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Design of Prefilters for Discrete 
Multiwavelet Transforms 

Xiang-Gen Xia, Jeffrey S .  Geronimo, Douglas P. Hardin, and Bruce W. Suter, Senior Member, ZEEE 

Abstract-The pyramid algorithm for computing single wavelet 
transform coefficients is well known. The pyramid algorithm 
can be implemented by using tree-structured multirate filter 
banks. In this paper, we propose a general algorithm to compute 
multiwavelet transform coeficients by adding proper premul- 
tirate filter banks before the vector filter banks that generate 
multiwavelets. The proposed algorithm can be thought of as 
a discrete vector-valued wavelet transform for certain discrete- 
time vector-valued signals. The proposed algorithm can be also 
thought of as a discrete multiwavelet transform for discrete-time 
signals. We then present some numerical experiments to illustrate 
the performance of the algorithm, which indicates that the energy 
compaction for discrete multiwavelet transforms may be better 
than the one for conventional discrete wavelet transforms. 

I. INTRODUCTION 

AVELET transforms with single-mother wavelet func- 
tions have been studied extensively in the last ten years 

and are now well understood. One of their main properties is 
the time-frequency localization property of wavelet functions. 
However, it is known that there is a limitation for the time- 
frequency localization of a single wavelet function. Recently, 
multiwavelets have been studied, for example, [1]-[17], where 
several mother wavelet functions were used to expand a 
function. For instance, Geronimo, Hardin and Massopust [ 11 
(GHM) constructed two scaling functions $1 (t)  and 42 ( t ) ,  and 
in [2] and [ l l ]  two related mother wavelets y!Jl(t) and y!Jz(t) 
are constructed. The scaling functions and associated wavelets 
are constructed so that $l(t - k l ) ,  4z(t - k z ) ,  k l ,  kz E Z, are 
orthogonal, and the integer translations and the dilations of 
factor 2 of & and $2 form an orthonormal basis for L2(R). 
The two scaling functions $1 and $2 are supported in [0,1] 
and [0,2], respectively. Moreover, they are symmetric and 
Lipschitz continuous, see Fig. 1. This is impossible for single 
orthogonal wavelets, i.e., a single orthogonal wavelet cannot 
simultaneously have support [0, 21, and be continuous, and a 
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(c) (d) 
Fig. 1. Multiwavelets generated by Geronimo, Hardin, and Massopust: (a) 
and @) are scaling functions &(t)  and d z ( t ) ,  respectively; (c) and (d) are 
wavelet functions $1 ( t )  and & ( t ) ,  respectively. 

single orthogonal wavelet with compact support cannot have 
any symmetry. 

For other orthogonal multiwavelets, see [2] and [3]. Another 
way to generate multiwavelets is using a vector/matrix-valued 
wavelet approach for vector/matrix-valued signals [ 81. 

It is known that multiresolution analysis plays an important 
role in single-wavelet transforms. Similarly, multiresolution 
analysis is also very important in multiwavelet transforms, 
such as those associated with spline spaces [4]-[6], intertwin- 
ing multiresolution analysis for multiwavelets [3], and vector- 
valued multiresolution analysis for vector-valued wavelets [SI. 
With multiresolution analysis structure wavelet transform co- 
efficients with single mother wavelet function can be computed 
by using pyramid algorithms, such as Mallat’s algorithm [20] 
and Shensa’s algorithm [22]; also see, for example, [20]-[25]. 
These algorithms are based on the quadrature mirror filters 
H ( w )  and G ( w )  that generate scaling and mother wavelet 
functions. The algorithm structure can also be viewed as tree- 
structured multirate filter banks [181, [191, [301, [321, 1331. The 
rationale for these algorithms is that the samples f (n /ZJ)  of 
a signal f for a large J are close to the orthogonal projection 
coefficients c J , ~  of f onto the multiresolution analysis space 
VJ. This, however, is no longer true for multiwavelets. In 
Section 11, we will discuss it in more detail. 
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In this paper, we propose a pyramid algorithm for computing 
multiwavelet transform coefficients. The proposed algorithm 
is based on a pre and postconventional multirate filter bank 
and a tree-structured multirate vector filter bank [8], 191. We 
investigate how the properties of the pre- and postfilters are 
reflected in the system as a whole. In particular we examine 
the relation between these filters and the lowpass and bandpass 
properties of the system. We call these filters, which provide a 
good match with the whole system, good pre- and postfilters. 
For any given multiwavelets, we are able to determine good 
prefilters associated to them, which are wavelet dependent. 

Discrete vector-valued orthogonal wavelet transforms for 
vector-valued signals were introduced in [8], where the low- 
pass and bandpass properties for the vector quadrature mirror 
filters associated with vector-valued wavelets were interpreted 
similar to single wavelets, i.e., H(0) is identity and G(0) 
vanishes. In this case, prefiltering is not necessary but the con- 
ditions are restrictive. In this paper, we will also show that the 
proposed algorithm for computing multiwavelet transform co- 
efficients can be thought of as a discrete vector-valued wavelet 
transform for certain vector-valued signals, where the highpass 
and bandpass properties are interpreted in a different way. 

With the proposed algorithm, the multiwavelet series trans- 
form coefficients sometimes can not be computed exactly. In 
this paper, we present a necessary and sufficient condition for 
the exact computation. The proposed algorithm also suggests 
a discrete multiwavelet transform for discrete-time signals. In 
the last section, we present numerical experiments for the 
algorithm. The results show that better energy compaction 
can be achieved by using the proposed algorithm with good 
prefilters than the one by using the Daubechies wavelets 
Dq. The energy compaction improvement is mainly due to 
the flexibility in choosing prefilters for multiwavelets so that 
some high- frequency components can be put into the low- 
frequency parts. Notice that an intuitive prefiltering procedure 
for the two wavelets generated by Geronimo, Hardin, and 
Massopust was also used by Heller et aZ. in [17] for image 
compression without much analysis. Discrete multiwavelet 
transforms without prefiltering appeared also in [13], [34], and 
[35], but no performance was discussed. 

This paper is organized as follows. In Section II, we 
illustrate the motivation for the algorithm we want to propose, 
by making use of the scaling functions generated by Geron- 
imo, Hardin and Massopust. In Section III, we introduce the 
algorithm and study its properties. In Section IV, we present 
some numerical experiments using the proposed algorithm. 

11. MOTIVATION AND ANALYSIS FOR THE TWO-WAVELET CASE 

Before going to the algorithm, we briefly review the scaling 
functions obtained by Geronimo, Hardin, and Massopust. The 
two scaling functions and their corresponding mother wavelet 
functions can be generated by the following matrix dilation 
equations [2] and [11]. Let 

and 

Go = (-a140 -1120 -3a/ZO)’  -3120 G - ( 9/20 0 

-a/40 O . (2.2) -3120 
G2 = (“-$”o” 3 f i / 2 0 ) .  G3 = ( 1/20 0 )  

Then, the two scaling function +l(t) and + z ( t )  in Fig. 1 
can be generated via 

The two mother wavelet functions $ 1 ( t )  and $ 2 ( t )  can be 
constructed by 

Let VJ = closure of the linear span of 2J/2+1(2Jt - k ) ,  
1 = 1,2; k E Z. With the above constructions, it has been 
proved that &(t - k ) ,  I = 1,2; k E Z form an orthonormal 
basis for VO, and moreover the dilations and translations 
2”’+,1(2jt - k), 1 = 1,2;j, k E Z form an orthonormal basis 
for L2(R) [l], [2], [4]. In other words, the spaces V,, J E Z, 
form an orthogonal multiresolution analysis of L2 (R). Let 

3 3 

H(w) = 1 Hkeiwk, G ( w )  = 1 Gkeiwk. (2.5) 
k=O k=O 

From the orthogonality, we have 

H(w)Ht ( w )  + H ( w  + n)Ht (w + T )  = 1 2  

G ( w ) G t ( w )  + G ( w  + r ) G t ( w  + T )  = 1 2  

H ( w ) G t ( w )  + H ( w  + ~ ) G t ( w  + T )  = 0 2  

(2.6) 
(2.7) 
(2.8) 

where t means the complex conjugate transpose, I2 and 0 2  
denote the 2 x 2 identity and all zero matrix, respectively. 

Let f E Vi, then, 

where 

(2.9) 

(2.10) 

(2.1 1) 

(2.12) 
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(b) 
Fig. 2. Multiwavelet (a) decomposition; (b) reconstruction. 

for 1 = 1 , 2 ;  j ,  k E Z and JO < 0. By the dilation (2.3), 
(2.4), we have the following recursive relationship between 
the coefficients ( C l , j , k ,  ~ ~ , ~ , k ) ~  and ( d l , j , k ,  d 2 , j , k ) T  where 
means the transpose 

approach for single-wavelet transform coefficient computation, 
see [23]-[25]. A natural question for multiwavelet transform 
coefficient computation is whether we can have the pair 
( C l , J , k , c 2 , J , k )  for k E Z from the samples of f .  To analyze 
it, we go back to the representation (2.9) for f ( t ) .  Since &(t)  

3 is supported in [O, 11 and $ 2 ( t )  is supported in [O, 21, Cl ,O,k  for tl”-l’k) = fix Hn ( c 1 ’ J ’ 2 k + n )  , j ,  E z (2.13) 1 = 1 , 2  and k E Z can be solved from f ( n / 2 )  as follows [2]: 
c 2 , j  - 1 ,  k n=O C 2 , 3 , 2 k + n  

and 

Moreover, 

(2.15) 

The recursive (2.13) and (2.14) tell us that, to have all 
coefficients c l , ~ ~ , k ,  d l , j , k  for 1 = 1 , 2 ;  JO 5 j < 0, k E Z we 
only need to have coefficients for 1 = 1 , 2 ;  k E z in (2.9). 
This is exactly like the single-wavelet transforms [20]-[22], 
where we have single sequences d j , k  and C j , k  instead of 
pairs ( C l , j , k , c 2 , j , k )  and ( d l , j , k , d 2 , j , k ) .  It is known that in the 
single-wavelet transform case, the scaling function 4(t)  has 
lowpass properties and c J . k  M 2 J / 2  f ( k / 2  J ,  when J is large 

Thus, with the recursive formulas (2.13), (2.14) one can 
exactly compute the wavelet coefficients C Z , J ~ , ~ ,  d l , j , k  for 1 = 
1 , 2 ;  JO 5 j < 0; k E Z from f ( n / 2 ) ,  n E Z when f E Vi. 
This can be generalized to the J th  resolution case: C ~ , J ~  , I C ,  d l , J , k  

for 1 = 1 , 2 ,  JO 5 j < J ,  k E Z from f ( 7 1 / 2 ~ ) ,  n E Z when 
f E VO. For a signal f in L2(R) and sufficiently large J ,  f 
is approximately in VJ and the above computation may still 
be used. 

With the formulas (2.15)-(2.17), one can reconstruct 
f ( n / 2 ) ,  7I E z from C l , j 0 , k ,  d l , ’ , k ;  1 = 1,2; Jo 5 j < 0; k E z 
as follows. With the coefficients C Z , J ~ , ~ ,  d l , j , k  we first 
reconstruct f ( n / 2 )  from C l , O , k  

and f has certain smoothness (see, for example, [20], [23], 
1251). Therefore, the single-wavelet transform coefficients d j , k ,  

IC E Z of f by using the pyramid algorithm. This is called 
Mallat algorithm [20]-[25]. For the detailed error analysis and 
improved algorithms, such as Shensa algorithm, of the above 

f(n) = ~ 2 , 0 , n - 1 4 2 ( 1 )  (2.18) 

j < J,  k E Z can be obtained from the samples f ( k / 2 J ) ,  f ( y) = C l , O , n $ l  (k )  + C 2 , 0 , n + 2  (k) 
+ C 2 , 0 , n - 1 4 2  (i). (2.19) 
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x[n]= 

Fig. 4. 
bank. 

Fig. 3. Multiwavelet decomposition. 

U -  

(b) 

(a) Conventional two-channel filter bank; (b) two-channel vector filter 

The coefficients cl,o,k can be reconstructed via (2.13)<2.15). 
Let 

(2.20) 

(2.21) 

Then, the above decomposition and reconstruction can be 
represented by a modified tree-structured vector filter bank 
shown in Figs. 2(a) and (b), respectively. Notice that the above 
procedure was used in [ 171 in image compression applications. 

Let & ( U )  be the polyphase matrix of Ql(w)  and Q z ( w )  
with sampling rate 2, i.e., 

Then, the decomposition part in Fig. 2(a) can be redrawn in 
Fig. 3. Thus, the decomposition and reconstruction in Figs. 2 
and 3 can be split into two separate systems as shown in Fig. 4, 
where the one in (a) is a conventional two-channel filter bank 
and the one in (b) is a two-channel vector filter bank [9]. We 
have the following straightforward result. 

Fig. 5. Equivalent systems. 

Proposition 1: The perfect reconstruction property of the 
system in Fig. 2 is equivalent to the perfect reconstruction 
properties of the two systems in Fig. 4(a) and (b). 

With the identities (2.6)-(2.Q the system in Fig. 4(b) is 
perfect reconstruction. It is also easy to check Q (w ) P ( U )  = 1 2  

with Q(w) defined in (2.23) and P ( w )  defined in (2.22). Thus, 
we have ?[n] = z[n], i.e., the system in Fig. 2 gives per- 
fect reconstruction. When the matrix quadrature mirror filters 
W ( w )  and G ( w )  satisfying (2.6)-(2.8) are fixed, Proposition 
1 also tells us that the system in Fig. 2 still gives perfect 
reconstruction as long as the system in Fig. 4(a) gives perfect 
reconstruction. This suggests that one may use other polyphase 
matrixes Q(w) and P(w)  rather than the ones in (2.23) and 
(2.22). This allows much freedom for choosing Q(w)  and 
P(w). Which one is desired? To study this question, we 
restudy the system in Fig. 3. The prefilter polyphase matrix 
Q(w) can be absorbed into the one behind it as shown in 
Fig. 5,  where H ( w ) Q ( w )  is the polyphase matrix of another 
two filters f i l ( w )  and f i z ( w ) ,  and G l ( w ) ,  I = 1,2,  are similar 
(see Fig. 6). The frequency responses of these four filters are 
shown in Fig. 7. Since we, usually need to decompose the 
outputs of the filtering of H l ( w ) ,  I = 1,2,  we may want that 
&i(u), I = 1,2, have lowpass properties. Since the outputs of 
the filtering of G l ( w ) ,  I = 1,2 ,  are kept for quantization, we 
usually expect G l ( w ) ,  1 = 1,2, to have bandpass property so 
that only a small amount of the outputs are significant. From 
Fig. 7, one can see that f i l ( w )  is not a good lowpass filter 
because it doesn't vanish at T .  Constm$ng good lowpass 
filters &l(w) and good bandpass filters G l ( w )  for I = 1 , 2  is 
one of the main goals of the next section. 

The solvability (2.16), (2.17) of cl,o,k from f(nl2) in 
(2.9) is very special due to the fact that there are only two 
scaling functions supported in [0,1] and [0,2], respectively. 
This solvability may fail for general N wavelets. In the next 
section, we present a necessary and sufficient condition for 
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Fig. 7. lfii(u)l and IGi(u)l for 1 = 1 , 2 .  

the solvability in N wavelet case. When cl,o,k cannot be 
solved from the samples f ( n / M ) ,  we lack a system like 
the one in Fig. 2 to exactly compute the multiwavelet series 
transform coefficients from the samples. In this case, there are 
no associated pre- or postfilters & ( U )  and P(w)  like the above 
two-wavelet case. We then have to use other pre- or postfilters 
Q ( w )  and P ( w )  such that Q ( w ) P ( w )  = I N .  We also use the 
low bandpass criterion to choose these pre- or postfilters. 

111. A GENERAL ALGORITHM 

(3.3) 

to M-band wavelets where there are N scaling functions and 
(A4 - l )N  mother wavelet functions. 

Let f E VO, then, 

N 

f ( t )  = y C l , O , k h ( t  - k )  

= C~,JO,k2J0/2q$(2J0t - I C )  

z=1 k E Z  
N 

1=1 k e Z  
N 

+ dz,j,k23/21C11(2't - I C )  (3.4) 
1=1 J o < j < O k E Z  

where Jo < 0 and C Z , ~ , ~ ,  dl,,,k are defined by (2.1 l), (2.12). Let 

Cg,k  = ( C i , g , k . .  C ~ , j , k ) ~  and d 3 , k  = ( d i , , , k . .  . , d i v , j , k ) . T  
Then, similar to (2.13)-(2.15), we have the following decom- 
position and reconstruction 

A A 

c j - 1 , k  = J z C ~ n ~ g , 2 k + n  (3.5) 
n 

d j - 1 , k  = ~ n c j , 2 k + n  (3.6) 
n 

and 

C j , n  = h C ( H k c j - 1 , 2 k + n  + G k d j - l , a / c + n ) .  (3.7) 
k 

Thus, to determine the wavelet coefficients C J ~ , ~  and d,,k for 
JO 5 j < O,k E Z from the samples of f ( t ) ,  it is only 
necessary to determine the coefficients C O , ~  for IC E Z from 
the samples of f ( t ) .  

rate I/M. Let z[n] 

In this section, we first generalize the analysis in Section I1 
from the two-wavelet case to N wavelet case. We then study 
the conditions and properties on prefilters. 

Suppose we have samples f ( n / M )  of f ( t )  with sampling 

j ( n / ~ ) ,  n E Z, 

A. Solvability of the Transform Coej'icients from Samples 

We consider general orthogonal N wavelets with compact 
support, where there are N compactly supported scaling 
functions I$ l ( t ) ,  1 = 1,2 , .  . . , N ,  and N mother wavelet 
functions &(t) ,  I = 1 ,2 , .  . . , N ,  where $l(t - IC), IC E Z, 
1 = 1,2,  . . . , N are mutually orthogonal, and 29/2$,1(23t - I C ) ,  
j , k  E Z,  1 = 1 ,2 , .  . . , N  form an orthonormal basis for 
L2(R) .  Let H(w)  and G ( w )  be their corresponding N x N 
matrix quadrature mirror filters with impulse responses HI, 
and G k ,  IC E Z, respectively. Let 

@(t) ' ( d l ( t )  . . . , I $ N ( t ) ) T ,  @(t)  ' ($l(t) . . . , $ N ( t ) ) T *  

Then, we have the following matrix dilation equations 

q t )  = 2 c  HkQ(2t - I C )  (3.1) 

*(t)  = 2 Gk@(2t  - IC). (3.2) 

k 

k 

For each fixed j E Z, let V, = the closure of the linear span 
of 23/21$l(23t - I C ) ,  1 = 1 ,2 , .  . . , N ;  IC E Z. Then, the spaces 
V,, j E Z form an orthogonal multiresolution analysis for 
L2(R). Although we only focus on two-band multiwavelets, 
the theory developed in this section can be easily generalized 

n n 
(3.8) 

where Xm(w)  is the mth polyphase component of X ( w )  for 
m = 0 , 1 , . . . , M  - 1. Let 

1 = 1 , 2 , . . . , N , m = O , l , . . . , M - l ,  (3.9) 

and 

Cz,,(w) = z ~ l , ~ , k e - ~ ~ ~ ,  1 = 1 , 2 , . . . , N , j  E Z. (3.10) 
k 

Let P ( w )  be the following M x N matrix fucntion 

P O , l ( W )  Po,2(w) . . .  PO,N(W) 
Pl, l(w) P 1 , 2 ( w )  " '  P l , N ( W )  

... P(w)  = 

The Fourier transform of (3.3) with t = $ + n, m = 
0,1 , .  . . , M - 1 yields 

(xO(w), ' ' ,  X M - l ( " J ) ) T  = p ( w ) ( c l , O ( w )  ' ' ' , C N , O ( w ) ) T ,  
(3.12) 
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. .  . .  . .  
‘“L’NTt 

t 
N many 

... 

L 

N many 
0) 

Fig. 8. Discrete multiwavelet transform: (a) Decomposition; (b) reconstruction. 

Since all 4 ~ ( t ) ,  I = 1 , 2 , .  . . , N are assumed of compact 
support, all entries of the matrix function P ( w )  are polyno- 
mials of e-””. By (3.12), we have the following result on the 
solvability. 

Proposition 2: The wavelet transform coefficients c J~ ,k and 
d , , k  for JO 5 j < O,k  E Z can be exactly computed from 
f ( n / M ) ,  n E Z,  if and only if M 2 N and the rank of the 
matrix P ( w )  in (3.11) is always N for all w E [0,27r). 

Since we usually need to use efficient sampling, the sam- 
pling rate should be as small as possible. Thus, based on 
Proposition 2, we assume M = N in what follows. In this 
case, we have 

Corollary 1: The wavelet transform coefficients c Jo,k and 
d , ,k  for JO 5 < O,k E Z can be exactly computed from 
f ( n / N ) ,  n E Z, if and only if the determinant function of the 
matrix function P ( w )  does not have any zeroes for w E [0,27r), 
i.e., the inverse of P ( w )  exists. The inverse of P ( w )  is FIR, 
i.e., finite impulse response, if and only if the detenninant of 
P(w)  is ceXmow for a certain nonzero constant c and a certain 
integer mo. 

Clearly, the matrix function P ( w )  in (2.22) satisfies Corol- 
lary 1. Actually, the matrix Q ( w )  in (2.23) is its inverse. 

Let Q(w)  be the inverse of P ( w ) ,  i.e., P ( w ) Q ( w )  = I N .  
Then the decomposition and reconstruction of cg,k and d J , k  

from f ( n / N )  can be shown by the diagram in Fig. 8. With the 
system in Fig. 8, we have the following result on the perfect 
reconstruction similar to the one in Section 11. 

Proposition 3: The system in Fig. 8 is perfect reconstmc- 
tion, i.e., ?[n] = ~ [ n ] ,  if and only if the matrix quadrature 
mirror filters H ( w )  and G ( w )  satisfy (2.6)-(2.8) with I2 and 

0 2  replaced by IN and O N  respectively, and P ( w ) Q ( w )  = I N .  
When we only consider a discrete-time signal ~ [ n ] ,  Propo- 

sition 3 also suggests that one may use other pre- or postfilters 
Q(w) and P ( w )  rather than the one in (3.12). Thus, for 
fixed H ( w )  and G ( w ) ,  there are many algorithms in terms of 
different Q(w)  and P(w) .  Which one is good? Similar to the 
argument at the end of Section 11, we prefer that the combined 
filter H ( w ) Q ( w )  has the lowpass property and G ( w ) Q ( w )  has 
the bandpass property. Recall that anN x N matrix filter F ( w )  
is also a polyphase matrix of N filters Fl (w) ,  . . . , FN(W)(see, 
for example, [32]). One way to interpret the lowpass and 
bandpass property of a matrix filter F ( w )  is to use the lowpass 
and bandpass property of its associated N filters Fz(w), 1 = 
1 , 2  ) . . . )  N .  

Let H ( w ) Q ( w )  be the polyphase matrix of &l(w),  I = 
1,2 , .  . . , N and G ( w ) Q ( w )  be the polyphase matrix of G i ( w ) ,  
1 = 1 , 2 , .  . . , N .  In the following, we study the conditions on 
Q(w) and P(u) given H ( w )  and G ( w )  such that 

B,(7r)=0, 1 = 1 , 2  ) . “ )  N (3.13) 
G , (0 )=0 ,  1 = 1 , 2  , ’ “ )  N .  (3.14) 

In the case that (3.13) and (3.14) can not be satisfied, we 
consider the following relaxed conditions on Q ( w )  and P ( w )  
given H ( w )  and G ( w )  

G‘l(7r) = E l ,  I = 1 , 2 , .  . . , N (3.15) 
G’l(0) = SE, I = 1 , 2 , .  . . , N  (3.16) 

where E Z  and St, I = 1 , 2 , .  . . , N  are predesigned small 
numbers if they are not 0. The conditions (3.15) and (3.16) can I 
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be interpreted as a tiny loss at high frequency r of fil(w) and 
a tiny loss at low frequency 0 of Gl(w). The prefilters Q(w) 
that have inverses P(w),  determinants det(Q(0)) = fl,  and 
satisfy (3.13), (3.14) or (3.19, (3.16), are called goodprtjilters 
with respect to H(w) and G(w). For the prefilter Q ( w )  in 
(2.23) in Section 11, one can easily check that 61 = 62 = 0, 
€1 = 0.1473, €2 = 0, and det(Q(0)) = -0.1535. 

B. Existence and Construction of Good Prejilters 

First, we formulate fil(w) and Gl(w). Let 

H(w)  = (Hmn(w))NXN, 
Q(w) = (Qmn ( w ) ) ~  x N .  

G(w) = (Gmn(w))NxN, 

Then (see [32] and [33]) 
N / N  \ 

m=l \ k = l  
N / N  

1 
\ 

m=l \ k = l  1 
Thus 

N / N  

m=l \k=l 
N / N  

m=l \ k = l  

Rearrange the summation in (3.19) and (3.20) 
N N 

k=l m=l 
N N 

(3.22) 
k=l m=l 

When N is even, (3.21) becomes 
N N 

k=l m=l 

Therefore, to have a good prefilter Q(w) with respect to H ( w )  
and G(w) we only need to solve for Q(0) from (3.13) and 
(3.14) or (3.15) and (3.16); and from (3.22) and (3.23), with 
det(Q(0)) = fl.  Then we form Q(w) = Q(O)V(w) or 
Q(w) = V(w)Q(O), where V(w) = I N ,  or 

V(w) = (IN+(eZW-l)vpvf;) ... (IN+(eZW-l)v1v~) (3.24) 

for high order prefilters, where v3 is an N x 1 constant 
vector with vjv, = 1; j = 1 , 2 , .  . . , p. With Q(w) as above 
its inverse is given by P ( w )  = Vt(w)Q-'(O) or P ( w )  = 
Q-l(O)Vt(w) (see [32] and [33]). 

When N is odd, (3.21) is 
N N 

k = l  m=l 

In this case, we first need to solve for Q(0) from (3.13) and 
(3.23) or (3.15) and (3.23), with det(Q(0)) = fl .  Then we 

use the form of &(U) = Q(O)V(w) or Q(w) = V(w)Q(O) 
with V(w) in (3.24), and substitute Q ( r )  in (3.25). Finally we 
solve for v3, j = 1 ,2 , .  . . , p from (3.14) or (3.16) and (3.25). 

We next have a complete analysis of the N = 2 case. 
Proposition 4: Suppose N = 2, i.e., two-wavelet case. If 

a good prefilter Q ( w )  exists that satisfies (3.13) and (3.14) 
and has an inverse P(w),  then both H(0) and G(0) are 
singular. Conversely, if H(0) and G(0) are both singular and 
clH(0) # czG(0) for any constants c1 and c2, then a good 
prefilter Q(w) exists that satisfies (3.13) and (3.14) and has 
an inverse P ( w ) .  If H(0) and G(0) are both singular and 
clH(O) = c2G(O) for some constants c1 and cz, then there 
do not exist any good prefilters. 

Proofi Equations (3.22) and (3.23) are 

G ( 0 )  = Gzi(O)(Qii(o) + Qiz(0)) 

ki(r) = Hli(O)(Qii(o) - Qiz(0)) 

+ Gi2(O)(Q21(0) + Q22(0)), I =  1 , 2  

+ ffi2(O)(Q21(0) - Q22(0)), 1 = 1,2. 

If H(0) or G(0) is nonsingular, then, by (3.13), (3.14), 
Qtl(0) = Ql2(0), 1 = 1,2, or Qll(0) = -Qlz(O), 1 = 1,2.  
This implies that Q(0) is singular, i.e., no inverse of &(U) 

exists. This proves the first part of the proposition. 
If H(0) and G(0) are both singular, then, by (3.13) and 

(3.14) and without loss of generality 

Qii(0) - Q12(O) = ai(Q21(0) - Q22(0)) 
Qii(0) + Q12(0) = a2(Qzi(o) + Q22(0)) 

where al # 0 and a2 # 0 are two constants. If clH(0) # 
c2G(O) for any constants c1 and C Z ,  then, a1 # U Z .  Thus, 
Q(0) with determinant f l  exists. This proves the second part 
of the proposition. 

When H(0) and G(0) are both singular and clH(0) = 
czG(0) for two constants c1 and c2, the conditions (3.13) 
and (3.14) imply al = a2 in the above equations and 
Qll(0) = alQ2l(O) for 1 = 1,2.  Therefore, Q(0) is singular 
and Q(w) does not have an inverse. From the singularities of 
both matrixes H(0) and G(O), the conditions (3.15) and (3.16) 
cannot be satisfied for cl and 61, 1 = 1 , 2  that are not all zero. 

U 
When H(0) and G(0) are both nonsingular, then we con- 

This proves the last part of the proposition. 

sider a prefilter satisfying (3.15) and (3.16). In this case, 

Qii(0) - Qzz(0) = ~ l i ~ i  + C / ~ E Z ,  

Qli(0) + Qi2(0) = 4161 + 4 2 6 2 ,  

1 = 1 , 2  
= 1 , 2  

where cl and 61, 1 = 1,2 are small numbers and the C l k  and 
dlk are the elements of (H(O))-l and (G(O))-l. Therefore, 
Qnm(0) are also small. Thus, the condition det(Q(0)) = f 1  
is impossible. This proves the following result. 

Proposition 5: When H(0) and G(0) are both nonsingular, 
there do not exist any good prefilters, where N = 2. 

We now investigate the case when one of H(0) and G(0) 
is singular and the other one is nonsingular. 

When H(0) is nonsingular, let 

H-l(O) = (: i). 
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(:z ( 0 )  - Q22 (0) 

By (3.23) and (3.15) 

CE1 + CEEZ (3.26) ' 20 ~~ 

11(') - kllZ('!) = H-1(0) (::) = ('€1 + '€2) 

Let 61 = 6 2  = 0. Since G(0) is singular, (3.16) is equivalent to 

(3.27) 

where c1 and d l  are two constants. By (3.26) and (3.27), there 
exists Qnm(0), m,n = 1,2,  such that (3.15) and (3.16) are 
satisfied and, moreover, det(Q(0)) = &l. 

When G(0) is nonsingular, we let €1 = €2  = 0 and 
Proposition 6 follows. 3- 

Proposition 6: Suppose N = 2. When one and only one of 
H(0) and G(0) is singular, there exists a good prefilter Q(w) 
such that det(Q(0)) = fl ,  and lfil(7r)l and l G l ( O ) \ ,  1 = 1,2, 
can be made arbitrarily small. 

We now go back to the two-wavelet case in Section II. For 
the multiwavelets in Section II, 

lo  

1 15 2 2 5  3 35 O 

Fig. 9. (a) l & i ( c ~ ~ ) l ,  I = 1 , 2 ;  (b) /G i (w) l ,  1 = I, 2, where €1 = 0 and 
E2 = o . ~ ~ .  

0 
0 5  ci(Qii(0) + Qiz(0)) + di(Qzi(0) + Qza(0)) = 0 

4 

2- 

1 -  

Do 0.5 1 15 2 2.5 3 35 

1J Since H(0) is nonsingular, there is no good prefilter Q(w) 
that satisfies (3.13) and (3.14) and has an inverse. However, 
we may consider the relaxed conditions (3.15) and (3.16) and 
use Proposition 6. In this case, the equations (3.26) and (3.27) 
become 

0 
0 0.5 1 1.5 2 2.5 3 3.5 

Let Q11(0) + Q12(0) = x, then 

and det(Q(0)) = x ( 5 ~ ' & - 5 ~ 1 ) / ( 2 f i ) .  Thus, det(Q(0)) = 
f 1  implies 

(3.29) 

This tells us that, if we substitute the value of x in (3.29) 
into (3.28), Q(w) is a good prefilter with kl(7r) = EZ and 
G: l (O)  = 0 for 1 = 1,2, where €1 and €2 are arbitrarily given. 
One can also impose the orthogonality for Q(0). In this case, 
the prefilter may be paraunitary and the whole multiwavelet 
transform is orthogonal. 

Two numerical examples for l k l (w) l  and lGi(w) l  are shown 
in Fig. 9 with €1 = 0 and €2  = 0.01, and in Fig. 10 with €1 = 0 
and €2 = 0.1, where Q(w)  = Q(0)  for all w. The choice 
of €1 and €2 here is just arbitrary. AtPough EZ caf! be made 
arbitrarily small, the coefficients in a ( w )  and Gl(w)  may 

Fig. 10. (a) I&i(w)l, 1 = 1 , 2 ;  (b) IGl (w) I ,  I = 1 , 2 ,  where €1 = 0 and 
€2 = 0.1. 

frequency are small. This implies that the high-frequency part 
in a decomposition of a signal will be suppressed, so that 
some of them are moved into the low-frequency parts while 
the perfect reconstruction of the signal from the decomposition 
is still possible. It is, however, impossible for single wavelets, 
where the lowpass and highpass filters U ( w )  and G ( w )  are 
complimentary filters. This is exactly the reason why the 
energy compaction ratio can be significantly improved with 
multiwavelet transforms. We will see this property in the 
numerical examples in the next section. 

C. Discrete Vector-Valued Wavelet Transform Point of View 

Given two matrix filters H(w)  and G ( w )  that satisfy 
(2.6H2.8) with I2 and 0 2  replaced by IN and O N ,  
respectively, the discrete vector-valued wavelet transform 
associated with them is defined in [SI by the diagram shown 
in Fig. 11, where ~ [ n ]  = (xl[n], . . . , L C N [ ~ ] ) ~ ,  

Thus, the multiwavelet transform in Fig. 8 can be thought of 
as the discrete vector-valued wavelet transform for the vector- 
valued signal x[n] that is the output of the linear system 
Q(w) with the vector-valued input signal ( x [Nn] ,  z [ N n  - 
11,. . . , x [ N n  - N + l ] )T .  

, 

be large. To choose good parameters, E L  depends on practical 
problems. The optimal choice of E L  needs further investigation. IV. "RICAI, OF TRANsFoRMs 
From Figs. 9 and 10, one can see that all magnitudes of the In this section, we want to implement the proposed al- 
frequency responses of the filters i?l(w) and G:I(w) at high gorithm in Sections II and ILT and compare the results with 
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-200 

-250 

Fig. 11. 
vector-valued wavelet transform. 

(a) Discrete vector-valued wavelet transform; (b) inverse discrete 

- 

- 

Original Signal 

1 5 0 m  

I 
50 100 150 200 250 300 -150' 

0 

Fig. 12. Test signal. 

those obtained from the conventional wavelet transform with 
Daubechies 0 4  basis. 

The test signal we use is the 100th horizontal line of the 
Cameraman.256 image, shown in Fig. 12. We decompose it 
with two-step wavelet transforms and multiwavelet transforms, 
i.e., Jo = -2 in Fig. 8. Signals shown in Figs. 13-16 are 
decomposed signals of the test signal, where signals from 1 to 
64 are the lowpass parts and signals from 65 to 265 are the 
bandpass parts. The multiwavelets we use are those obtained 
by Geronimo, Hardin, and Massopust and are discussed in 
Sections I1 and 111. 

Let MWT stand for multiwavelet transform and WT stand 
for wavelet transform. Fig. 13 shows the decomposition by 
using MWT without prefiltering, i.e., Q ( w )  = IN in Fig. 8. 
Fig. 14 shows the decomposition by using the MWT with the 
prefilter Q(w) in (2.23). Fig. 15 shows the decomposition by 
using MWT with the prefilter Q(w) = Q(0) in (3.28) with 
€1 = 0 and €2 = 0.1. Fig. 16 shows the decomposition by 
using conventional WT with Daubechies 0 4  coefficients. One 

Decomposition by Multiwavelet Transform 
1001 

50 

0 

-50 

-100 

-150t ll 

50 100 150 200 250 -300: 

Fig. 13. Decomposition using MWT without prefiltering. 

Decomposition by Multiwavelet Transform 
1501 

I, 

0 50 100 150 200 250 
-250' 

Fig. 14. Decomposition using MWT with prefiltering Q(w) in (2.23). 

can see from Figs. 13-15 the improvement of the prefiltering 
process in the implementation of MWT. One can also see that 
some high-frequency signals are included in the lowpass parts 
of MWT in Figs. 13-15, and the bandpass parts in Figs. 14 
and 15 are smoother than the one in Fig. 16 with Daubechies 
0 4  basis. This tells us that more information is concentrated 
in the lowpass part of MWT, while the perfect reconstruction 
from the decomposition signals is still maintained. This can 
also be seen from the energy compaction ratios shown in 
Table I. The energy compaction ratio T in this case (two-step 
decomposition) is defined by the ratio of the energy of the 
bandpass parts over the total energy of the signal 

where y[n] is the MWT of the test signal. The reason behind 
it is due to the small magnitudes of the filters I?l(w) and 
G l ( w )  at high frequencies, see Fig. 10. From our numerical 
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Decomposltion by Multlwavelet Transform 
200 

-300t I1 
-‘loo/ 1 

coefficients from the samples of signals. We also studied 
some properties of a prefilter, such as lowpass and bandpass 
properties. We analyzed and constructed good prefilters. Our 
numerical examples showed that the decomposition by using 
the proposed algorithm with good prefiltering has better energy 
compaction than the one with Daubechies 0 4  wavelets. The 
main reason is that the frequency responses of all the filters 
&(U) and &:I(w) for multiwavelet transforms are significantly 
smaller at high frequencies compared to the peaks at other 
frequencies and, moreover, the perfect reconstruction is still 
maintained. This is, however, impossible for the filters for 
single wavelets (orthogonal or biorthogonal wavelets). This 
suggests its potential applications in imagelvideo compression. 
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Decomposition by Daubechies D4 Transform 
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Fig. 16. Decomposition using WT with Daubechies Dq basis. 

TABLE I 
ENERGY COMPACTION h n o  

T 

MWT with &(U) = IN 
MWT with &(U)  in (2.23) with €1 = 0.1473 and €2 = 0 
MWT with Q(w)  in (3.28) with €1 = 0 and E Z  = 0 1 
WT with Daubeches 0 4  

0.1374 
0.0575 
0.0453 
0.1 123 

experiments, the energy compaction ratio is not sensitive to 
the small changes of the parameters €:I. 

V. CONCLUSION 

In this paper, we introduced a pyramid algorithm for the im- 
plementation of multiwavelet transforms by adding a pre- and 
postfilter to a tree-structured vector filter bank. The algorithm 
also suggests a discrete multiwavelet transform for discrete- 
time signals. We obtained a necessary and sufficient condition 
for the exact determination of the multiwavelet transform 
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