the
associated suboptimal DCS decoding are proposed. In Section
IV, we in particular investigate our design for 3 and 4 diversity
channels to achieve diversity order of 2 and 3, respectively, in
order to illustrate the advantages of our nonlinear construction
method. We call the designs as triple-channel joint modulation
(TCJM) and quaternary-channel joint modulation (QCJM),
respectively. Simulation results are provided in Section V to
show the superior performance of TCJM and QCJM over
some optimal linear constellation rotation schemes. Finally,
in Section VI, we conclude this paper.

II. PROBLEM FORMULATION AND

LINEAR SPREADING SCHEMES

It is assumed that there are 𝑚 independent diversity chan-
nels that totally carry 𝑛 bits per channel use. So, the code
𝒳 under consideration for the signal space diversity specifies
a one-to-one correspondence (mapping) between the 𝑛-length
bit sequence b = (𝑏1, 𝑏2, ⋅ ⋅ ⋅ , 𝑏𝑛) and the 𝑚-length codeword
x = (𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑚), i.e.,

𝒳 = {x∣x = 𝑓(b),b ∈ {0, 1}𝑛} (1)

that contains 2𝑛 codewords, where 𝑓(⋅) is a one-to-one
mapping. In general, the component 𝑥𝑖 of x belongs to a
regular constellation or its rotation and is transmitted over
the 𝑖th diversity channel, 1 ≤ 𝑖 ≤ 𝑚. To achieve a diversity
order of 𝑑, 1 ≤ 𝑑 ≤ 𝑚, any two distinct codewords of
𝒳 must have at least 𝑑 symbols in difference, i.e., 𝑑 =
minx1 ∕=x2∈𝒳 𝑤 (x1 − x2), where 𝑤(⋅) denotes the Hamming
weight of a vector.

Let us briefly review how a usual linear constellation
spreading scheme works to achieve a nontrivial diversity order.
In general, 𝑚 divides 𝑛 for such schemes. Given a regular
constellation �̄� of size 2

𝑛
𝑚 , the bit sequence b is mapped to a

symbol vector s = (𝑠1, 𝑠2, ⋅ ⋅ ⋅ , 𝑠𝑚), where 𝑠𝑖 ∈ �̄� is from the
𝑛
𝑚 bits 𝑏 (𝑖−1)𝑛

𝑚 +1
, 𝑏 (𝑖−1)𝑛

𝑚 +2
, ⋅ ⋅ ⋅ , 𝑏 𝑖𝑛

𝑚
in accordance with the

labelling of �̄�, 1 ≤ 𝑖 ≤ 𝑚. After that, the codeword x ∈ 𝒳
corresponding to b is obtained from s and a preassigned𝑚×𝑚
constant spreading/rotation matrix 𝑅 by

x = s𝑅. (2)

In Fig. 1, the linear spreading encoding described above is
illustrated by a flow chart.

Two earlier spreading matrices are Hadamard and Fourier
matrices [4] that, however, usually cannot achieve any diver-
sity gain except for some special cases, while being able to
be implemented by fast Hadamard transform (FHT) and fast
Fourier transform (FFT), respectively. To improve them so that

full diversity is exploited, the rotated Hadamard and Fourier
spreadings were proposed in, for example, [5], [6]. In [16],
the diversity distribution for a Hadamard-like random spread-
ing matrix is derived analytically. Vandermonde matrices, as
spreading matrices, were also studied and the optimization
designs were found when the number of diversity channels
is a power of 2 [28]. In [9]-[15], spreading matrices were
designed by lattice-based algebraic methods and the optimal
matrix

𝑅2 =
1√
2

(
1 𝑒𝑗

𝜋
6

1 𝑒𝑗
5𝜋
6

)
(3)

for 2 diversity channels was found in [14].
A unitary 𝑅 in (2) is highly preferred to guarantee the

same average transmit power for all the diversity channels
and some efforts have been made to optimize such 𝑅 for
different 𝑚 and various �̄� in, for instance, [3], [7], [8]. In
particular, when 𝑚 = 2, the optimal unitary spreading matrix
for BPSK modulations has been found in [8]. For 𝑚 > 2,
a usual method is to decompose a unitary matrix into the
product of a series of (complex) Givens rotations and then
make exhaustive computer search over discrete rotation angel
values in order to either maximize coding gains [3], [8] or
minimize the asymptotic union bound for the symbol error
rate (SER) [7]. However, the complexity for such an overall
search is prohibitively high and there are no optimal spreading
matrices claimed in the literature yet. A fact for all the unitary
linear rotation schemes is that they have exactly the same
performance as the plain nonrotated scheme over an AWGN
channel.

For linear constellation spreading schemes, an ML receiver
is often necessary to exploit the designed nontrivial diversity
order. Other simplified decoders exist, but often sacrifice the
diversity order to reduce the complexity [7]. Also, the x in
(2) usually has its components (the rotated symbols) on an
irregular large constellation on the complex plane, which is
undesirable from an implementation point of view.

III. MDS CODES BASED

SIGNAL SPACE DIVERSITY TECHNIQUE

For our signal space diversity scheme, all the symbols in
the codeword x in (1) are from a given 𝑞 point constellation
𝒬 with unit average energy, where 𝑞 is a power of 2. So,
we also call our scheme as joint modulation that modulates 𝑛
information bits to 𝑚 symbols on a fixed constellation. If we
view the 𝑞 points of 𝒬 as the elements of a 𝑞-ary field, it is
not difficult to see that the 𝒳 in (1) with diversity order 𝑑 is
equivalent to a 𝑞-ary (𝑚, 2𝑛, 𝑑) code. In practice, we always
want 𝑞 as small as possible for fixed 𝑚,𝑛 and 𝑑 in order to
optimize performance and ease the algorithm implementation.
According to the Singleton bound [18], we have

2𝑛 ≤ 𝑞𝑚−𝑑+1 ⇒ 𝑞 ≥ 2⌈
𝑛

𝑚−𝑑+1⌉, (4)
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�

information bits
b = (𝑏1, 𝑏2, ⋅ ⋅ ⋅ , 𝑏𝑛) Encoded by 𝒞

c = b 𝐺𝑚,𝑑

�

binary codeword
c = (𝑐1, 𝑐2, ⋅ ⋅ ⋅ , 𝑐𝑚𝑝) Mapped on 𝒬 of size 𝑞

𝑐(𝑖−1)𝑝+1, ⋅ ⋅ ⋅ , 𝑐𝑖𝑝 → 𝑥𝑖
�

codeword
x = (𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑚)

Fig. 2. Encoding of MDS code 𝒳 with diversity order (minimum Hamming distance) 𝑑.

where ⌈⋅⌉ denotes the ceiling function. When𝑚−𝑑+1 divides
𝑛, 𝒬 has size 𝑞 = 2

𝑛
𝑚−𝑑+1 and the bound in (4) is achieved. At

this time, 𝒳 is an MDS code of length 𝑚. If (𝑚− 𝑑+1) ∤ 𝑛,
on the other hand, 𝑞 is set to 2⌈

𝑛
𝑚−𝑑+1 ⌉ and it suffices for us to

construct a 𝑞-ary (𝑚, 𝑞𝑚−𝑑+1, 𝑑) MDS code from which 2𝑛

codewords are picked to consist 𝒳 . Therefore, without loss
of generality, we assume (𝑚 − 𝑑 + 1)∣𝑛 in the subsequent
discussions unless otherwise specified and define

𝑝 ≜ 𝑛

𝑚− 𝑑+ 1
. (5)

So, 𝑞 = 2𝑝, i.e., every 𝑝 bits are mapped to a constellation
point of 𝒬. Note that in general, 𝑝 cannot be very large, no
larger than 8 for example, for a real system. In what follows,
we neglect the trivial case of 𝑑 = 1.

We would like to mention that designing a 𝑞-ary
(𝑚, 𝑞𝑚−𝑑+1, 𝑑) MDS code is equivalent to constructing a set
of 𝑑− 1 mutually orthogonal (𝑚− 𝑑+ 1)-dimensional Latin
hypercubes of order 𝑞. Different Latin hypercube constructions
as well as the mapping from the 𝑞-ary field to the constellation
𝒬 usually result in different designs and performance. How to
optimize the Latin hypercube based designs over a 𝑞-ary field
could be difficult. Instead, our systematic method is over the
binary field to design the generator matrix of a binary linear
code, as explained in this and subsequent sections.

A. General Construction

There exist many classical constructions for MDS codes
in, for example, [18], [29], [30] and some of them such as
BCH codes are well known. Our construction for the 𝑞-ary
(𝑚, 2𝑛, 𝑑) MDS code to be described below is based on a
binary linear code as well as the labelling of 𝒬, and different
from most existing ones. Specifically, given any labelling
of 𝒬 that determines the one-to-one mapping between its 𝑞
symbols or, equivalently, the elements of the 𝑞-ary field and
𝑝 bits, the MDS code 𝒳 is constructed as follows. First, we
design a

[
𝑚𝑝, 𝑛, 𝑑

]
binary linear code 𝒞 whose standard form

generator matrix is

𝐺𝑚,𝑑 = (𝐼𝑛∣𝐴) , (6)

where 𝑑 is the minimum Hamming distance of 𝒞 but unnec-
essary to specify, 𝐼𝑛 is the identity matrix of dimension 𝑛 and
𝐴 is a 𝑛 × 𝑝(𝑑 − 1) binary matrix. We express the 𝐴 in (6)
as the following partitioned form

𝐴 =

⎛
⎜⎜⎜⎝

𝐴1,1 𝐴1,2 ⋅ ⋅ ⋅ 𝐴1,𝑑−1

𝐴2,1 𝐴2,2 ⋅ ⋅ ⋅ 𝐴2,𝑑−1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ... ⋅ ⋅ ⋅
𝐴𝑚−𝑑+1,1 𝐴𝑚−𝑑+1,2 ⋅ ⋅ ⋅ 𝐴𝑚−𝑑+1,𝑑−1

⎞
⎟⎟⎟⎠ (7)

with 𝐴𝑖,𝑗 being a 𝑝×𝑝 submatrix of 𝐴, 1 ≤ 𝑖 ≤ 𝑚−𝑑+1, 1 ≤
𝑗 ≤ 𝑑−1. To encode a 𝑛-length bit sequence b to a 𝑚-length

codeword x of 𝒳 in (1), we begin with encoding b to a 𝑚𝑝-
length codeword c = (𝑐1, 𝑐2, ⋅ ⋅ ⋅ , 𝑐𝑚𝑝) = b 𝐺𝑚,𝑑 of 𝒞. Then,
the 𝑝 bits 𝑐(𝑖−1)𝑝+1, 𝑐(𝑖−1)𝑝+2, ⋅ ⋅ ⋅ , 𝑐𝑖𝑝 of c is mapped to the
𝑖th symbol 𝑥𝑖 of x in accordance with the labelling of 𝒬,
1 ≤ 𝑖 ≤ 𝑚. The above encoding procedure from b to x is
illustrated in Fig. 2 by a flow chart. Note that the resulting code
𝒳 is generally nonlinear on the 𝑞-ary field, which makes our
method distinct from most existing designs for MDS codes.

Comparing Fig. 1 and Fig. 2, we can see that the encoding
methods for our scheme and the linear spreading scheme
are fairly different. For the conventional spreading technique,
information redundancy is added into x at the second step by
spreading each symbol 𝑠𝑖 over multiple diversity channels via
a matrix multiplication. For our scheme, on the other hand,
information is initially protected at the bit level by a binary
linear code. Both the methods cannot guarantee the optimality
of the resulting code 𝒳 (the overall optimality of the mapping
𝑓 in (1)), but are feasible from the design and implementation
aspects. An effort to directly find the optimal mapping 𝑓 has
been made in [17] by an exhaustive search.

Following the above encoding procedure, we can obtain a
𝑞-ary (𝑚, 2𝑛) code 𝒳 that is fully determined by the matrix
𝐺𝑚,𝑑 in (6) and the labelling of 𝒬. In more details, 𝑥𝑖 is
decided by the ((𝑖− 1)𝑝+ 1)th to (𝑖𝑝)th columns of 𝐺𝑚,𝑑

as well as 𝒬, 1 ≤ 𝑖 ≤ 𝑚. However, the resulting code
may not have the minimum Hamming distance or diversity
order 𝑑; that is, it may not be an MDS code. Remind that
the maximum possible diversity order for 𝒳 is 𝑑 due to the
Singleton bound in (4). In the following theorem, a sufficient
and necessary condition for 𝒳 to achieve this diversity order
bound is provided.

Theorem 1: The 𝒳 constructed above is a 𝑞-ary (𝑚, 2𝑛, 𝑑)
MDS code if and only if the square matrix⎛

⎜⎜⎜⎝
𝐴𝑖1,𝑗1 𝐴𝑖1,𝑗2 ⋅ ⋅ ⋅ 𝐴𝑖1,𝑗𝑘

𝐴𝑖2,𝑗1 𝐴𝑖2,𝑗2 ⋅ ⋅ ⋅ 𝐴𝑖2,𝑗𝑘

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ... ⋅ ⋅ ⋅
𝐴𝑖𝑘,𝑗1 𝐴𝑖𝑘 ,𝑗2 ⋅ ⋅ ⋅ 𝐴𝑖𝑘,𝑗𝑘

⎞
⎟⎟⎟⎠ (8)

is of full rank for any 1 ≤ 𝑘 ≤ min{𝑚 − 𝑑 + 1, 𝑑 − 1},
1 ≤ 𝑖1 < 𝑖2 < ⋅ ⋅ ⋅ < 𝑖𝑘 ≤ 𝑚 − 𝑑 + 1 and 1 ≤ 𝑗1 < 𝑗2 <
⋅ ⋅ ⋅ < 𝑗𝑘 ≤ 𝑑− 1, where 𝐴𝑖⋅,𝑗⋅ is defined in (7).

The proof of Theorem 1 is in Appendix A. What this
theorem claimed is that for 𝒳 to be an MDS code, all the
square matrices that are consisted of the partitions 𝐴𝑖,𝑗 of
𝐴 have to be full-rank. The requirement reduces to the full
rankness of 𝐴𝑖,𝑗 when 𝑑 = 2 or 𝑑 = 𝑚. Note that full-rank
binary matrix set has been also used to construct space-time
codes with some optimal properties [19]-[21].

Remark 1: A matrix 𝐴 meeting the condition in Theorem 1
may not exist for certain 𝑚,𝑛 and 𝑑. For instance, if 𝑚 = 7,
𝑛 = 10 and 𝑑 = 3, we have 𝑝 = 2 from (5) and 𝐴 is of
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size 10 × 4 that is specified by 10 many 2 × 2 submatrices
𝐴𝑖,𝑗 , 1 ≤ 𝑖 ≤ 5, 1 ≤ 𝑗 ≤ 2, as in (7). Assume the condition
in Theorem 1 is satisfied by 𝐴, then all its 10 rows must be
different and have at least one 1 among their first two and
also last two bits. This is because 𝐴𝑖,𝑗 as well as matrix(

𝐴𝑖1,1 𝐴𝑖1,2

𝐴𝑖2,1 𝐴𝑖2,2

)
, 1 ≤ 𝑖1 < 𝑖2 ≤ 5,

must be full-rank. However, it can be easily calculated that
there are totally 9 such binary vectors of length 4 and hence
a contradiction results. In general, one can easily show that a
necessary condition for the existence of a matrix 𝐴 meeting
the requirement in Theorem 1 is that both (𝑞−1)𝑑−1 ≥ 𝑛 and
(𝑞 − 1)𝑚−𝑑+1 ≥ 𝑝(𝑑− 1) (when 𝑑 ∕= 𝑚) hold.

Usually, the construction of a matrix 𝐴 in (6) with Theorem
1 satisfied is not trivial except for 𝑑 = 2 or 𝑑 = 𝑚. On the
other hand, even if such an 𝐴 is found, the resulting MDS
code 𝒳 does not always lead to good performance. Over
independent fading diversity channels, the performance of 𝒳
is dominated by its codeword pairs with Hamming distance 𝑑
[5], [8]. The minimum product distance or coding gain of 𝒳
is the metric

𝜁𝒳 = min
𝑤(Δx)=𝑑

∏
Δ𝑥𝑖 ∕=0

1≤𝑖≤𝑚

∣Δ𝑥𝑖∣, (9)

defined over these pairs, where Δx = (Δ𝑥1,Δ𝑥2, ⋅ ⋅ ⋅ ,Δ𝑥𝑚)
denotes the difference of two codewords.

As a result, except for finding a matrix 𝐴 guided by
Theorem 1 that is irrespective of 𝒬, we want to jointly
optimize the design of 𝐴 as well as the labelling of 𝒬 to
make 𝜁𝒳 as large as possible. Our method to do this will
be clear until the next section where we study two design
examples. Intuitively, we always expect a matrix 𝐴 such that
the code 𝒳 has a small number of codeword pairs with the
minimum Hamming distance 𝑑. However, as the following
corollary claims, this number is actually not affected by the
choice of 𝐴. The proof of Corollary 1 is in Appendix B.

Corollary 1: For the constructed (𝑚, 2𝑛, 𝑑) MDS code 𝒳 ,
the number of its codeword pairs with the minimum Hamming
distance 𝑑 is independent of the choice of the matrix 𝐴 in (7).

In summary, for given information bit number 𝑛 and di-
versity channel number 𝑚, our signal space diversity scheme
utilizes the minimum constellation size 𝑞 = 2⌈

𝑛
𝑚−𝑑+1 ⌉ to

achieve a desired diversity order 𝑑. The larger the 𝑑, the larger
the 𝑞 and hence the higher the implementation complexity.
So, in practice, how large the 𝑑 needs to be depends on not
only the performance requirement but also the complexity
and resolution the system can tolerate. The ML detection
complexity for our construction is 𝒪(2𝑛), the same as a
linear spreading scheme. In Section III-B, we propose a
suboptimal DCS decoding method that, while keeping the
diversity order, can greatly reduce the decoding complexity at
a cost of marginal performance loss. This is another important
advantage of our scheme over the traditional schemes.

B. Suboptimal Diversity Channel Selection (DCS) Decoding

The 𝑚 symbols in each codeword x are transmitted over 𝑚
independent diversity channels and the receive signal-to-noise
ratio (SNR) for each channel depends on its realization. For

DCS decoding, the receiver first selects the best 𝑟 channels
1 ≤ 𝑙1 < 𝑙2 < ⋅ ⋅ ⋅ < 𝑙𝑟 ≤ 𝑚 among all the 𝑚 channels
in terms of their receive SNR, 1 ≤ 𝑟 ≤ 𝑚 − 𝑑 + 1. The
symbols 𝑥𝑙1 , 𝑥𝑙2 , ⋅ ⋅ ⋅ , 𝑥𝑙𝑟 conveyed on the 𝑟 selected channels
are decoded to �̂�𝑙1 , �̂�𝑙2 , ⋅ ⋅ ⋅ , �̂�𝑙𝑟 ∈ 𝒬 by hard decision in
accordance with 𝒬. After that, the detection of x is made by a
minimum Euclidean distance search among all the codewords
of 𝒳 that are specified by the 𝑟 decoded components, i.e.,
over the set

𝒳 𝑟
𝒟 = {x = (𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑚) ∈ 𝒳∣𝑥𝑙𝑡 = 𝑥𝑙𝑡 , 1 ≤ 𝑡 ≤ 𝑟} .

(10)
Lemma 1: For any given 𝑟 symbols 𝑠1, 𝑠2, ⋅ ⋅ ⋅ , 𝑠𝑟 ∈ 𝒬,

1 ≤ 𝑟 ≤ 𝑚 − 𝑑 + 1, and 1 ≤ 𝑙1 < 𝑙2 < ⋅ ⋅ ⋅ < 𝑙𝑟 ≤ 𝑚, we
have

∣{x = (𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑚) ∈ 𝒳∣𝑥𝑙𝑡 = 𝑠𝑡, 1 ≤ 𝑡 ≤ 𝑟}∣
= 𝑞𝑚−𝑑−𝑟+1 (11)

if 𝒳 satisfies the criterion in Theorem 1.
The proof of Lemma 1 is not hard by following the similar

arguments as in the proofs of Theorem 1 and Corollary 1 and
hence omitted. According to (11), the proposed DCS decoding
has a complexity of

𝒪 (
𝑟𝑞 + 𝑞𝑚−𝑑−𝑟+1

)
, (12)

which exponentially decreases as 𝑟 increases from 0 to 𝑚−
𝑑+1. At the extreme case of 𝑟 = 0, i.e., no diversity channel
is first picked for hard decision, the suboptimal decoding is
equivalent to the optimal ML one. When 𝑟 = 𝑚−𝑑+1, on the
other hand, the search process after hard decision disappears
as a codeword can already be uniquely determined from the
𝑚−𝑑+1 decoded symbols. This is easily understood because
any two codewords have at most 𝑚 − 𝑑 same symbols for
a code 𝒳 with diversity order 𝑑. Note that from (12), the
complexities for 𝑟 = 𝑚− 𝑑+ 1 and 𝑟 = 𝑚− 𝑑 are the same
for a given constellation.

The idea underlying our suboptimal DCS decoding is to
shrink the candidate codeword set by first decoding a part of
the most trustable symbols. The reliability of such a strategy
may suffer from the case that there are more than 𝑚 − 𝑟
diversity channels in deep fade. So, performance degrades as
𝑟 increases and hence decoding complexity decreases. Fortu-
nately, when 𝑟 is small, the performance loss is only marginal
relative to the ML decoding. In fact, we have observed that
the DCS detection performance with 𝑟 = 1 converges to
ML decoding performance as SNR increases (Section V).
Furthermore, whatever 𝑟 is, the proposed decoding scheme
does not sacrifice the diversity gain.

Theorem 2: With the suboptimal DCS decoding at the
receiver, the constructed (𝑚, 2𝑛, 𝑑) MDS code 𝒳 still has the
diversity order 𝑑.

Proof: The proof is not difficult and we only provide
an intuitive explanation here. The DCS decoding consists of
two phases: (I) hard decision from the 𝑟 best (most reliable)
diversity channels; (II) joint detection over the 𝑞𝑚−𝑑−𝑟+1

codewords of 𝒳 𝑟
𝒟 in (10). One can easily show that the

detection performance for Phase I possesses a diversity order
𝑚 − 𝑟 + 1 by applying certain results of order statistics
[22]. Furthermore, since 𝒳 𝑟

𝒟 still keeps a minimum Hamming
distance 𝑑, the decoding of Phase II has a diversity order 𝑑.
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The performance of DCS detection is dominated by the worse
one of the two phases and therefore achieves a diversity order
of min{𝑚− 𝑟 + 1, 𝑑} = 𝑑 as 1 ≤ 𝑟 ≤ 𝑚− 𝑑+ 1.

The result of Theorem 2 is not surprising by recognizing
the similarity of DCS detection and antenna selection tech-
niques for MIMO systems [22]-[26]. The above theories and
speculation about DCS decoding performance will be verified
by simulations in Section V.

IV. TRIPLE-CHANNEL AND QUATERNARY-CHANNEL

JOINT MODULATIONS

In this section, we study two design examples for 𝑚 = 3
and𝑚 = 4 diversity channels to further illustrate our construc-
tion and its advantages over the other existing techniques. We
restrict to 𝑛 = 12 for 𝑚 = 3 and 𝑛 = 8 for 𝑚 = 4, i.e., each
diversity channel carries 4 and 2 information bits in average
per channel use, respectively. For both the cases, the required
diversity order is 𝑑 = 𝑚−1. We call the two schemes as triple-
channel joint modulation (TCJM) and quaternary-channel joint
modulation (QCJM), denoted by ℳ3 and ℳ4, respectively.

A. Triple-Channel Joint Modulation (TCJM)

According to (5), the constellation 𝒬 has size 𝑞 = 26 = 64
for 𝑚 = 3, 𝑛 = 12 and 𝑑 = 2. Below we restrict 𝒬 to be a
QAM constellation but the method also applies to any other
constellations such as PAM and PSK, etc. What we need to
do now is to design a 64-ary (3, 212, 2) MDS code ℳ3 by the
method introduced in Section III. We would like to mention
that such a construction is equivalent to picking up a 64× 64
Latin square over the 64-ary field [30], but we would not
discuss many details about Latin squares. For ℳ3, the binary
generator matrix in (6) is a 12× 18 matrix

𝐺3,2 =
(
𝐼12 𝐴

)
=

(
𝐼6 0 𝐴1,1

0 𝐼6 𝐴2,1

)
, (13)

where 0 denotes an all-zero matrix of suitable dimension.
From Theorem 1, the 6 × 6 matrices 𝐴1,1 and 𝐴1,2 in (13)
must be full-rank to guarantee a diversity order of 2 for ℳ3.

The simplest way to design 𝐴1,1 and 𝐴2,1 is to set both of
them to be an identity matrix, i.e.,

𝐴1,1 = 𝐴2,1 = 𝐼6, (14)

and we use ℳ𝛼
3 denote the resulting TCJM scheme. In this

case, however, we have the minimum product distance (coding
gain) 𝜁ℳ𝛼

3
=

(
𝑑64min

)2
for ℳ𝛼

3 regardless of the labelling
of 𝒬, where 𝑑𝑞min denotes the minimum symbol distance of
a 𝑞-QAM constellation with unit average energy. This result
is definitely undesirable as

(
𝑑64min

)2
is the minimum possible

product distance for ℳ3 only if it has diversity order 2. In
fact, if we arbitrarily label 𝒬 and pick a matrix 𝐴 such that the
condition in Theorem 1 is satisfied, the resulting ℳ3 generally
has the worst coding gain. To maximize 𝜁ℳ3 , we require a
joint optimization for the 𝐴 in (13) as well as the 64-QAM
constellation labelling. Nevertheless, the complexity for such
a problem is prohibitively high and we have to resort to other
suboptimal solutions. Our method is to design 𝐴 to make 𝜁ℳ3

as large as possible under the restriction that the labelling of
𝒬 is the usual Gray mapping (labelling). A Gray mapping
example for 64-QAM constellation is given in Fig. 3. In the
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Fig. 3. 64-QAM constellation with Gray mapping, where the numbers are
decimal representation (0 to 63) of 6 bits.

following theorem, we provide a sufficient condition such that
𝜁ℳ3 is twice larger than the worst case of

(
𝑑64min

)2
.

Theorem 3: With a Gray labelled 64-QAM 𝒬 and full-rank
𝐴𝑖,1, 𝑖 = 1, 2, in (13), we have 𝜁ℳ3 ≥ 2

(
𝑑64min

)2
if the

matrix 𝐴 =
(
𝐴𝑇

1,1, 𝐴
𝑇
2,1

)𝑇
in (13) satisfies the following three

conditions:
(a). Each row of 𝐴 has Hamming weight no less than 3;
(b). Any three rows of 𝐴 are linearly independent;
(c). The summation of any two rows of 𝐴𝑖,1 has Hamming

weight no less than 2, 𝑖 = 1, 2,
where and thereafter (⋅)𝑇 denotes the transpose of a matrix or
vector.

The proof of Theorem 3 is in Appendix C, where we use
the following basic facts about Gray mapping. Given a Gray
labelled 2𝑝-QAM (𝑞-QAM) constellation 𝒬, let z𝑖 ∈ {0, 1}𝑝
and 𝑦𝑖 be the corresponding symbol of z𝑖 in 𝒬, 𝑖 = 1, 2.
Define Δz = z1 − z2 and Δ𝑦 = 𝑦1 − 𝑦2. Then,

𝑤(Δz) = 1 ⇒ ∣Δ𝑦∣ ≥ 𝑑𝑞min, (15a)

𝑤(Δz) = 2 ⇒ ∣Δ𝑦∣ ≥
√
2𝑑𝑞min, (15b)

𝑤(Δz) > 2 ⇒ ∣Δ𝑦∣ ≥
√
5𝑑𝑞min. (15c)

The advantage of Theorem 3 is to make the design of 𝐴
independent of 𝒬 only if the latter uses Gray mapping. It is not
clear whether or not 𝜁ℳ3 is upper bounded by 2

(
𝑑64min

)2
, but

to achieve a larger minimum product distance by the design
of 𝐴 seems difficult. For instance, by following the idea of
Theorem 3 and utilizing the relationship between Hamming
distances and symbol distances in (15), we can give the
following sufficient conditions such that 𝜁ℳ3 ≥ √

5
(
𝑑64min

)2
with a Gray labelled 𝒬:
(ā). For the full-rank matrix 𝐴𝑖,1 in (13), 𝑖 = 1, 2, any

nonzero linear combination of its two rows has Hamming
weight no less than 3;

(b̄). Any four rows of the matrix 𝐴 in (13) are linearly
independent.

However, there does not exist a 6 × 6 binary matrix 𝐴𝑖,1

such that (ā) holds, as shown in Appendix D. So, the above
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Fig. 4. Product distance CDF of ℳ𝛼
3 , ℳ𝛽

3 and ℳ𝛾
3 , where only the

codeword pairs with Hamming distance 2 are taken into account and the
product distances are normalized by

(
𝑑64min

)2.

sufficient conditions for 𝜁ℳ3 ≥ √
5
(
𝑑64min

)2
can never be met.

In fact, to further improve 𝜁ℳ3 , we have to study the specific
form of Δz as well as its relationship with ∣Δ𝑦∣, rather than
the simple inequalities in (15) that only depend on Hamming
weight of Δz. But in this case, designing the 𝐴 in (13) will be
dependent on 𝒬 and become quite complicated. We conjecture
that 2

(
𝑑64min

)2
is already the maximum achievable 𝜁ℳ3 by the

construction method described above.

A pair of 𝐴1,1 and 𝐴2,1 satisfying the conditions in Theo-
rem 3 is provided below:

𝐴1,1 =

⎛
⎜⎜⎜⎜⎜⎝

1 1 0 1 0 0
1 0 1 0 1 0
1 1 0 1 1 1
0 1 1 0 0 1
1 1 0 0 0 1
1 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎠
, (16a)

𝐴2,1 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0 1 1
0 1 0 1 0 1
1 1 1 0 1 1
1 0 0 1 1 0
1 0 0 0 1 1
1 0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎠
. (16b)

In (16), the 𝑖th column of 𝐴1,1 is the same as the (7 − 𝑖)th
column of 𝐴2,1, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 6. That is, 𝐴2,1 is the reversed
𝐴1,1. We denote the resulting TCJM scheme by ℳ𝛽

3 that has
coding gain 𝜁ℳ𝛽

3
= 2

(
𝑑64min

)2
. Note that the conditions of

Theorem 3 are sufficient but not necessary. To see this, we
give the following pair of matrices that, while violating the
Theorem 3’s requirements, also make 𝜁ℳ3 = 2

(
𝑑64min

)2
with

the Gray labelled 𝒬 in Fig. 3:

𝐴1,1 =

⎛
⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0
1 1 1 0 0 0
1 0 1 1 0 0
0 1 0 1 1 0
0 1 0 0 1 1
0 1 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎠
, (17a)

𝐴2,1 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 1 1
0 0 0 1 1 1
0 0 1 1 0 1
0 1 1 0 1 0
1 1 0 0 1 0
1 0 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎠
, (17b)

where 𝐴2,1 is again the reversed 𝐴1,1. The TCJM design by
the matrix 𝐴 in (17) and the 64-QAM constellation in Fig.
3 is denoted by ℳ𝛾

3 , where the construction of 𝐴 has taken
into consideration the specific Gray mapping format of the
constellation. To illustrate the advantage of ℳ𝛽

3 and ℳ𝛾
3 over

the trivial ℳ𝛼
3 brought by the deliberate design of the matrix

𝐴 in (13), the cumulative distribution functions (CDF) of their
product distances are plotted in Fig. 4, where figure (b) is the
amplified figure (a) for the lower part of the CDF curves. The
benefits from our designs for 𝐴 can be clearly observed there.

We have studied the construction of ℳ3 in terms of its cod-
ing gain 𝜁ℳ3 over independent fading channels. Sometimes,
the performance of ℳ3 under AWGN channels is also of
interest. For example, the diversity channels may be highly
correlated since they are in the same coherent bandwidth
(frequency diversity) or coherent time (time diversity). At this
time, the performance metric for ℳ3 changes to the minimum
Euclidean distance

𝜉ℳ3 = min
Δx ∕=0

∣Δx∣. (18)

With a trivial design for the 𝐴 in (13), 𝐴1,1 = 𝐴2,1 = 𝐼6 in
(14) for example, we have 𝜉ℳ𝛼

3
=

√
2𝑑64min that is the worst

case for 𝜉ℳ3 only if ℳ3 is an MDS code. The following
theorem reveals that a TCJM scheme designed by following
Theorem 3 also achieves a large 𝜉ℳ3 .

Theorem 4: With a Gray labelled 64-QAM 𝒬 and full-
rank 𝐴𝑖,1, 𝑖 = 1, 2, in (13), we have 𝜉ℳ3 ≥ 2𝑑64min if
𝐴 =

(
𝐴𝑇

1,1, 𝐴
𝑇
2,1

)𝑇
satisfies the three conditions in Theorem

3.
The proof of Theorem 4 is similar to that of Theorem 3

and hence omitted. We know from Theorem 4 that the 𝜉ℳ𝛽
3
≥
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Fig. 5. Euclidean distance CDF for ℳ𝛼
3 , ℳ𝛽

3 , ℳ𝛾
3 and unitary linear

constellation spreading (unspread) schemes.

2𝑑64min. In fact, it can be easily checked that 𝜉ℳ𝛽
3
= 2𝑑64min.

For another matrix pair in (17), we have 𝜉ℳ𝛾
3
=

√
3𝑑64min.

We would also like to compare our TCJM scheme with the
conventional linear constellation rotation technique in terms of
the minimum Euclidean distance. To have the same throughput
as ℳ3, the constellation �̄� in Fig. 1 for the spreading scheme
has size 2

𝑛
𝑚 = 16. Let �̄� be a 16-QAM constellation.

Then, no matter what the matrix 𝑅 in (2) is, the spreading
scheme has its minimum Euclidean distance no larger than

𝑑16min =
√

21
5 𝑑

64
min and the maximum value 𝑑16min is achieved

when 𝑅 is a unitary matrix. In other words, there is no gain
for spreading over AWGN channels. While our constructed
TCJM can have 𝜉ℳ3 = 2𝑑64min that is still a little smaller than
𝑑16min, we can design 𝐴 such that ℳ3 has a better Euclidean
distance distribution than any unitary linear spreading scheme
or, equivalently, the plain unspread scheme corresponding to
an identity matrix 𝑅 in (2). This advantage owes to the
nonlinearity of our technique. To illustrate it, in Fig. 5, we plot
the CDF of Euclidean distances for ℳ𝛼

3 , ℳ𝛽
3 and ℳ𝛾

3 . Also

plotted there is the CDF of Euclidean distances for a unitary
rotation scheme. One can see from the amplified picture in Fig.
5(b) that our ℳ𝛽

3 and ℳ𝛾
3 have fewer codeword pairs than

the linear spreading scheme in the small Euclidean distance
range. The superior performance of ℳ𝛽

3 and ℳ𝛾
3 over AWGN

channels will be shown in Section V.
To decode ℳ3, the ML detection has a complexity of

𝒪(212). If the suboptimal DCS decoding is adopted at the
receiver for fading diversity channels, the complexities for
picking up one or two channels for hard decision (correspond-
ing to 𝑟 = 1 and 𝑟 = 2 in (12)) are both 𝒪(27), a huge
25 times reduction relative to the ML decoding. Albeit the
same complexity, selecting only the best channel to make hard
decision can offer a much better performance than the other
case of selecting two, as shown soon in Section V.

B. Quaternary-Channel Joint Modulation (QCJM)

For 𝑚 = 4 diversity channels that carry 𝑛 = 8 bits per
channel use to achieve a diversity order 𝑑 = 3, we require a
16-QAM constellation 𝒬 from (4). So, the QCJM scheme is
equivalent to designing a 16-ary (4, 28, 3) MDS code ℳ4,
or, the design of a pair of 16 × 16 mutually orthogonal
Latin squares (MOLS) on the 16-ary field [30]. According to
Theorem 1, it suffices to construct a 8 × 16 binary generator
matrix

𝐺4,3 =
(
𝐼8 𝐴

)
=

(
𝐼4 0 𝐴1,1 𝐴1,2

0 𝐼4 𝐴2,1 𝐴2,2

)
, (19)

where the 4×4 matrix 𝐴𝑖,𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 2, and the 8×8 matrix
𝐴 must be full-rank.

As for TCJM, 𝒬 is Gray labelled for our construction
of QCJM. The worst coding gain and minimum Euclidean
distance for ℳ4 are 𝜁ℳ4 =

(
𝑑16min

)3
and 𝜉ℳ4 =

√
3𝑑16min,

respectively, and it is usually the case for an arbitrarily picked
𝐴 in (19). Like Theorem 3 and Theorem 4, improvements of
𝜁ℳ4 and 𝜉ℳ4 are feasible by deliberately designing the matrix
𝐴 in (19).

Theorem 5: With a Gray labelled 16-QAM constellation 𝒬
as well as full-rank 𝐴𝑖,𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 2, and 𝐴 in (19), we
have 𝜁ℳ4 ≥ 2

(
𝑑16min

)3
and 𝜉ℳ4 ≥ √

5𝑑16min if 𝐴 satisfies the
following three conditions:
(a). Each row of 𝐴 has Hamming weight no less than 4;
(b). The summation of any two rows of 𝐴 has Hamming

weight no less than 3;
(c). The summation of any three rows of 𝐴 has Hamming

weight no less than 2.
Theorem 5 can be shown by following the similar arguments

as in the proof of Theorem 3. The conditions in Theorem
5 as well as the Gray labelling feature of 𝒬 provide us a
guideline to design ℳ4 by separating the construction of
binary linear code from the specific labelling of 𝒬. While it is
not clear whether or not 2

(
𝑑16min

)3
and

√
5𝑑16min are already the

upper bounds for 𝜁ℳ4 and 𝜉ℳ4 , respectively, but to further
improve them is difficult. A construction for the 8× 8 matrix
𝐴 satisfying the requirements of Theorem 5 is given below:

𝐴1,1 =

⎛
⎜⎜⎝

1 1 1 0
1 0 1 1
1 1 0 0
1 0 1 0

⎞
⎟⎟⎠ , 𝐴1,2 =

⎛
⎜⎜⎝

1 1 0 0
1 1 1 0
1 0 1 0
1 0 1 1

⎞
⎟⎟⎠ ,
(20a)
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Fig. 6. Euclidean distance CDF for ℳ𝛼
4 and unitary linear constellation

spreading (unspread) schemes.

𝐴2,1 =

⎛
⎜⎜⎝

0 0 1 1
0 1 1 1
0 1 0 1
1 1 0 1

⎞
⎟⎟⎠ , 𝐴2,2 =

⎛
⎜⎜⎝

0 1 1 1
0 0 1 1
1 1 0 1
0 1 0 1

⎞
⎟⎟⎠ .
(20b)

Note that in (20), 𝐴𝑖,2 is obtained from 𝐴𝑖,1 by row permu-
tation, 𝑖 = 1, 2, and 𝐴2,1 is the reversed 𝐴1,2. We denote the
resulting QCJM scheme from the matrix 𝐴 in (20) by ℳ𝛼

4 . It
can be checked that 𝜁ℳ𝛼

4
= 2

(
𝑑16min

)3
and 𝜉ℳ𝛼

4
=

√
5𝑑16min.

To have the same throughput as QCJM, a linear spread-
ing scheme needs a 4-QAM (QPSK) constellation �̄� since
each diversity channel conveys 𝑛

𝑚 = 2 information bits per
channel use. So, the best minimum Euclidean distance for it
is 𝑑4min =

√
5𝑑16min. Therefore, our designed ℳ𝛼

4 does not
sacrifice minimum Euclidean distance and in fact has a much
better Euclidean distance distribution than any unitary rotation
scheme as observed in Fig. 6, which leads to a significant
performance gain as shown in the next section.

For ML detection, QCJM requires a complexity of 𝒪(28).
With the suboptimal DCS decoding, on the other hand, the
complexity is reduced to 𝒪(25) for both 𝑟 = 1 and 𝑟 =

TABLE I
DECODING COMPLEXITY PER FRAME FOR TCJM, QCJM AND TWO

LINEAR SPREADING SCHEMES.

Scheme ML DCS𝑟=1 DCS𝑟=2

TCJM: ℳ𝛼
3 , ℳ𝛽

3 , ℳ𝛾
3 𝒪(214) 𝒪(29) 𝒪(29)

2× 2 Optimal Spreading 𝒪(3 ⋅ 29) / /

QCJM: ℳ𝛼
4 𝒪(3 ⋅ 28) 𝒪(3 ⋅ 25) 𝒪(3 ⋅ 25)

3× 3 Vandermonde Spreading 𝒪(28) / /

2 in (12). Certainly, the 𝑟 = 1 case, i.e., only the diversity
channel with the least fading is selected for hard decision,
is highly preferred due to its marginal performance loss and
convergence to ML detection performance in the high SNR
range.

V. NUMERICAL AND SIMULATION RESULTS

In this section, we provide the simulation results for TCJM
and QCJM in comparison with some known linear spreading
schemes over either independent Rayleigh fading or AWGN
channels. For Rayleigh fading channels, the linear rotation
scheme always has a full diversity order that is the same as the
diversity order of TCJM or QCJM in contrast. To have a fair
comparison, we consider a frame transmission with each frame
consisting of 12 fading/AWGN channels. This is because 12
is the least common multiple of 2, 3, 4 that represent the
diversity order and diversity channel numbers of TCJM and
QCJM. The frame error rate (FER) and bit error rate (BER) are
measured for each scheme. All the schemes (TCJM, QCJM,
linear spreading) use Gray labelled QAM constellation 𝒬 or
�̄� and in particular, TCJM uses the 64-QAM constellation in
Fig. 3.

In Fig. 7, we provide the performance of ℳ𝛼
3 , ℳ𝛽

3 and
ℳ𝛾

3 for various decoding algorithms. Also plotted there is
a linear spreading scheme from the matrix in (3) that has
been claimed to be the optimal rotation to achieve a full
diversity order 2. The linear rotation method uses a 16-
QAM constellation to have the same throughput as TCJM.
The decoding complexities per frame for the schemes are
summarized in Table I, where we can see that a significant
complexity reduction has been achieved by the DCS decoding.
Fortunately, this overhead reduction at the receiver is not
traded by a huge performance degrade. One can observe
from Fig. 7 that the performance of TCJM with DCS𝑟=1

decoding (only one diversity channel is picked for hard
decision) actually converges and eventually coincides with the
ML detection performance as SNR increases. For ℳ𝛽

3 and
ℳ𝛾

3 , the performance coincidence occurs when FER equals
10−3 or BER equals 5 ⋅ 10−5. For ℳ𝛼

3 , there is even no
obvious gap between the two detection methods in the SNR
range of interest. In contrast, DCS𝑟=2 decoding suffers from
an evident performance loss but can still keep the diversity
gain as claimed by Theorem 2. To avoid making the figure
too complicated, we do not provide the DCS𝑟=2 detection
performance for ℳ𝛽

3 and ℳ𝛾
3 because they are not attractive

relative to DCS𝑟=1 detection. Notice that ℳ𝛽
3 and ℳ𝛾

3 have
very close performance for each decoding algorithm, which
complies with our observation in Fig. 4. Compared with the
optimal spreading scheme, our ℳ𝛼

3 , ℳ𝛽
3 and ℳ𝛾

3 can all
outperform it for a maximum of about 2dB gain (at BER

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on June 22,2024 at 11:08:50 UTC from IEEE Xplore.  Restrictions apply. 



SHANG et al.: SIGNAL SPACE DIVERSITY TECHNIQUES WITH FAST DECODING BASED ON MDS CODES 2533

16 18 20 22 24 26 28 30 32 34 36
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

F
ra

m
e 

E
rr

or
 R

at
e 

(F
E

R
)

12 Independent Rayleigh Fading Diversity Channels, 4 Bits Per Channel

 

 

Optimal 2x2 Spreading, 16-QAM Q̄
Mα

3 , 64-QAM, ML
Mβ

3 , 64-QAM, ML
Mγ

3 , 64-QAM, ML
Mα

3 , 64-QAM, DCSr=1

Mβ
3 , 64-QAM, DCSr=1

Mγ
3 , 64-QAM, DCSr=1

Mα
3 , 64-QAM, DCSr=2

(a)

16 18 20 22 24 26 28 30 32 34 36
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

B
it 

E
rr

or
 R

at
e 

(B
E

R
)

12 Independent Rayleigh Fading Diversity Channels, 4 Bits Per Channel

 

 

Optimal 2x2 Spreading, 16-QAM Q̄
Mα

3 , 64-QAM, ML
Mβ

3 , 64-QAM, ML
Mγ

3 , 64-QAM, ML
Mα

3 , 64-QAM, DCSr=1

Mβ
3 , 64-QAM, DCSr=1

Mγ
3 , 64-QAM, DCSr=1

Mα
3 , 64-QAM, DCSr=2

(b)

Fig. 7. Comparison of ℳ𝛼
3 , ℳ𝛽

3 , ℳ𝛾
3 and the optimal linear spreading

scheme with the rotation matrix in (3) over 12 independent Rayleigh fading
channels: (a) FER performance; (b) BER performance.

equal to 5 ⋅ 10−5, for example) in terms of BER, even with
the DCS𝑟=1 detection and hence 1

3 decoding complexity. If
the FER is concerned, ℳ𝛽

3 and ℳ𝛾
3 with DCS𝑟=1 detection

also enjoy a superior performance over the linear spreading
scheme.

Similarly, in Fig. 8, we compareℳ𝛼
4 with a linear spreading

scheme from the 3 × 3 Vandermonde rotation matrix [28,
Section 4.4.2]. The Vandermonde spreading scheme uses a
QPSK constellation for the same throughput as ℳ𝛼

4 . The
decoding complexities per frame for the two schemes are
also referred in Table I. One can see from Fig. 8 that the
ML and DCS𝑟=1 decodings for ℳ𝛼

4 have about 1dB gap
in the presented SNR range, and both of them achieve a
larger coding gain than the spreading method. To be specific,
the performance of ℳ𝛼

4 with ML detection is consistently
superior to the Vandermonde spreading. On the other hand,
the ℳ𝛼

4 with DCS𝑟=1 detection can outperform the spreading
scheme with only 3

8 complexity when SNR is reasonably high,
i.e., there is a joint between their performance curves. We
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Fig. 8. Comparison of ℳ𝛼
4 and the Vandermonde linear spreading scheme

over 12 independent Rayleigh fading channels: (a). FER performance; (b)
BER performance.

anticipate that the DCS𝑟=1 detection performance eventually
converges to the ML detection performance as SNR further
increases. Finally, note that the 3× 3 Vandermonde matrix is
not unitary and therefore the diversity channels have unequal
average powers for the linear spreading method. This is an
undesired feature from an implementation point of view.

We also present the performance comparison for ℳ𝛼
3 , ℳ𝛽

3 ,
ℳ𝛾

3 and the plain unspread (unitary spreading) scheme on 16-
QAM constellation over AWGN channels in Fig. 9. We have
mentioned that there is no gain for spreading over AWGN
channels and the plain modulation corresponding to an identity
rotation matrix in (2) is already the best linear scheme. It
can be seen in Fig. 9 that ℳ𝛽

3 and ℳ𝛾
3 slightly outperform

the traditional modulation, while ℳ𝛼
3 has a much worse

performance. This observation is consistent with Fig. 5, where
although ℳ𝛾

3 has a smaller minimum Euclidean distance than
ℳ𝛽

3 and the unitary spreading, the probability corresponding
to this minimum distance is very small. Similarly, the per-
formance comparison of ℳ𝛼

4 with the plain modulation on
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Fig. 10. Comparison of the FER performance for ℳ𝛼
4 and the unitary linear

spreading (unspread) scheme over AWGN channels.

QPSK constellation over AWGN channels is provided in Fig.
10. Evidently, ℳ𝛼

4 has a significant gain (more than 1dB) than
the latter.

The comparison in Fig. 7 - Fig. 10 has justified the
flexibility of our MDS code based signal diversity techniques
in various communication scenarios where the receiver has the
option to choose different decoding algorithms depending on
the channel feature and allowed computational overhead. But
no channel information is required at the transmitter side for,
for instance, adaptive modulation schemes.

VI. CONCLUSION

In this paper, we proposed a novel signal space diversity
technique based on MDS codes and an associated suboptimal
DCS decoding algorithm. The DCS decoding can significantly
reduce the complexity relative to the optimal ML detection
with only a marginal performance loss while keeping the diver-
sity order. By providing two design examples called TCJM and

QCJM, we illustrated how to optimize the performance of our
technique from a binary linear code construction as well as the
constellation labelling. Simulation results showed that TCJM
and QCJM can outperform some optimal linear spreading
schemes over either Rayleigh fading or AWGN channels, even
when they have a much lower decoding complexity endowed
by DCS detection than the latter.

APPENDIX

A. Proof of Theorem 1

Proof: Consider two 𝑛-length information bit sequences
b𝑖 =

(
𝑏𝑖1, 𝑏

𝑖
2, ⋅ ⋅ ⋅ , 𝑏𝑖𝑛

)
, 𝑖 = 1, 2. Correspondingly, we

have c𝑖 =
(
𝑐𝑖1, 𝑐

𝑖
2, ⋅ ⋅ ⋅ , 𝑐𝑖𝑚𝑝

)
= b𝑖 ⋅ 𝐺𝑚,𝑑 and x𝑖 =(

𝑥𝑖1, 𝑥
𝑖
2, ⋅ ⋅ ⋅ , 𝑥𝑖𝑚

)
, 𝑖 = 1, 2. Note that for a given constellation

labelling, b𝑖 and b𝑖 ⋅ 𝐴 decide the first 𝑚 − 𝑑 + 1 and last
𝑑 − 1 symbols of x𝑖, respectively. Let Δb = b1 − b2,
Δc = c1 − c2 = Δb ⋅ 𝐺𝑚,𝑑 and Δx = x1 − x2 =
(Δ𝑥1,Δ𝑥2, ⋅ ⋅ ⋅ ,Δ𝑥𝑚).

Let us first consider the sufficiency. Assume there are
exactly 𝑘 nonzero elements in (Δ𝑥1,Δ𝑥2, ⋅ ⋅ ⋅ ,Δ𝑥𝑚−𝑑+1),
1 ≤ 𝑘 ≤ min{𝑚 − 𝑑 + 1, 𝑑 − 1}. From the condition, there
are at most 𝑘− 1 zeros in (Δ𝑥𝑚−𝑑+2,Δ𝑥𝑚−𝑑+3, ⋅ ⋅ ⋅ ,Δ𝑥𝑚)
since, otherwise, we are able to find a 𝑘𝑝× 𝑘𝑝 submatrix of
𝐴 with the form in (8) that is singular. Therefore, 𝑤(Δx) ≥
𝑘+(𝑑− 1)− (𝑘− 1) = 𝑑 and the code 𝒳 achieves a diversity
order of at least 𝑑. To show that the diversity order is exactly
𝑑, it suffices to consider the case of 𝑘 = 1 by utilizing the
condition.

To prove the necessity, assume there exist 1 ≤ 𝑘0 ≤
min{𝑚− 𝑑+1, 𝑑− 1}, 1 ≤ 𝑖01 < 𝑖02 < ⋅ ⋅ ⋅ < 𝑖0𝑘0

≤ 𝑚− 𝑑+1
and 1 ≤ 𝑗01 < 𝑗02 < ⋅ ⋅ ⋅ < 𝑗0𝑘0

≤ 𝑑− 1 such that matrix

𝐴 =

⎛
⎜⎜⎜⎝

𝐴𝑖01,𝑗
0
1
𝐴𝑖01,𝑗

0
2

⋅ ⋅ ⋅ 𝐴𝑖01,𝑗
0
𝑘

𝐴𝑖02,𝑗
0
1
𝐴𝑖02,𝑗

0
2

⋅ ⋅ ⋅ 𝐴𝑖02,𝑗
0
𝑘

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ... ⋅ ⋅ ⋅
𝐴𝑖0

𝑘0
,𝑗01

𝐴𝑖0
𝑘0

,𝑗02
⋅ ⋅ ⋅ 𝐴𝑖0

𝑘0
,𝑗0

𝑘0

⎞
⎟⎟⎟⎠

is singular. Then, we can find a binary vector b̃ =(
�̃�1, �̃�2, ⋅ ⋅ ⋅ , �̃�𝑘0𝑝

)
of length 𝑘0𝑝 such that b̃ ⋅ 𝐴 = 0.

Define the bit sequence b1 by 𝑏1
(𝑖0𝑡−1)𝑝+𝑢

= �̃�(𝑡−1)𝑝+𝑢, 1 ≤
𝑡 ≤ 𝑘0, 1 ≤ 𝑢 ≤ 𝑝, and 0 for all the other components.
Let b2 = 0. Then, there are exactly 𝑘0 nonzero elements
in (Δ𝑥1,Δ𝑥2, ⋅ ⋅ ⋅ ,Δ𝑥𝑚−𝑑+1) and Δ𝑥𝑚−𝑑+1+𝑗0𝑡

= 0 for
1 ≤ 𝑡 ≤ 𝑘0, which implies 𝑤(Δx) ≤ 𝑘0+(𝑑−1)−𝑘0 = 𝑑−1.
This contradicts with the condition that 𝒳 has a diversity order
𝑑.

B. Proof of Corollary 1

Proof: Using the symbols and notations defined in the
first paragraph of Appendix A, we focus on the codeword
difference Δx with 𝑤(Δx) = 𝑑. If the 𝑑 nonzero components
of Δx are all in (Δ𝑥1,Δ𝑥2, ⋅ ⋅ ⋅ ,Δ𝑥𝑚−𝑑+1) (𝑚−𝑑+1 ≥ 𝑑),
this case is irrespective of the matrix 𝐴 in (7) and we hence
neglect it.

Assume there are exactly 𝑘 and 𝑑 − 𝑘 nonzero
components in (Δ𝑥1,Δ𝑥2, ⋅ ⋅ ⋅ ,Δ𝑥𝑚−𝑑+1) and
(Δ𝑥𝑚−𝑑+2,Δ𝑥𝑚−𝑑+3, ⋅ ⋅ ⋅ ,Δ𝑥𝑚), respectively, 1 ≤ 𝑘
≤ min{𝑚 − 𝑑 + 1, 𝑑 − 1}. Let these nonzero components
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be Δ𝑥𝑖1 ,Δ𝑥𝑖2 , ⋅ ⋅ ⋅ ,Δ𝑥𝑖𝑘 and Δ𝑥𝑚−𝑑+1+𝑗1 , Δ𝑥𝑚−𝑑+1+𝑗2 ,
⋅ ⋅ ⋅ , Δ𝑥𝑚−𝑑+1+𝑗𝑑−𝑘

, 1 ≤ 𝑖1 < 𝑖2 < ⋅ ⋅ ⋅ < 𝑖𝑘 ≤ 𝑚 − 𝑑 + 1,
1 ≤ 𝑗1 < 𝑗2 < ⋅ ⋅ ⋅ < 𝑗𝑑−𝑘 ≤ 𝑑− 1. The number of Δb such
that Δ𝑥𝑖𝑡 , 1 ≤ 𝑡 ≤ 𝑘, and Δ𝑥𝑚−𝑑+1+𝑗𝑠 , 1 ≤ 𝑠 ≤ 𝑑− 𝑘, are
nonzero is the size of the set

𝒰 =

{
(v1,v2, ⋅ ⋅ ⋅ ,v𝑘) ∣

𝑘∑
𝑡=1

v𝑡𝐴𝑖𝑡,𝑗𝑠 ∕= 0

for 1 ≤ ∀𝑠 ≤ 𝑑− 𝑘, 0 ∕= v𝑡 ∈ {0, 1}𝑝, 1 ≤ 𝑡 ≤ 𝑘
}
.

We know from 𝑤(Δx) = 𝑑 that
∑𝑘

𝑡=1 v𝑡𝐴𝑖𝑡,𝑗1 ∕=
0 (Δ𝑥𝑚−𝑑+1+𝑗1 ∕= 0) implies

∑𝑘
𝑡=1 v𝑡𝐴𝑖𝑡,𝑗𝑠 ∕= 0

(Δ𝑥𝑚−𝑑+1+𝑗𝑠 ∕= 0) for 2 ≤ 𝑠 ≤ 𝑑 − 𝑘. So, 𝒰 can be
equivalently reduced to

𝒰 =

{
(v1,v2, ⋅ ⋅ ⋅ ,v𝑘) ∣

𝑘∑
𝑡=1

v𝑡𝐴𝑖𝑡,𝑗1 ∕= 0,

0 ∕= v𝑡 ∈ {0, 1}𝑝, 1 ≤ 𝑡 ≤ 𝑘
}
.

It is easy to see that ∣𝒰∣ is independent of
𝐴𝑖1,𝑗1 , 𝐴𝑖2,𝑗1 , ⋅ ⋅ ⋅ , 𝐴𝑖𝑘,𝑗1 if they are full-rank. Hence,
we have completed the proof.

C. Proof of Theorem 3

Proof: We continue to use the symbols and notations
defined in the first paragraph of Appendix A with 𝑚 = 3,
𝑛 = 12, 𝑑 = 2 and 𝑝 = 6. Furthermore, let Δb𝑖 =(
𝑏1𝑝(𝑖−1)+1 − 𝑏2𝑝(𝑖−1)+1, 𝑏

1
𝑝(𝑖−1)+2 − 𝑏2𝑝(𝑖−1)+2, ⋅ ⋅ ⋅ , 𝑏1𝑝𝑖 − 𝑏2𝑝𝑖

)
,

𝑖 = 1, 2, and hence Δb = (Δb1,Δb2). Consider the
following five cases for 𝑖 = 1 or 2 that cover all the
possibilities:

∙ If 𝑤(Δb𝑖) > 2, ∣Δ𝑥𝑖∣ ≥
√
5𝑑64min from (15);

∙ If 𝑤(Δb𝑖) = 1 and 𝑤(Δb3−𝑖) = 0, ∣Δ𝑥3∣ ≥
√
5𝑑64min

from condition (a) and (15);
∙ If 𝑤(Δb𝑖) = 2 and 𝑤(Δb3−𝑖) = 0, ∣Δ𝑥𝑖∣, ∣Δ𝑥3∣ ≥√

2𝑑64min from condition (c) and (15);
∙ If 𝑤(Δb𝑖) = 1 or 2 and 𝑤(Δb3−𝑖) = 1,

Δ𝑥1,Δ𝑥2,Δ𝑥3 ∕= 0 from condition (b);
∙ If 𝑤(Δb1) = 𝑤(Δb2) = 2, ∣Δ𝑥1∣, ∣Δ𝑥2∣ ≥ √

2𝑑64min

from (15).
From the above discussion, if 𝑤(Δx) = 2, the absolute values
of its two nonzero components have product no less than
2
(
𝑑64min

)2
. Hence, we have completed the proof.

D. On the nonexistence of a binary 6 × 6 full-rank matrix
such that any nonzero linear combination of its two rows has
Hamming weight no less than 3

Proof: Let us first consider how many rows of weight 3
we can have at most in a 6× 6 full-rank matrix 𝑀 . Assume
that there are ℎ such rows forming a ℎ × 6 submatrix 𝐻 of
𝑀 . In 𝐻 , we cannot find 3 entry 1 on its any column because
otherwise, two of the three rows with entry 1 on that column
will add to a vector with weight less than 3. Therefore, any
column of 𝐻 has weight no larger than 2 and furthermore,
any two columns with weight 2 must be different. So, we
have ℎ ≤ 4 from

(
ℎ
2

)
≤ 6. If ℎ = 4, however, all the 4 rows

of 𝐻 will add to 0, which contracts with the full rankness
of 𝑀 . So, we can have at most 3 rows of weight 3 in 𝑀 .
Following the above analysis for weight 3 case, we can show
that there are at most 2 rows of weight 4 in 𝑀 . Finally, it is
easy to know 𝑀 has at most one row of weight 5 or 6.

As a result, we have the only choice that𝑀 is composed of
3 rows of weight 3, two rows of weight 4 and 1 row of weight
5. Without loss of generality,𝑀 must have the following form⎛

⎜⎜⎜⎜⎜⎝

1 ⋅ ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎠

(21)

so that the summation of each of the first 5 rows with the last
row has weight larger than 2. But the form in (21) contradicts
with our previous conclusion that any column of𝐻 has weight
less than 3. Hence, we have completed the proof.

REFERENCES

[1] K. Boulle and J.-C. Belfiore, “Modulation schemes designed for the
Rayleigh fading channel," in Proc. Conf. Inform. Sci. Syst. (CISS’92),
Princeton, NJ, USA, Mar. 1992.

[2] X. Giraud, E. Boutillon, and J.-C. Belfiore, “Algebraic tools to build
modulation schemes for fading channels," IEEE Trans. Inf. Theory, vol.
43, no. 3, pp. 938-952, May 1997.

[3] J. Boutros and E. Viterbo, “Signal space diversity: a power- and
bandwidth-efficient diversity technique for the Rayleigh fading channel,"
IEEE Trans. Inf. Theory, vol. 44, no. 4, pp. 1453-1467, July 1998.

[4] S. Kaiser, “OFDM code-division multiplexing in fading channels," IEEE
Trans. Commun., vol. 50, no. 8, pp. 1266-1273, Aug. 2002.

[5] A. Bury, J. Egle, and J. Lindner, “Diversity comparison of spread-
ing transforms for multicarrier spread spectrum transformation," IEEE
Trans. Commun., vol. 51, no. 5, pp. 774-781, May 2003.

[6] D. Goeckel and G. Ananthaswamy, “On the design of multidimensional
signal sets for OFDM systems," IEEE Trans. Commun., vol. 50, no. 3,
pp. 442-452, Mar. 2002.

[7] M. L. McCloud, “Analysis and design of short block OFDM spreading
matrices for use on multipath fading channels," IEEE Trans. Commun.,
vol. 53, no. 4, pp. 656-665, Apr. 2005.

[8] V. M. Dasilva and E. S. Sousa, “Fading-resistant modulation using
several transmitter antennas," IEEE Trans. Commun., vol. 45, no. 10,
pp. 1236-1244, Oct. 1997.

[9] H. El Gamal and A. R. Hammons Jr., “A new approach to layered space-
time code and signal processing," IEEE Trans. Inf. Theory, vol. 47, no.
6, pp. 2321-2334, Sep. 2001.

[10] M. O. Damen, K. A. Meraim, and J.-C. Belfiore, “Diagonal algebraic
space-time block codes," IEEE Trans. Inf. Theory, vol. 48, no. 3, pp.
628-636, Mar. 2002.

[11] M. O. Damen, A. Tewfik, and J.-C. Belfiore, “A construction of a space-
time code based on number theory," IEEE Trans. Inf. Theory, vol. 48,
no. 3, pp. 753-760, Mar. 2002.

[12] B. A. Sethuraman, B. S. Rajan, and V. Shashidahar, “Full-diversity, high-
rate space-time block codes from division algebra," IEEE Trans. Inf.
Theory, vol. 49, no. 10, pp. 2596-2616, Oct. 2003.

[13] G. Wang, H. Liao, H. Wang, and X.-G. Xia, “Systematic and optimal
cyclotomic lattices and diagonal space-time block code designs," IEEE
Trans. Inf. Theory, vol. 50, no. 12, pp. 3348-3360, Dec. 2004.

[14] H. Wang and X.-G. Xia, “Optimal normalized diversity product of 2×2
lattice-based diagonal space-time codes from QAM signal constella-
tions," IEEE Trans. Inf. Theory, vol. 54, no. 4, pp. 1814-1818, Apr.
2008.

[15] H. Liao, H. Wang, and X.-G. Xia, “Some designs and normalized
diversity product upper bounds for lattice-based diagonal and full-rate
space-time block codes," IEEE Trans. Inf. Theory, vol. 55, no. 2, pp.
569-583, Feb. 2009.

[16] C. Lamy and J. Boutros, “On random rotations diversity and minimum
MSE decoding of lattices," IEEE Trans. Inf. Theory, vol. 46, no. 4, pp.
1584-1589, July 2000.

[17] A. Seyedi, “Multi-QAM modulation: a low-complexity full-rate diversity
scheme," in Proc. Int. Conf. Commun. (ICC’06), Istanbul, Turkey, June
2006, pp. 1470-1475.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on June 22,2024 at 11:08:50 UTC from IEEE Xplore.  Restrictions apply. 



2536 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 9, SEPTEMBER 2010

[18] R. Singleton, “Maximum distance 𝑄-nary codes," IEEE Trans. Inf.
Theory, vol. 10, no. 2, pp. 116-118, Apr. 1964.

[19] A. R. Hammons and H. El Gamal, “On the theory of space-time codes
for PSK modulation," IEEE Trans. Inf. Theory, vol. 46, no. 2, pp. 524-
542, Mar. 2000.

[20] H.-F. Lu and P. V. Kumar, “Rate-diversity trade-off of space-time codes
with fixed alphabet and optimal constructions for PSK modulation,"
IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2747-2751, Oct. 2003.

[21] H.-F. Lu and P. V. Kumar, “A unified construction of space-time codes
with optimal rate-diversity tradeoff," IEEE Trans. Inf. Theory, vol. 51,
no. 5, pp. 1709-1730, May 2005.

[22] X. N. Zeng and A. Ghrayeb, “Performance bounds for space-time block
codes with receive antenna selection," IEEE Trans. Inf. Theory, vol. 50,
no. 9, pp. 2130-2137, Sep. 2004.

[23] R. W. Heath Jr. and A. Paulraj, “Antenna selection for spatial multiplex-
ing systems based on minimum error rate," in Proc. IEEE Intern. Conf.
Commun. (ICC’01), Helsinki, Finland, June 2001, pp. 2276-2280.

[24] D. Gore and A. Paulraj, “MIMO antenna subset selection with space-
time coding," IEEE Trans. Signal Process., vol. 50, no. 10, pp. 2580-
2588, Oct. 2002.

[25] A. Gorokhov, D. Gore, and A. Paulraj, “Performance bounds for antenna
selection in MIMO systems," in Proc. IEEE Intern. Conf. Commun.
(ICC’03), Anchorage, AK, USA, May 2003, pp. 3021-3025.

[26] A. F. Molisch and M. Z. Win, “MIMO systems with antenna selection,"
IEEE Microw. Mag., vol. 5, no. 1, pp. 46-56, Mar. 2004.

[27] E. Soedarmadji, “Latin hypercubes and MDS codes," Discrete Math.,
vol. 306, no. 12, pp. 1232-1239, June 2006.

[28] C.-C. Kuo, S.-H. Tsai, L. Tadjpour, and Y.-H. Chang, Precoding
Techniques for Digital Communication Systems. New York: Springer,
2008.

[29] F. J. MacWillimas and N. J. Sloane, The Theory of Error-Correcting
Codes. North Holland, 1983.

[30] R. Hill, A First Course in Coding Theory. Clarendon Press, 1986.
[31] S. Roman, Coding and Information Theory. New York: Springer-Verlag,

1992.

Yue Shang received the B.S. degree in mathematics
and the M.S. degree in probability and statistics
from Nankai University, Tianjin, China, in 2001 and
2004, respectively, and the Ph.D. degree in electrical
engineering from University of Delaware, Newark,
DE, in 2008. He was an intern at Philips Research
North America, Briarcliff Manor, NY, from August
2007 to January 2008, and at MathWorks, Natick,
MA, from May 2008 to November 2008. Since Jan-
uary 2009, he has been with MathWorks as a senior
signal processing and communications engineer. His

research interests are in information theory, signal processing and wireless
communications. He has 15 journal and conference papers published and
three U.S. patents granted. He is a recipient of the University Graduate
Fellowship and the University Dissertation Fellowship from University of
Delaware for 2006-2007 and 2007-2008 academic years, respectively. He
received the Signal Processing & Communications Graduate Faculty Award
from University of Delaware in 2007.

Dong Wang received the B.S. and M.S. degrees
from Zhejiang University, Hangzhou, China, in 1996
and 1999, respectively, and the Ph.D. degree from
University of Delaware, Newark, DE, in 2005, all
in electrical engineering. From Apr. 1999 to Sep.
2000, he was employed as a senior system engineer
at Shanghai No.2 R&D institute, ZTE corporation.
From Oct. 2000 to June 2002, he was with Philips
Research East Asia, Shanghai, China, as a research
scientist. From May 2005 to Dec. 2005, he worked
at Mitsubishi Electrical Research Labs, Cambridge

MA. Since 2006, he has been with Philips Research North America, Briarcliff
Manor, NY, as a senior member research staff. His research interests are
in the general areas of signal processing and wireless communications. He
has authored or coauthored over 20 journal and referred conference papers
and has some 28 US/European patents granted or pending. He received
the Competitive Fellowship Award, in 2004, and the Signal Processing &
Communication Faculty Award, in 2005, both from University of Delaware.

Xiang-Gen Xia (M’97,S’00,F’09) received his B.S.
degree in mathematics from Nanjing Normal Univer-
sity, Nanjing, China, and his M.S. degree in mathe-
matics from Nankai University, Tianjin, China, and
his Ph.D. degree in Electrical Engineering from
the University of Southern California, Los Angeles,
in 1983, 1986, and 1992, respectively. He was a
Senior/Research Staff Member at Hughes Research
Laboratories, Malibu, California, during 1995-1996.
In September 1996, he joined the Department of
Electrical and Computer Engineering, University of

Delaware, Newark, Delaware, where he is the Charles Black Evans Professor.
He was a Visiting Professor at the Chinese University of Hong Kong during
2002-2003, where he is an Adjunct Professor. Before 1995, he held visiting
positions in a few institutions. His current research interests include space-
time coding, MIMO and OFDM systems, digital signal processing, and SAR
and ISAR imaging. Dr. Xia has over 200 refereed journal articles published
and accepted, and seven U.S. patents awarded and is the author of the book
Modulated Coding for Intersymbol Interference Channels (New York, Marcel
Dekker, 2000).

Dr. Xia received the National Science Foundation (NSF) Faculty Early
Career Development (CAREER) Program Award in 1997, the Office of Naval
Research (ONR) Young Investigator Award in 1998, and the Outstanding
Overseas Young Investigator Award from the National Nature Science Foun-
dation of China in 2001. He also received the Outstanding Junior Faculty
Award of the Engineering School of the University of Delaware in 2001. He
is currently an Associate Editor of the IEEE TRANSACTIONS ON WIRELESS
COMMUNICATIONS, IEEE TRANSACTIONS ON SIGNAL PROCESSING, Sig-
nal Processing (EURASIP), and the Journal of Communications and Networks
(JCN). He was a guest editor of Space-Time Coding and Its Applications in
the EURASIP Journal of Applied Signal Processing in 2002. He served as
an Associate Editor of the IEEE TRANSACTIONS ON SIGNAL PROCESSING
during 1996 to 2003, the IEEE TRANSACTIONS ON MOBILE COMPUTING
during 2001 to 2004, IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
during 2005 to 2008, the IEEE SIGNAL PROCESSING LETTERS during 2003
to 2007, and the EURASIP Journal of Applied Signal Processing during
2001 to 2004. Dr. Xia served as a Member of the Signal Processing for
Communications Committee from 2000 to 2005 and a Member of the Sensor
Array and Multichannel (SAM) Technical Committee from 2004 to 2009
in the IEEE Signal Processing Society. He serves as IEEE Sensors Council
Representative of IEEE Signal Processing Society (from 2002) and served
as the Representative of IEEE Signal Processing Society to the Steering
Committee for IEEE TRANSACTIONS ON MOBILE COMPUTING during 2005
to 2006. Dr. Xia is Technical Program Chair of the Signal Processing Symp.,
Globecom 2007 in Washington D.C. and the General Co-Chair of ICASSP
2005 in Philadelphia.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on June 22,2024 at 11:08:50 UTC from IEEE Xplore.  Restrictions apply. 


