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A Simple Orthogonal Space-Time Coding Scheme for Asynchronous
Cooperative Systems for Frequency Selective Fading Channels

Zheng Li, Xiang-Gen Xia, and Moon Ho Lee

Abstract—In this paper, we propose a simple orthogonal space
time transmission scheme for asynchronous cooperative systems.
In the proposed scheme, OFDM is implemented at the source
node, some very simple operations, namely time reversion and
complex conjugation, are implemented at the relay nodes, and
a two-step of cyclic prefix (CP) removal is performed at the
destination. The CP at the source node is used for combating
the frequency selective fading channels and the timing errors.
In this scheme, the received signals at the destination node have
the orthogonal code structure on each subcarrier and thus it has
the fast symbol-wise ML decoding and can achieve full spatial
diversity when SNR is large without the requirement of symbol
level synchronization. It should be emphasized that since no
Add/Remove CP or IFFT/FFT operation is needed at the relay
nodes, the relay nodes do not have to know any information
about the channels and the timing errors, and the complexity of
the relay nodes is very low.

Index Terms—Alamouti code, asynchronous cooperative sys-
tems, OFDM, orthogonal codes.

I. INTRODUCTION

SPACE-TIME coding is an effective technique to exploit
spatial diversity not only for MIMO but also for coop-

erative communication systems [1]. However, in cooperative
systems, since different relay nodes have different oscillators
and different locations, there may exist timing errors, i.e., the
signals transmitted from different relay nodes may arrive at the
destination at different times. There have been some studies
on space-time coding to achieve asynchronous cooperative
diversity, see for example, [2]-[9].

In [2], a simple Alamouti scheme is proposed to achieve
asynchronous cooperative diversity, where the relay nodes
only need to perform a few very simple operations: time-
reversion and complex conjugation, and the destination node
has the Alamouti code structure. However, there are mainly
two drawbacks of the scheme in [2]. First, the proposed
scheme is only valid for the case of two relay nodes. Second,
it is only valid for flat fading channels. In [3], it is extended
to the case of any number of relay nodes but is still limited
to flat fading channels. Moreover, the complexity of the four
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group decodable codes used in [3] is higher than the symbol-
wise decoding of OSTBCs. Recently, there is a similar scheme
in [4] to achieve cooperative diversity in asynchronous two-
way relay networks. The scheme in [4] is valid for frequency
selective fading channels for any number of relay nodes.
However, the scheme in [4] requires Add/Remove CP at the
relay nodes, which means that the relay nodes have to know
the maximum path delay of the channels and the maximum
value of the timing errors and therefore it may increase the
overhead of the whole system. Since there are two kinds of
timing errors in the two-way relay networks [4], Add/Remove
CP at the relay nodes seems to be mandatory for the system
studied in [4].

The proposed scheme in this paper is an extension and an
improvement of the one in [2]. In this paper, we consider
frequency selective fading channels and the proposed OSTBC
scheme is valid for any number of relay nodes. We propose
that the source node to implement OFDM with CP to combat
frequency selective fading and the timing errors, the relay
nodes also only to implement time-reversion and complex
conjugation, and the destination node to implement a two-
step of CP removal. By doing so, at the destination node, the
received signals have the orthogonal code [10], [11] structure
on each subcarrier and thus it has the fast symbol-wise ML
decoding. It is also shown that the proposed simple scheme
can achieve full spatial diversity when SNR is large. Since no
Add/Remove CP or IFFT/FFT operation is needed at the relay
nodes, the relay nodes do not have to know any information
about the channels and the timing errors, and therefore the
complexity of the relay nodes is very low. Comparing to the
scheme in [4], it is simpler and reduces the overhead of the
whole system. In order to achieve the multipath diversity,
repeating the proposed OSTBC across subcarriers as space-
time-frequency coding can be similarly done as in [4]. The
validity of the proposed scheme is proved both mathematically
and from simulations.

This paper is organized as follows. In Section II, the sys-
tem model is described. The simple space-time transmission
scheme is given and the validity of the scheme is proved in
Section III. Simulation results are presented in Section IV.
Finally the conclusions are given in Section V.

II. SYSTEM MODEL

Consider a cooperative system with one source node, one
destination node and J relay nodes 𝑅𝑖, 1 ≤ 𝑖 ≤ 𝐽 , as
shown in Fig. 1. Every node in the system is assumed to
have only one antenna. We consider half-duplex mode in this
paper. To transmit the information from the source node S
to the destination node D, there undergo two phases. In the
first phase, the source node S broadcasts the information to
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Fig. 1. Cooperative system architecture.

the J relay nodes. Meanwhile, the relay nodes receive the
information. During the second phase, the source node S stops
the transmission and the J relay nodes process and send the
received signals to the destination node D. It is assumed that
there is no direct transmission between S and D.

Assume the channel between any two terminals S → 𝑅𝑖

or 𝑅𝑖 → D is frequency selective Rayleigh fading with
𝐿 independent propagation paths. We also assume that the
channel is quasi-static, i.e., slow fading. The channel impulse
response from the source node 𝑆 to the 𝑖th relay node 𝑅𝑖 is
written as

ℎ𝑆𝑅𝑖(𝑡) =

𝐿−1∑
𝑙=0

𝛼𝑆𝑅𝑖(𝑙)𝛿(𝑡− 𝜏𝑙,𝑆𝑅𝑖) (1)

where 𝛼𝑆𝑅𝑖(𝑙) represents the channel coefficient of the 𝑙-th
path of the channel from 𝑆 to 𝑅𝑖, 𝜏𝑙,𝑆𝑅𝑖 is the corresponding
path delay. Each channel coefficient 𝛼𝑆𝑅𝑖(𝑙) is modelled as
zero mean complex Gaussian random variable with variance
𝜎2𝑙,𝑆𝑅𝑖

. We also assume that 𝛼𝑆𝑅𝑖(𝑙) are i.i.d. random vari-
ables for any 𝑖, 𝑙. For convenience, the power of the L paths
are normalized such that

∑𝐿−1
𝑙=0 𝜎

2
𝑙,𝑆𝑅𝑖

= 1.
Similarly, the channel impulse response from the 𝑖th relay

node 𝑅𝑖 to the destination 𝐷 is written as

ℎ𝑅𝑖𝐷(𝑡) =

𝐿−1∑
𝑙=0

𝛼𝑅𝑖𝐷(𝑙)𝛿(𝑡− 𝜏𝑙,𝑅𝑖𝐷) (2)

where 𝛼𝑅𝑖𝐷(𝑙) represents the channel coefficient of the 𝑙-th
path of the channel from 𝑅𝑖 to 𝐷, 𝜏𝑙,𝑅𝑖𝐷 is the corresponding
path delay. Each channel coefficient 𝛼𝑅𝑖𝐷(𝑙) is modelled as
zero mean complex Gaussian random variable with variance
𝜎2𝑙,𝑅𝑖𝐷

. 𝛼𝑅𝑖𝐷(𝑙) are i.i.d. random variables for any 𝑖, 𝑙 and the

power of the L paths are normalized to
∑𝐿−1

𝑙=0 𝜎
2
𝑙,𝑅𝑖𝐷

= 1.

III. A SIMPLE SPACE-TIME CODING SCHEME

In this section, we design a simple space-time coding
scheme for the asynchronous cooperative system to achieve
full cooperative (spatial) diversity and fast ML decoding at
the destination. Without loss of generality, we assume that the
signals from 𝑅𝑖, 𝑖 > 1, arrive at the destination later than the
signals from 𝑅1. First let us consider the case of two relay
nodes in the system. Then we will show that the scheme is
also valid when the relay nodes are more than two.

A. Implementation at the Source Node

At the source node, information bits are first
modulated into complex symbols 𝑋𝑖,𝑗 , then each 𝑁
modulated symbols as a block are fed to an OFDM

TABLE I
PROCESSING AT THE RELAY NODES (J=2)

𝑅1 𝑅2

OFDM 1 𝜁(Y11) −Y
∗
22

OFDM 2 𝜁(Y12) Y
∗
21

modulator of 𝑁 subcarriers. Denote two consecutive
OFDM blocks as X1=[X1,0,X1,1, . . . ,X1,𝑁−1]

𝑇 and
X2=[X2,0,X2,1, . . . ,X2,𝑁−1]

𝑇 , where (⋅)𝑇 represents the
transpose operation. In the OFDM modulator, the two
consecutive blocks are modulated by N-point FFT. Then
each block is preceded by a cyclic prefix (CP) with length
ℓ𝑐𝑝. Thus, each OFDM symbol consists of L𝑠 ≜ N + ℓ𝑐𝑝
samples. Finally, the OFDM symbols are broadcasted to
the two relays. Denote 𝜏𝑆𝑅2𝐷 as the overall relative delay
from the source to 𝑅2 and then to the destination node,
where “relative” means relative to relay node 𝑅1. In order
to combat both the frequency selective fading channels
and the timing errors, we assume that ℓ𝑐𝑝 is larger than
max𝑖,𝑙{𝜏𝑙,𝑆𝑅𝑖 + 𝜏𝑙,𝑅𝑖𝐷 + 𝜏𝑆𝑅2𝐷}. Note that, when the
channels are flat fading, 𝜏𝑙,𝑆𝑅𝑖 = 𝜏𝑙,𝑅𝑖𝐷 = 0, and in this
case, ℓ𝑐𝑝 only has to be larger than the overall timing delay
𝜏𝑆𝑅2𝐷 as what has been used in [2].

Denote two consecutive OFDM symbols as X1 and X2,
where X𝑖 consists of FFT(X𝑖) and the corresponding CP for
𝑖 = 1, 2.

B. Implementation at the Relay Nodes

At the relay nodes, the received noisy signals will be
simply processed and forwarded to the destination node as
follows. Assume the channel coefficients are constant during
two OFDM symbol intervals. Then, the received signals at
relay i, i=1, 2, for two successive OFDM symbol durations
can be written as:

Y𝑖1 =
√
𝑃1X1 ∗ h𝑆𝑅𝑖 + n𝑖1, (3)

Y𝑖2 =
√
𝑃1X2 ∗ h𝑆𝑅𝑖 + n𝑖2 (4)

where
√
𝑃1 is the transmission power at the source node, ℎ𝑆𝑅𝑖

is an 𝐿×1 vector defined as ℎ𝑆𝑅𝑖 = [𝛼𝑆𝑅𝑖(0), . . . , 𝛼𝑆𝑅𝑖(𝐿−
1)]𝑇 , ℎ𝑅𝑖𝐷 is defined similarly, and ∗ denotes the linear
convolution. n𝑖1 and n𝑖2 are the corresponding additive white
Gaussian noise (AWGN) at relay node i with zero-mean and
unit-variance, in two successive OFDM symbol durations,
respectively.

Then, the two relay nodes will process and transmit the
received noisy signals as shown in Table I, where (⋅)∗ denotes
the complex conjugation and 𝜁(⋅) represents the time-reversal

of the signal, i.e., 𝜁(Y(𝑛))
Δ
= Y(L𝑠 − 𝑛), n = 0, 1, ..., L𝑠 − 1,

and Y(L𝑠)
Δ
= Y(0). After performing the simple processing,

the relay nodes amplify the signals with a scalar 𝜆=
√

𝑃2

𝑃1+1 in
order to maintain the average transmission power of any relay
node to be 𝑃2. Note that, although the above processing has
the discrete form, it can be implemented simply in the analog
domain.

Also note that, here the processing at the relay nodes is
different from that in [2]. The processing in [2] is accidentally
(only) valid for flat fading channels and cannot be applied
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to frequency selective fading channels. As explained in [4],
in order to make the scheme valid for frequency selective
fading channels, it is required that for any relay 𝑅𝑖, it can only
implement time reversal on the received OFDM symbols or
only implement complex conjugation on the received OFDM
symbols, i.e., the operations of time reversal and complex
conjugation cannot be implemented on the same relay node.

C. Implementation at the Destination Node

At the destination node, the CP is removed first for each
OFDM symbol. Note that relay node 𝑅1 implements the time
reversions of the noisy signals including both information
symbols and CP: 𝜁(Y(𝑛)) = Y(L𝑠 − 𝑛), n = 0, 1, ..., L𝑠 − 1.
What we want is, however, that after the CP removal, we want
to obtain the time reversal version of only the information
symbols, i.e., 𝜁(FFT(X1)) and 𝜁(FFT(X2)). Then by using
some properties of FFT/IFFT, we can construct the Alamouti
code structure on each subcarrier at the destination as we shall
see later. For this purpose, we claim the following result.

Claim: We can obtain 𝜁(ℎ′𝑆𝑅1
) ⊛ 𝜁(FFT(X𝑖)) at the des-

tination by performing the following two-step of CP removal
for the two consecutive OFDM symbols:

1) Remove the CP as in a conventional OFDM system and
get an N-point vector;

2) Shift the last 𝜏 ′1 = ℓ𝑐𝑝 − (𝜏1 − 1) samples of the N-point
vector as the first 𝜏 ′1 samples.

In the above, ℎ′𝑆𝑅𝑖
is an 𝑁 × 1 vector which is defined

as ℎ′𝑆𝑅𝑖
= [𝛼𝑆𝑅𝑖(0), . . . , 𝛼𝑆𝑅𝑖(𝐿 − 1), 0, . . . , 0]𝑇 , ℎ′𝑅𝑖𝐷

is
defined similarly, and ⊛ denotes the circular convolution, and
𝜏1 denotes the maximum path delay of the channel S → 𝑅1,
i.e., 𝜏1=max𝑙{𝜏𝑙,𝑆𝑅1}.

Note that in [2], the CP is also removed by two steps,
however, in [2], the two steps are only performed on the
second OFDM symbol in two consecutive OFDM symbols,
while here the two steps are performed on both of the two
consecutive OFDM symbols.

The proof of this claim is in Appendix. With the above
claimed result, after the CP removal, the received signals for
two successive OFDM symbol durations can be written as:

z1 = 𝜆((
√
𝑃1𝜁(FFT(X1))⊛ 𝜁(ℎ

′
𝑆𝑅1

) + n11)⊛ ℎ
′
𝑅1𝐷

−(
√
𝑃1(FFT(X2))

∗ ⊛ ℎ′∗
𝑆𝑅2

+n22)⊛ Γ𝑆𝑅2𝐷 ⊛ Γ
′
1 ⊛ ℎ

′
𝑅2𝐷) + w1 (5)

z2 = 𝜆((
√
𝑃1𝜁(FFT(X2))⊛ 𝜁(ℎ

′
𝑆𝑅1

) + n12)⊛ ℎ
′
𝑅1𝐷

+(
√
𝑃1(FFT(X1))

∗ ⊛ ℎ′∗
𝑆𝑅2

+n21)⊛ Γ𝑆𝑅2𝐷 ⊛ Γ
′
1 ⊛ ℎ

′
𝑅2𝐷) + w2 (6)

where Γ𝑆𝑅2𝐷 is an 𝑁 × 1 vector that represents the timing
errors in the time domain which is defined as Γ𝑆𝑅2𝐷 =
[0𝜏𝑆𝑅2𝐷

, 1, 0, . . . , 0]𝑇 , where 0𝜏𝑆𝑅2𝐷
is a 1 × 𝜏𝑆𝑅2𝐷 vector

of all zeros, and Γ′
1 denotes the shift of 𝜏 ′1 samples in

the time domain which can be similarly defined as Γ′
1 =

[0𝜏 ′
1
, 1, 0, . . . , 0]𝑇 , here 0𝜏 ′

1
is a 1×𝜏 ′1 vector of all zeros. Since

the signals transmitted from 𝑅2 will arrive at the destination
𝜏𝑆𝑅2𝐷 samples later and after the CP removal, the signals
are further shifted by 𝜏 ′1 samples, the total number of shifted

samples is denoted by 𝜏2 = 𝜏𝑆𝑅2𝐷 + 𝜏 ′1. n𝑖1 and n𝑖2 are the
AWGN at the relay nodes after the CP removal, w1 and w2

are the corresponding AWGN at the destination node.
Then, the received signals are transformed by the N-point

FFT. As mentioned before, because of the timing errors, the
signals from relay node 𝑅2 arrive at the destination node
𝜏𝑆𝑅2𝐷 samples later than the signals from relay node 𝑅1.
Since ℓ𝑐𝑝 is long enough, we can still maintain the orthogo-
nality between the subcarriers. The delay in the time domain
corresponds to a phase change in the frequency domain:

f𝜏𝑆𝑅2𝐷 = [1, 𝑒−𝑗2𝜋𝜏𝑆𝑅2𝐷/𝑁 , . . . , 𝑒−𝑗2𝜋𝜏𝑆𝑅2𝐷(𝑁−1)/𝑁 ]𝑇

with f = [1, 𝑒−𝑗2𝜋/𝑁 , . . . , 𝑒−𝑗2𝜋(𝑁−1)/𝑁 ]𝑇 . Similarly, the
shift of 𝜏 ′1 samples in the time domain also corresponds to
a phase change f𝜏

′
1 . Thus, the total phase change is f𝜏2 .

Let Z1=[Z1,0, Z1,1, . . . , Z1,𝑁−1]
𝑇 and

Z2=[Z2,0, Z2,1, . . . , Z2,𝑁−1]
𝑇 be the received signals for

two consecutive OFDM blocks at the destination node after
the CP removal and the FFT transformations. Then, Z1 and
Z2 can be written as:

Z1 = 𝜆[
√
𝑃1FFT(𝜁(FFT(X1))) ∘ H𝑆𝑅1 ∘ H𝑅1𝐷

+
√
𝑃1FFT(−(FFT(X2))

∗) ∘ f𝜏2 ∘ H𝑆𝑅2 ∘ H𝑅2𝐷

+N11 ∘ H𝑅1𝐷 − N22 ∘ f𝜏2 ∘ H𝑅2𝐷] + W1, (7)

Z2 = 𝜆[
√
𝑃1FFT(𝜁(FFT(X2))) ∘ H𝑆𝑅1 ∘ H𝑅1𝐷

+
√
𝑃1FFT((FFT(X1))

∗) ∘ f𝜏2 ∘ H𝑆𝑅2 ∘ H𝑅2𝐷

+N12 ∘ H𝑅1𝐷 + N21 ∘ f𝜏2 ∘ H𝑅2𝐷] + W2 (8)

where ∘ is the Hadamard product, i.e., the component-
wise product, and 𝐻𝑆𝑅1 = FFT(𝜁(ℎ′𝑆𝑅1

)), 𝐻𝑅1𝐷 =

FFT(ℎ′𝑅1𝐷
), 𝐻𝑆𝑅2 = FFT(ℎ

′∗
𝑆𝑅2

), 𝐻𝑅2𝐷 = FFT(ℎ′𝑅2𝐷
),

N𝑖1 = FFT(n𝑖1), N𝑖2 = FFT(n𝑖2) W1 = FFT(w1),
W2 = FFT(w2).

We will make use of the following properties to simplify
(7) and (8):

1) For an 𝑁 × 1 point vector X, (FFT(X))∗ = IFFT(X∗);
2) For an 𝑁 × 1 point vector X,

FFT(𝜁(FFT(X)))=IFFT(FFT(X)) = X.

By using the above two properties, (7) and (8) can be written
in the following Alamouti code form on each subcarrier 𝑘,
0 ≤ 𝑘 ≤ 𝑁 − 1:[

Z1,𝑘

Z2,𝑘

]
= 𝜆

√
𝑃1

[
X1,𝑘 −X∗

2,𝑘

X2,𝑘 X∗
1,𝑘

][
𝐻𝑆𝑅1,𝑘𝐻𝑅1𝐷,𝑘

𝑓 𝜏2𝑘 𝐻𝑆𝑅2,𝑘𝐻𝑅2𝐷,𝑘

]

+𝜆

[
N11,𝑘𝐻𝑅1𝐷,𝑘 − N22,𝑘𝑓

𝜏2
𝑘 𝐻𝑅2𝐷,𝑘

N12,𝑘𝐻𝑅1𝐷,𝑘 + N21,𝑘𝑓
𝜏2
𝑘 𝐻𝑅2𝐷,𝑘

]
+

[
W1,𝑘

W2,𝑘

]
(9)

where 𝑓 𝜏2𝑘 = exp(−𝑗2𝜋𝑘𝜏2/𝑁), 𝐻𝑆𝑅𝑖,𝑘 is the 𝑘th element of
𝐻𝑆𝑅𝑖 , 𝐻𝑅𝑖𝐷,𝑘 is the 𝑘th element of 𝐻𝑅𝑖𝐷, 𝑁𝑖1,𝑘 and 𝑁𝑖2,𝑘

are the 𝑘th elements of N𝑖1 and N𝑖2, respectively, 𝑊1,𝑘 and
𝑊2,𝑘 are the 𝑘th elements of W1 and W2, respectively.The
Alamouti code form in (9) tells us that the Alamouti fast
symbol-wise ML decoding can be applied at the destination.

D. The Scheme for Multiple Relay Nodes

When there are more than two relay nodes, we can also
construct OSTBC structure on each subcarrier if the length of
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TABLE II
PROCESSING AT THE RELAY NODES (J=4)

𝑅1 𝑅2 𝑅3 𝑅4

OFDM 1 𝜁(Y11) −Y
∗
22

OFDM 2 𝜁(Y12) Y
∗
21

OFDM 3 𝜁(Y31) −Y
∗
42

OFDM 4 𝜁(Y32) Y
∗
41

CP ℓ𝑐𝑝 is larger than max𝑖,𝑙{𝜏𝑙,𝑆𝑅𝑖 + 𝜏𝑙,𝑅𝑖𝐷 + 𝜏𝑆𝑅𝑖𝐷}. For
example, when there are four relay nodes, we can perform
the processing at the relay nodes as in Table II.

Note that in Table II, 𝑅1 and 𝑅2 process and transmit the
received signals in the first and the second OFDM symbol
durations while 𝑅3 and 𝑅4 wait and do nothing during this pe-
riod, and in the third and the fourth OFDM symbol durations,
𝑅3 and 𝑅4 process and transmit the received signals while 𝑅1

and 𝑅2 wait and do nothing. Based on this observation, we
can give the way of CP removal as follows.

For the signals transmitted from 𝑅1 and 𝑅2, we can still
perform the two steps as mentioned above in the case of two
relay nodes. Thus the total number of shifted samples for
𝑅2 is 𝜏𝑆𝑅2𝐷 + 𝜏 ′1 and the total phase change for the signals
transmitted from 𝑅2 is f𝜏2 . For the signals transmitted from
𝑅3 and 𝑅4, in the second step of the CP removal, we shift
𝜏 ′3 = ℓ𝑐𝑝 − (𝜏3 − 1) samples, where 𝜏3=max𝑙{𝜏𝑙,𝑆𝑅3}. Thus
the total number of shifted samples for 𝑅4 is 𝜏𝑆𝑅4𝐷 + 𝜏 ′3 and
the total phase change for the signals transmitted from 𝑅4 is
f𝜏4 , where 𝜏4 = 𝜏𝑆𝑅4𝐷 + 𝜏 ′3.

After the CP removal and the FFT, we can construct the
following OSTBC G4×4 on each subcarrier:

G4×4 =
√
2

⎡
⎢⎢⎣

X1 −X∗
2 0 0

X2 X∗
1 0 0

0 0 X1 −X∗
2

0 0 X2 X∗
1

⎤
⎥⎥⎦ . (10)

the constructed G4×4 has rate 1/2 and the scalar
√
2 ensures

that the average transmission power of the relay nodes is

𝑃2, i.e., the amplifying scalar at the relay nodes is
√

2𝑃2

𝑃1+1 .
The reason why the above code is constructed is as follows.
As explained in [4], if the requirement that each relay node
can only implement time reversal or only implement complex
conjugation is satisfied, all the constructed OSTBCs must have
a special property: each column of the code has all its elements
either complex conjugated or non-conjugated. It was proved in
[4] that when 𝐽 is even, the rate of such an OSTBC is upper
bounded by 2/𝐽 . Clearly, when 𝐽 is even, a block diagonal
structure as the above G4×4 with Alamouti codes in the blocks
of diagonals has already reached the rate upper bound.

We adopt the power allocation strategy in [12] in our
proposed scheme as in [2]. Denote 𝑃 as the total transmission
power in the whole scheme. By following the power allocation
in [12], we have:

𝑃1 = 𝐽𝑃2 =
𝑃

2
(11)

where J is the number of the relay nodes. With the above
power allocation and using the results in [12], the destination
node can achieve diversity order 𝐽 when the SNR is large
enough.

Note that the available multi-path diversity in the frequency
selective fading channels can not be exploited through the
constructed OSTBC structure. In order to achieve the multi-
path diversity, we can repeat the transmitted symbols across
the subcarriers to construct space-time-frequency block codes
which can be similarly done as in [4]. For example, if we
repeat the transmitted symbols twice, we can construct the
repeated Alamouti structure as follows:

G4×2 =

⎡
⎢⎢⎣

X1 −X∗
2

X1 −X∗
2

X2 X∗
1

X2 X∗
1

⎤
⎥⎥⎦ , (12)

which can achieve not only the full spatial diversity but also
multipath diversity order 2 when 𝐿 ≥ 2.

IV. SIMULATION RESULTS

In this section, we show some simulation results for our pro-
posed scheme. In the simulation, we assume that the OFDM
has 𝑁 = 64 subcarriers with the total bandwidth of 10MHz,
thus the corresponding OFDM symbol duration is 𝑇𝑠 = 6.4𝜇𝑠.
The length of cyclic prefix ℓ𝑐𝑝 = 16, i.e, 1.6𝜇𝑠. For simplicity,
we assume that all the channels have a simple two-ray (𝐿 = 2)
equal power delay profile with a delay of 0.3𝜇𝑠 between the
two rays. The timing errors 𝜏𝑆𝑅𝑖𝐷 are randomly chosen from 0
to 0.6𝜇𝑠 with the uniform distribution. We further assume that
the channel state information (CSI) is perfectly known at the
destination. The information bit rate is assumed to be 1bit/s/Hz
in the simulations. We use the power allocation strategy in
(11).

In Fig. 2, we show the BER performance of destination
node D when there are two relay nodes. We can construct the
Alamouti code on each subcarrier at D, thus we can use the
fast ML symbol-wise decoding, where the data symbols are
drawn from BPSK. We give the BER curves of the Alamouti
code for 2×1, i.e., 2 transmit and 1 receive antennas, and 2×2,
i.e., 2 transmit and 2 receive antennas, MIMO BPSK systems
with transmission power 𝑃1 for reference. From Fig. 2, we
can see that the slope of the BER curve of the constructed
Alamouti scheme approaches the slope of the Alamouti MIMO
2×1 curve when 𝑃1 increases. It implies that the receiver can
achieve diversity order 2 when 𝑃1 is large which verifies our
analysis of the diversity order. In order to obtain the multi-
path diversity of the frequency selective fading channels, we
construct the repeated Alamouti G4×2 as in (12). In order to
maintain the same information bit rate, the data symbols are
drawn from QPSK in this case. We can see that the slope of
the curve for the space-time-frequency code G4×2 is the same
as the one for the 2×2 Alamouti MIMO system, i.e., the code
G4×2 can achieve full (both spatial and multipath) diversity
(diversity order 4) when 𝑃1 is large while the decoding is still
the fast ML symbol-wise decoding.

When the relay nodes are four, we can construct OSTBC
G4×4 with QPSK to achieve full spatial diversity at the same
bit rate and also with symbol-wise decoding. We can see
from Fig. 3 that when 𝑃1 is large, the slope of the BER
curve of the constructed G4×4 approaches the slope of the
2 × 2 Alamouti MIMO system. It implies that the receiver
can achieve full spatial diversity (diversity order 4) through
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Fig. 2. BER comparison vs. 𝑃1 with two relay nodes.
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Fig. 3. BER comparison vs. 𝑃1 with four relay nodes.

the proposed scheme and also verifies our analysis of the
achievable diversity order when there are multiple relay nodes.

V. CONCLUSION

In this paper, we proposed a simple space-time transmission
scheme for asynchronous cooperative systems for frequency
selective fading channels. OFDM is implemented at the source
node, and very simple operations, namely time reversion and
complex conjugation, are implemented at the relay nodes, a
two-step of CP removal is performed at the destination. With
this simple scheme, the received signals at the destination node
have the orthogonal code form and therefore has the fast ML
decoding and can achieve full spatial diversity when SNR is
large. Unlike the previously studied schemes for frequency
selective fading channels, no Add/Remove CP or FFT/IFFT
operation is needed at the relay nodes. In order to achieve
multipath diversity, repeating across subcarriers as space-time-
frequency coding can be similarly done as in [4].

APPENDIX

PROOF OF THE CLAIM

Denote three vectors ℎ = [ℎ1, ℎ2, ..., ℎ𝑚]𝑇 , x =
[𝑥1, ..., 𝑥𝑁 ]𝑇 , and x = [𝑥𝑁−(ℓ𝑐𝑝−1), ..., 𝑥𝑁 , 𝑥1, ..., 𝑥𝑁 ]𝑇 ,𝑚 <
ℓ𝑐𝑝 < 𝑁 . From the definition of linear convolution, we have

ℎ ∗ x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥𝑁−(ℓ𝑐𝑝−1) 0 . . . 0
... 𝑥𝑁−(ℓ𝑐𝑝−1)

. . .
...

𝑥𝑁
...

. . . 0

𝑥1 𝑥𝑁
. . . 𝑥𝑁−(ℓ𝑐𝑝−1)

... 𝑥1
. . .

...

𝑥𝑁
...

. . . 𝑥𝑁

0 𝑥𝑁
. . . 𝑥1

...
...

. . .
...

0 0 . . . 𝑥𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
ℎ1
ℎ2
...
ℎ𝑚

⎤
⎥⎥⎥⎦

where the matrix on the right hand side has size (𝑚 + 𝑁 +
ℓ𝑐𝑝 − 1)×𝑚.

Then we can write S = 𝜁(ℎ ∗ x) as

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥𝑁−(ℓ𝑐𝑝−1) 0 . . . 0

0
... . . . 𝑥𝑁

... 𝑥𝑁
. . .

...

𝑥𝑁
...

. . . 𝑥1
... 𝑥1

. . . 𝑥𝑁

𝑥1 𝑥𝑁
. . .

...

𝑥𝑁
...

. . . 𝑥𝑁−(ℓ𝑐𝑝−1)

...
...

. . .
...

𝑥𝑁−(ℓ𝑐𝑝−2) 𝑥𝑁−(ℓ𝑐𝑝−1) . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
ℎ1
ℎ2
...
ℎ𝑚

⎤
⎥⎥⎥⎦

In the following we will perform the two steps of CP
removal on 𝜁(ℎ ∗ x). The first step is equivalent to remove
the first ℓ𝑐𝑝 rows of the (𝑚+𝑁 + ℓ𝑐𝑝 − 1)×𝑚 matrix above
and choose the (ℓ𝑐𝑝 + 1)-th to the (ℓ𝑐𝑝 + 1 + 𝑁 )-th rows to
construct an 𝑁 ×𝑚 sub-matrix S𝑠𝑡𝑒𝑝1, which can be written
as
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥𝑁−(ℓ𝑐𝑝−𝑚) 𝑥𝑁−(ℓ𝑐𝑝−(𝑚−1)) . . . 𝑥𝑁−(ℓ𝑐𝑝−1)

...
...

. . .
...

...
...

. . . 𝑥1
... 𝑥1

. . . 𝑥𝑁

𝑥1 𝑥𝑁
. . .

...

𝑥𝑁
...

. . .
...

...
...

. . .
...

𝑥𝑁−(ℓ𝑐𝑝−(𝑚+1)) 𝑥𝑁−(ℓ𝑐𝑝−𝑚) . . . 𝑥𝑁−(ℓ𝑐𝑝−2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
ℎ1
ℎ2
...
ℎ𝑚

⎤
⎥⎥⎥⎦

where the matrix on the right hand side has size 𝑁 ×𝑚.
The second step is equivalent to shift the bottom ℓ𝑐𝑝−(𝑚−

1) rows of the above 𝑁 ×𝑚 matrix to the top, S𝑠𝑡𝑒𝑝2 can be
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written as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1 𝑥𝑁 . . . 𝑥𝑁−(𝑚−2)

𝑥𝑁
...

. . .
...

...
...

. . .
...

𝑥𝑁−(ℓ𝑐𝑝−(𝑚+1)) 𝑥𝑁−(ℓ𝑐𝑝−𝑚)

. . . 𝑥1

𝑥𝑁−(ℓ𝑐𝑝−𝑚) 𝑥𝑁−(ℓ𝑐𝑝−(𝑚−1))

. . . 𝑥𝑁
...

...
. . .

...
𝑥2 𝑥1 . . . 𝑥𝑁−(𝑚−3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
ℎ1
ℎ2
...
ℎ𝑚

⎤
⎥⎥⎥⎦.

Denote an 𝑁 × 1 vector ℎ′ = [ℎ1, ℎ2, . . . , ℎ𝑚, 0, . . . , 0]
𝑇 .

From the definition of circular convolution [4], S𝑐𝑖𝑟𝑐 = 𝜁(ℎ
′)⊛

𝜁(x) can be written as

S𝑐𝑖𝑟𝑐 =

⎡
⎢⎢⎢⎢⎢⎢⎣

𝑥1 𝑥2 . . . 𝑥𝑁
𝑥𝑁 𝑥1 . . . 𝑥𝑁−1

... 𝑥𝑁
. . .

...
...

...
. . .

...
𝑥2 𝑥3 . . . 𝑥1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ1
0
...
0
ℎ𝑚
...
ℎ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is not difficult to check that S𝑐𝑖𝑟𝑐 = S𝑠𝑡𝑒𝑝2, which implies
the claim, i.e., 𝜁(ℎ′)⊛ 𝜁(x) can be obtained after Step 2.
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