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Abstract—To achieve full cooperative diversity in a relay net-
work, most of the existing space–time coding schemes require
the synchronization between terminals. A family of space–time
trellis codes that achieve full cooperative diversity order without
the assumption of synchronization has been recently proposed.
The family is based on the stack construction by Hammons and
El Gamal and its generalizations by Lu and Kumar. It has been
shown that the construction of such a family is equivalent to
the construction of binary matrices that have full row rank no
matter how their rows are shifted, where a row corresponds to
a terminal (or transmit antenna) and its length corresponds to
the memory size of the trellis code on that terminal. We call
such matrices as shift-full-rank (SFR) matrices. A family of SFR
matrices has been also constructed, but the memory sizes of the
corresponding space–time trellis codes (the number of columns
of SFR matrices) grow exponentially in terms of the number of
terminals (the number of rows of SFR matrices), which may cause
a high decoding complexity when the number of terminals is not
small. In this paper, we systematically study and construct SFR
matrices of any sizes for any number of terminals. Furthermore,
we construct shortest (square) SFR (SSFR) matrices that corre-
spond to space–time trellis codes with the smallest memory sizes
and asynchronous full cooperative diversity. We also present some
simulation results to illustrate the performances of the space–time
trellis codes associated with SFR matrices in asynchronous coop-
erative communications.

Index Terms—Asynchronous cooperative diversity, relay
networks, shift equivalence, shift-full-rank (SFR) matrices,
space–time coding.

I. INTRODUCTION

RELAY networks have attracted much attention lately for
combating fading, which have applications in both cel-

lular networks and sensor networks where it is not easy to equip
multiple antennas for a mobile station or sensor terminal due
to size and cost limitations. For relay networks, the idea of ar-
ranging different relay terminals to communicate cooperatively
to achieve spatial diversity called cooperative diversity has been
proposed in, for example, [1]–[4]. In most of the existing pro-
tocols and space–time coding schemes for relay networks, for
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example, [3]–[10], in order to achieve the full cooperative di-
versity, the synchronization between relay terminals is assumed.
However, different from a conventional multiple antenna system
where multiple antennas are located at the same place and only
one local oscillator is used, the individual terminals in relay net-
works can be geographically dispersed and respective local os-
cillators are used, so the cooperative diversity is asynchronous
in nature. With this consideration, asynchronous cooperative di-
versity has been studied in, for example, [11], [12], [26], [27],
[13]–[17].

Recently, in [12], [26], [27] a family of space–time trellis
codes achieving full cooperative diversity without the syn-
chronization assumption between relay terminals has been
proposed. This family is based on the algebraic stack construc-
tion of space–time codes by Hammons and El Gamal [18] and
its generalizations by Lu and Kumar in [19], [20]. In [12], [26],
[27] it has been shown that the construction of such a family
is equivalent to the construction of binary matrices that have
full row rank no matter how their rows are shifted, where a
row corresponds to a terminal (or transmit antenna) and its
length corresponds to the memory size of the trellis code on
that terminal. We call such matrices as shift-full-rank (SFR)
matrices. A family of SFR matrices has been also constructed
in [12], [26], [27] but the memory sizes of the corresponding
space–time trellis codes (the number of columns of SFR ma-
trices) grow exponentially in terms of the number of terminals
(the number of rows of SFR matrices), which may cause a
high decoding complexity when the number of terminals is not
small.

In this paper, we systematically study and construct SFR
matrices of any sizes for any number of relay terminals. Fur-
thermore, we construct shortest (square) SFR (SSFR) matrices
that correspond to space–time trellis codes with the smallest
memory sizes and asynchronous full cooperative diversity.
We also obtain numerous properties of SSFR matrices. We
emphasize that, although our study is carried out for binary
matrices (over the binary field), we shall see that most of
the constructions hold over any commutative integral domain
[25] (including any field). We further present some simulation
results to illustrate the performances of the space–time trellis
codes associated with SFR matrices in asynchronous coopera-
tive communications.

This paper is organized as follows. In Section II, the system
model is described and the results obtained in [12], [26], [27]
are briefly reviewed. In Section III, some notations and sym-
bols are first introduced and the concept of SFR matrices is then
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Fig. 1. System architecture.

formally defined. Some basic properties that will be used in the
subsequent constructions of SFR matrices are also provided. In
Sections IV and V, systematic constructions and properties of
SFR matrices and SSFR matrices are presented, respectively.
In Section VI, some simulation results are provided. Finally, in
Section VII, this paper is concluded.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first describe the system model by recalling
some of the descriptions in [12], [26], [27] for this paper to be
self-contained, and then briefly review the main results obtained
in [12], [26], [27] which reveal the problem we are interested in.
In what follows, we adopt the notations used in [12], [26], [27].

A. System Model and Asynchronous Cooperative
Communications

Consider a relay network shown in Fig. 1 with ter-
minals that communicate cooperatively, where is the source
terminal, is the destination terminal, and ,
are the potential relays (intermediate terminals). The same as
[3][4], we assume that there are two phases during the coopera-
tive communication. In Phase I, broadcasts its information to
potential relays . In Phase II, stops trans-
mission, and potential relays start to transmit. In this paper, we
are interested in the decode-and-forward approach, where the
potential relay detects the source information first, and if it can
successfully detect the source information, then it is enrolled in
Phase II transmission.

During Phase II, relay terminal first demodulates the re-
ceived signal and does CRC check to see whether the detected
information is correct. Assume the ones that can pass the CRC
check do not have any errors in their detected information. We
use to denote the set of potential relays that can successfully
detect the source information during a packet/frame from , and
use to denote the cardinality of the set , i.e., .
Then, the terminals will be enrolled in the transmission
of Phase II. It is clear that the terminals and the number of
the terminals in set depend on the channel quality between
the source and the potential relays. It is usually assumed that
is a random variable [4]. As analyzed in [4], the protocol that re-
lays transmit space–time coded signals on the overlapped chan-
nels performs better than the protocol that relays just repeat their
detected information on the orthogonal channels. Therefore, in
what follows, we assume that a space–time coded transmission

is used during Phase II. In Phase II, if the enrolled relays are
synchronized upto a symbol duration, the destination receives

(1)

where is the channel coefficient between and the
destination , Rayleigh distributed with unit power, and as-
sumed known at the receiver, is the AWGN at and
has zero mean and variance per real dimension, and
is the transmitted information symbol by that is encoded
based on the information the relay terminal correctly
received and detected from the source . Note that is the
same for all . To achieve a spatial diversity, a channel is typi-
cally assumed to be quasi-static, i.e., keeps constant during
the transmission of one packet/frame, and then changes inde-
pendently in the next packet/frame. Assuming the packet/frame
length is , (1) can be written in matrix form as

(2)

where , and
is the space–time coded signal matrix of dimension

...
...

. . .
...

and different rows in are transmitted by different relay ter-
minals, and is the set of all the complex numbers. There
are two major differences between the conventional space–time
codes [21], [28], [22] and the space–time codes in cooperative
communications. One is that the number of rows in
is a random variable instead of a constant in the conventional
space–time codes which equals to the number of transmit an-
tennas in the co-located antenna array. The other is that each
row in matrix may not be symbol aligned, and the relative
timing errors between different relays may be random. For ex-
ample, can be equal to (3) shown at the top of the following
page. In the following, we call as an asynchronous version of

. This is due to the asynchronous nature of cooperative com-
munications, where the transceivers are distributed in different
terminals and a central local oscillator is lacking. In the above
asynchronous cooperative communication, although the symbol
synchronization is not required, we assume that each relay ter-
minal is packet/frame synchronized, i.e., the start and the end
of each packet/frame in different enrolled relays are aligned,
which can be implemented by using network signaling. When a
relay terminal is waiting for a packet/frame synchronizing flag,
the dumb signal is transmitted. We also assume that the rela-
tive timing errors between different relays are integer multiples
of the symbol duration and a fractional timing error can be ab-
sorbed in the channel dispersion. We further assume that these
relative timing errors are known at the receiver but not at the
transmitter. The maximum relative timing error is assumed to be

. So, the actual transmitted space–time code matrix is of di-
mension , where . In each row, totally
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...
...

...
...

...
...

...
(3)

dumb symbols are padded to the beginning and/or the
ending of a packet/frame transmission. Similar to the conven-
tional space–time code design, to achieve good performance,
we need to have the full diversity order and a good diversity
product as shown in [21], [28], [22], while the following two
differences must be considered as we mentioned previously: 1)
the number of rows in the space–time code matrix is random; 2)
the rows in the space–time code matrix are not symbol-aligned.
The first one is, in fact, not too difficult to deal with since every
space–time code of dimension designed to have full
diversity order, , also has full diversity order, , if any

rows in are deleted, where it is assumed that the
frame/packet length . However, the second difference is
not easy to handle. For example, the delay diversity codes [22],
[23] that are designed to ensure full diversity order in the con-
ventional space–time codes [22] do not have the full diversity
property in asynchronous cooperative communications. Also,
the existing space–time block codes, for example, orthogonal
space–time codes and lattice based space–time block codes, do
not have the full diversity order property when the transmission
is not synchronized.

B. Some of the Main Results Obtained in [12], [26], [27] and
Problem Formulation

We next briefly review some of the main results obtained in
[12], [26], [27], i.e., a family of space–time trellis codes that
can achieve full diversity order in the asynchronous coopera-
tive communication for any symbol-wise timing errors within a
maximal range . We first design the space–time trellis codes
where each element in is a BPSK signal based on the alge-
braic stack construction by Hammons and El Gamal [18], and
then generalize the construction to QAM, PSK, and PAM sig-
nals by using the unified construction by Lu and Kumar [20].

When the source information bits are detected in a relay
, if they are correct during a packet/frame, they

are passed through a tapped delay line (or a linear shift reg-
ister) with tapped coefficients , where

for , and is the maximal delay.
We denote and

, where and in what follows de-
notes the delay symbol. The coefficient matrix of is
defined as

...
...

...
...

(4)

If the binary source information bits detected in the relays in
one packet/frame is , then the binary output of the
tapped delay lines is the set

, where for
is (5) shown at the bottom of the page.

Space–time code generated by (or is defined
as the set

In this construction, if the maximum timing error range in one
packet/frame is and BPSK modulation scheme is used, when
the information bits in one packet/frame is , the rate of the
space–time code generated from is

bits/s/Hz. For long packet/frame, the rate approaches 1 bit/
sec/Hz. The above construction in general is the same as the
one obtained by Hammons and El Gamal [18]. In [12], [26],
[27], further conditions described below have been obtained on
the generator matrix for achieving the full diversity order
in asynchronous cooperative communications.

Assuming that the relative timing error of relay is , i.e.,
dumb symbols are padded to the left of the th row of the

matrix in to obtain of , the asynchronous ver-
sion of , in (3). If dumb symbol , then it is
equivalent to that many ’s are padded to the left of the th
row of binary matrix in . These matrices can be generated
by , where

. Correspondingly, to ensure the full diversity order

...
...

...
...

...
...

...
(5)
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in the asynchronous cooperative communication, there are re-
quirements for the tapped coefficients

, which are stated in the following theorem and
the proof is given in [12], [26], [27].

Theorem 1: [12], [26], [27]: The space–time code gener-
ated by has full di-
versity order in the asynchronous cooperative communication if
and only if the coefficient matrix of any asynchronous ver-
sion

of

...
...

...
...

...

has full rank, , in the binary field for arbitrary
, where .

The above result is for BPSK signals. For higher QAM, PSK
and PAM signals, based on the results by Lu and Kumar in [19],
[20], a general result is also obtained in [12], [26], [27].

Theorem 2: [12], [26], [27]: Let be integers with
. Let

be a collection of sets of binary matrices
generated by using (5) with independent binary
vectors of dimension . Let be a primitive -th root
of unity. Let , such that belongs to the ideal

generated by 2 in . Let

be the map defined by

where is a nonzero complex number, is a matrix in the
binary matrix set , and the multiplication and exponential
of to are carried out entry by entry. Then, if
satisfies the condition of full diversity order in asynchronous
cooperative communications in Theorem 1, then the space–time
code generated by the above map also has full diversity
order in asynchronous cooperative communications.

From the above results in Theorem 1 and Theorem 2, in order
to construct a space–time code generated by in (4) with
full diversity order in asynchronous cooperative communica-
tions, it suffices for us to construct a generator matrix such
that its any row-shifted version has full rank. As pointed
out in [12], [26], [27], to construct such matrices might not
be an easy task. The difficulty comes from the fact that for a
flat matrix such that its all row-shifted versions have full
row rank, adding an additional column to may not main-
tain the property, which is different from the conventional ma-
trix full rankness. Despite this difficulty, in [12], [26], [27], a
family of such binary matrices has been constructed, where
the number of columns of , however, grows exponentially
in terms of the number of rows, i.e., the number of relays, of

, while some shorter ones for small , have been
also constructed. Note that the number of columns in the gen-
erator matrix determines the memory size and hence the
decoding complexity of the trellis code generated by it. There-
fore, the decoding complexity of the family of space–time trellis
codes presented in [12], [26], [27] may be high when the number
of terminals is not too small.

The main goal of this paper is to systematically study and
construct matrices for any sizes such that they have full
row rank no matter how their rows are shifted. We also con-
struct such shortest, i.e., square, matrices that correspond to
space–time trellis codes with the smallest memory sizes when

is fixed. In the following, we consider the binary case and
will see that the binary case can be easily generalized to the
general case of commutative integral domain. To do so, we first
introduce some notations, concepts and properties of binary vec-
tors and matrices.

III. SFR MATRICES: NOTATIONS, DEFINITIONS,
AND PROPERTIES

Since the shifts of binary row vectors are considered here,
it is necessary and convenient to use a horizontal coordinate
system to characterize the shifts of binary vectors in which the
position of the component with a dot underneath denotes the
origin and the right to the origin is the positive direction, such
as . In what follows, we use small case bold
font letters to denote vectors over the binary field and small
case letters to denote scalars and components of a vector, such
as, , where is the component of
at coordinate . For example, if , then its components
corresponding to coordinates from to are

, respectively. Furthermore, we use
to denote the all-zero binary vector and to denote the single-
component vector .

Definition 1: The length of a binary row vector is
defined as the number of components between the most left and
the most right ’s in , including the two ’s themselves. In
particular, let and the length of a vector with only one
nonzero component is defined as . We define to be the set of
all binary row vectors with finite lengths. The weight of
is defined as the number of ’s in as usual.

So, and we have and for the pre-
vious . Since padding any number of ’s to the two
ends of a vector in does not affect its properties in the fol-
lowing discussions, we do not differentiate them. For example,
we treat vector and vector the same.

Definition 2: For any vector denotes the row
vector resulted from the bits (coordinate positions) right shift
of every component of and simultaneously padding 0’s to its
two ends if needed, where, when is negative, it means the
bits left shift of .

Obviously, we have
if , and

for any and , where and herein
is the conventional scalar multiplication over between

two vectors in is the conventional vector addition over ,
i.e., the component-wise addition over , and is the set of
all integers. For example, the 3 bits right shift of the previous
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vector is , its bits right shift is
and

.
Definition 3: For two vectors , their vector multipli-

cation is defined as their convolution, i.e., the component of
at coordinate is

where (or ) denotes the component of (or ) at coordinate
. Furthermore, the th power of the vector is defined as

for and we also define .
As a remark, an alternative expression

for convolution between two vectors in is sometimes helpful
to understand the following constructions. There are many
useful properties on convolution and some of them are listed
here, which will be used in this paper.
Some Useful Properties on Multiplication (or Convolution)

For any and , we have the
following.

a) Identity, commutative law, associative law, and distribu-
tive law

(6)

(7)

b) If and , then

(8)

Hence,

(9)

(10)

c) For two shifted vectors

(11)

d) If either or is of even weight, is of even weight.
If both and are of odd weight, is of odd weight.
Furthermore, is of odd weight (or even weight) if is
of odd weight (or even weight) for .

The above property c) follows from

and the property d) is because there is always an even differ-
ence between and . The above properties
imply that the set with the vector addition and the vector
multiplication is a commutative integral domain [25] with
the additive identity and the multiplicative identity . As we
know, convolution of two vectors in is equivalent to product
of their corresponding polynomials, so is equivalent
to the polynomial ring1 over . In fact, our general construc-
tions of SFR matrices to be presented later can also be illus-
trated by the polynomials over the polynomial ring, but since
the expression of vectors in is more intuitive and ex-
plicit in forming a matrix, we adopt the latter in the following
discussions.

Similar to some concepts of polynomials, we define divisions
and factorizations over as follows. Let . If
there is an such that is said to be a
multiple of , and is said to be a divisor of or to divide .
We write when divides , otherwise , and
when . Obviously, we have for all , and

if for any . For given vectors ,
we can directly check whether or by using their
corresponding polynomials.

Definition 4: A shift linear combination of vectors
is defined as

where and . Furthermore,
are called shift linearly independent if

for any , not all zero, and any
; otherwise, they are called shift linearly

dependent.
Definition 5: A matrix formed as

with as its th row is called shift-full-rank (SFR) if all of
its row vectors are shift linearly independent.

Since we treat vectors from adding zeros to the two ends the
same, we also treat their corresponding matrices the same. For
example, we do not differentiate the following matrices

and

which certainly have the same SFR property, i.e., either both are
SFR or neither is. Furthermore, since the shift linear indepen-
dence/dependence of vectors belonging to implies the same

1This polynomial ring is slightly different from the conventional polynomial
ring over the binary field, since negative exponent terms are allowed in its ele-
ments, i.e., polynomials. For example, the corresponding polynomial of vector
v = 11:001 is f (x) = x + 1 + x . However, the set of such polynomials
corresponding to the vectors of finite lengths is still a ring (furthermore, a com-
mutative integral domain) under the polynomial addition and the polynomial
multiplication.
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property for their shifted versions and a permutation of rows in
a matrix does not affect its SFR, matrices

and

have the same SFR property too. With this observation, we give
the definition of shift equivalence.

Definition 6: Two matrices and
of the same number of rows are called shift

equivalent if there exist integers such that

where is a permutation on the set . We denote
this relationship by . Furthermore, a class of shift equiv-
alent matrices (or a shift equivalent class) means a collection of
matrices in which every pair of matrices is shift equivalent.

As an example, the above and are shift equivalent, i.e.,
. It is not hard to see that, for a class of shift equiv-

alent matrices, it is sufficient for us to only consider the SFR
property of any one matrix representative in it. Therefore, for
convenience, we next define matrix representatives which have
the most compact forms with respect to the number of columns
and, without loss of generality, we only consider them in the
following discussions. To do so, we first define a subset of ,
which will be useful by itself alone later.

Definition 7: We define to be the set of all the vectors
in with their most left 1’s located at the origin, i.e.,

.
So, and is a commutative semi-group with the

identity because it is closed under the vector multiplication.
Moreover, if , we have if , and
unless . However, we can easily find an example such
that with , such as, and .
Constrained in , we let denote the
greatest common divisor of . A useful property is that,
for and imply .

Definition 8: We call a matrix as of standard form if all of
its row vectors belong to and there is no all-zero columns at
its two ends.

In the above example, is of standard form but and
are not. Notice that the shift equivalence between two matrices
of standard form only means that there is a row permutation
between them, i.e., in Definition 6. In what follows,
for convenience, the dots denoting the coordinate origin at the
first column of a matrix of standard form will be omitted. With
the above discussions, the following lemma is straightforward.

Lemma 1: Any binary matrix without all-zero rows must be
shift equivalent to a binary matrix of standard form.

With this result, for the shift-full rankness, we only need to
study matrices of standard form.

Definition 9: Given a vector and a matrix
, their multiplication (or convolution) is de-

fined as .
For any two vectors such that for some

integer and any two matrices and such that , from
(11), we have

(12)

We now present a lemma that plays an important role for the
constructions of SFR matrices later in this paper.

Lemma 2: Let and . Then, is an
SFR matrix if and only if is an SFR matrix.

Proof: Let us prove the “if” part first. Assume
, then with

. For any nonzero shift linear combination
of with any and , not all zero,
, we have

(13)

(14)

(15)

where (13) follows from (11), (14) follows from (7) and (15)
follows from (6). Since is SFR, we know .
From (9) and , we have

Hence is an SFR matrix. The “only if” part holds obviously
from the above proof.

As a remark, although this lemma is mainly for the proof of
the constructions for SFR matrices in next sections, it is also an
important method by itself to generate new SFR matrices based
on all the SFR matrices to be constructed later.

IV. SFR MATRICES: GENERAL CONSTRUCTION

In this section, a general construction of binary SFR matrices
based on known SFR matrices is first presented. Then, two spe-
cial and simplified constructions are provided, which are par-
tially used to illustrate the repetitions in the general construc-
tion. Finally, an important result that SFR matrix exists for any
desired size (the number of columns is, of course, no less than
the number of rows) is constructively proved.

It is clear that any nonzero vector is an SFR matrix by

itself. Matrix is also an SFR matrix. Now, given any
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initial SFR matrix with rows, we construct a matrix with
rows by

...
. . .

(16)

for , where can be any nonzero vectors in such
that . In particular, when

and then , we write . The
requirement of to ensure the SFR property of
will be clear in the Proof of Theorem 3.

Therefore, we need at most nonzero vectors, not
necessarily different, and an known SFR matrix to con-
struct such a general matrix in (16). Obviously,
since . If we use to denote the th row vector of

, we have

for and

for , where is the th row of and
if .

Lemma 3: If and and are the shifted versions
of and , respectively, then

.
Proof: This follows easily from (11) and (12).

This lemma tells us that we only need to consider the case
that and is of standard form in the following
discussions and hence the shift equivalence is only limited to a
row permutation. We next prove that in (16) is an SFR
matrix.

Theorem 3: Any matrix constructed in (16) with
an initial SFR matrix of standard form and such
that , is an SFR matrix of standard
form.

Proof: We prove this theorem by induction on . It is ob-
vious that the result holds for .

Assume the result holds for , i.e.,

...

is an SFR matrix for any such that
. Consider matrix .

For the last rows of ,
we have

...

...

From the assumption that is an SFR matrix and
Lemma 2, matrix is also an SFR
matrix, i.e., are shift linearly inde-
pendent. Furthermore, since every contains a divisor

for , their shift linear
combination has the form of by (15), where

is the corresponding shift linear combination
of the row vectors in . If is not SFR,
i.e., are shift linearly dependent, then
there exist , not all zero, and such that

. Since
are shift linearly independent as we have

proved, we have . Thus, by the above argument, we have
or for some ,

which contradicts with construction condition .
Consequently, all the rows of are shift
linearly independent, i.e., is an SFR matrix.

Thus, we have completed the proof by induction.
The basic idea underlying this construction is that from one

known SFR matrix , we can generate a new SFR matrix with
one more row by first convoluting by a nonzero vector
and then adding a nonzero row vector such that
into the matrix, i.e., the basic building block has the form2

Then we can repeat this process to obtain more new SFR ma-
trices with higher dimensions.

The selection of and in the construction (16) is arbitrary.
We can choose them such that for large or
choose odd weight while is of even weight by Property d).
By (8), it is not difficult for us to calculate the number of possible

2For its generalization to a commutative integral domain D, the condition
v �v is changed to v a � �v for any 0 6= a 2 D, when D is not a field. If D
is a field, the condition v �v does not need to be changed.
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of length such that for a given , which
is

for . Therefore, and can be of any lengths unless
and we can get infinite SFR matrices of

standard form for any given number of rows. However, there
also exist a lot of repetitions for this construction which we will
illustrate by two examples later.

Since an initial SFR matrix and nonzero vectors are
needed to construct a , which is somewhat complex,
we give the following two special cases to simplify the construc-
tion. First, let

and then choose such that in (16) for
. The number of vectors needed in this con-

struction is now reduced to and we denote the resulted
matrices of this form by , i.e.,

... (17)

which will be discussed in details in next section for more prop-
erties. Furthermore, let in for

and we denote such matrices, which only need
one vector, by and the corresponding matrix system for a
given and different by or , i.e.,

...

(18)

where and is the th power of . From Theorem
3, we have the following corollary.

Corollary 1: For any vector , if its length is above 1,
i.e., , then matrix defined in (18) is an SFR matrix.

Proof: For any vector with , we know
. Then, this corollary follows from the above discussions

and Theorem 3.
From the above corollary, we can see that one vector in

is enough to construct SFR matrices for any number of rows.
On the other hand, if such that for some

, then is a submatrix of and its rows are
the rows of for
any because of the form in (18). Besides this repetition,
other repetitions also exist in the general construction (16). Let
us see two examples.

Example 1: This is an example in which we obtain the same
from different , and . If

such that and for , let

and , then
the following SFR matrices:

...

...

...

with the forms in (17) or (18) are the same. An example of such
a pair of vectors is such that for
some integer . A simple proof is as follows. Expanding
in terms of and , we have

for . All terms except the last one in the above expression
are the multiples of and hence ; Similarly, since

.
Notice that another fact we can obtain from this example is

that in Theorem 3 is just a sufficient, but not necessary,
condition for the matrix in (16) to be SFR, i.e., doesn’t
imply that is not an SFR matrix. For example, if we let

instead of in the above example, then,
that is an SFR matrix by Corollary 1.

Example 2: In Example 1, the same matrix is obtained
from totally different ’s. We now illustrate that
we can also get the same matrix from the same initial SFR
matrix but different ’s. Let
such that , and .
Assume with . Then, since

, and since and .
Thus, a pair of shift equivalent matrices in the sense of a row
permutation can be obtained from by and

, respectively, i.e.,

We can easily find a lot of such -tuples and an example is
.
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Let us now derive the existence of SFR matrices by
construction.

Lemma 4: Let for . Then
matrix in (17) (also in (18)) is of standard form and

has size .
Proof: The first part that and are of standard

form follows from the fact that is closed under the vector
multiplication. From (8), we know the length of the th row of

is
for

. Since the length of every row is increasing, the number
of columns of is .

The following lemma is obvious from the definitions of shift
linear combination and shift linear independence.

Lemma 5: If is an SFR matrix, the matrix obtained by
replacing any number of rows in by their nonzero shift linear
combination is also an SFR matrix.

A special case for Lemma 5 is that we can construct a new
SFR matrix by arbitrarily selecting or deleting some rows from
one known SFR matrix. This method to construct new SFR
matrices is sometimes useful because shift linear combinations
may help to reduce the size including the number of columns
of a matrix. For conventional full-rank matrices, it is trivial that
there exist full row rank matrices of size for any .
This is because adding any additional columns to a full row rank
matrix still results in a full row rank matrix. As mentioned in
Section II and pointed out in [12], [26], [27], this is no longer
true for SFR matrices. Although it is the case, the following re-
sult holds for SFR matrices.

Corollary 2: There exists at least one binary SFR matrix of
standard form with size if and only if .

Proof: Since any SFR matrix has full row rank, the “only
if” part is obvious.

For any and with , let and hence
. From Corollary 1 and Lemma 4, matrix is an SFR

matrix of standard form with size . From Lemma 5, an
SFR matrix of standard form with size can be obtained
by deleting any rows from the first rows of .
This proves the “if” part.

As a remark, the above constructions and the results in The-
orem 3 and subsequent corollaries on SFR matrices hold not
only over but also over any commutative integral domain
(including any field), while the counting of the number of SFR
matrices to be presented in the following section holds only for
the binary field .

V. SHORTEST SHIFT-FULL-RANK (SSFR) MATRICES

Since the number of columns in an SFR matrix determines the
memory size of the space–time trellis codes in Section II, we are
interested in SFR matrices with the smallest number of columns.
From Corollary 2, for any fixed number of rows, smallest SFR
matrices are square matrices, i.e., the number of columns is the
same as the number of rows, which are certainly shortest SFR
(SSFR) matrices. Furthermore, from Corollary 2, for any fixed
number of rows, SSFR matrices must include at least one of
standard form. Therefore, in what follows, without loss of gen-
erality, we only consider SSFR matrices of standard form, and

an SSFR matrix is always of standard form in case it is not ex-
plicitly stated. The goal of this section is to study such SSFR
matrices with as many constructions as possible.

For a general construction in (16) from an initial
SFR matrix of standard form of size and
such that for , let be the th row
of , then we have

(19)

since that is from condition . On the other
hand, the number of rows equals to the number of columns
means that

Hence, and . Since the
vector is often used in this section, we denote it by , i.e.,

. This proves the following lemma.
Lemma 6: For a matrix in (16) to be shortest, it

must have the following form: and

... (20)

where is an SSFR matrix of standard form and such
that for .

We can see that (17) is a special case of (20) when
. Based on this lemma, we next study when .
Lemma 7: Let . Then, if and only if is even.

Proof: This lemma follows easily if a binary vector of
finite length is associated with a polynomial.

With the above two lemmas, we have the following theorem.
Theorem 4: For a matrix in (16) to be shortest if

and only if for and it has the form
in (20) where is an SSFR matrix of standard form of size

, and with odd weight such that its length
satisfies for .

Proof: By Lemmas 6 and 7, it is necessary and sufficient
to prove the length of every row of .
This holds obviously for the last rows. For ,
we have

which holds if and only if for .
This completes the proof.

With this theorem and Property d), we can see that any SSFR
matrix with the form in (20) contains and only contains an
odd weight row vector for . We next list some design
examples.
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Example 3: Let initial SSFR matrix in this
example. First, also let in which is then equal
to . We list for as follows:

We can easily verify that the matrix system given
in [12], [26], [27] with

...
...

...

(21)

TABLE I
CHOICES OF �v

is just a submatrix system of since the th row in
is equal to the th row in for . One can

see that the number of columns of this submatrix system grows
exponentially with the number of rows.

It is not hard to see that and are the only SSFR matrices
of standard form of sizes 1 1 and 2 2, respectively. For other
designs different from and , we list various choices of
in Table I. The corresponding SSFR matrix of size 3 3 is

(22)

and the corresponding seven SSFR matrices of size are

(23)

A property for the above SSFR matrix construction is that
there are no repetitions in the designs, i.e., any two designs
from different ’s are not shift equivalent
or one is a submatrix of another as we shall see later. The next
question we are interested in is how many SSFR matrices there
are for a given size. To do so, let us first see more properties of
SFR and SSFR matrices.

Theorem 5: There does not exist any binary full-rank
matrix with all even weight row vectors. There does not exist
any binary SSFR matrix except for with all odd weight row
vectors.

Proof: Let us first prove the first part. Assume
is a binary full-rank matrix

with row vectors , of all even weights. By
Lemma 7, for every , there exists such that .
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Therefore, we can get a matrix of size
such that . Similar to the Proof of Lemma

2, we know that the rank of is also , which is impossible for
an matrix. This completes the proof of the first part.

We next prove the second part. Assume there exists such a
binary SSFR matrix of size with
its row vectors . Since is of standard form
and has full rank, the following matrix:

...
...

also has full rank. Now, by deleting the first row and the first
column of the above matrix, we get a full-rank matrix of size

with all even weight row vectors. This con-
tradicts with the first part of this theorem and hence the second
part is proved.

From this theorem, the following corollary is immediate.
Corollary 3: It is necessary for an SSFR matrix of size

with to contain at least one even weight row vector and
one odd weight row vector.

While an SSFR matrix with all odd weight row vectors does
not exist except , we can easily find a full-rank square
matrix with all odd weight row vectors. For example, the matrix

is such a matrix,
where are the row vectors of .

We next study the number of SSFR matrices of standard form,
which are not shift equivalent with each other, i.e., the number of
different shift equivalent classes. To do so, let us see a definition
for simplicity.

Definition 10: An SSFR matrix of standard form is called
basic if it either equals to or contains more than one
odd weight row vector.

Thus, all SSFR matrices of standard form other than basic
ones contain and only contain one odd weight row from Corol-
lary 3, such as the matrices in (20) for . In the following,
two matrices are different means they are in different shift equiv-
alent classes, i.e., they are not shift equivalent.

Theorem 6: From a basic SSFR matrix of size ,
based on the construction (20) there are only

different SSFR matrices of standard form of size for
. Conversely, for every given SSFR matrix of stan-

dard form, we can trace it back to a unique basic SSFR matrix.
Proof: We first prove that two SSFR matrices of the same

size derived from the same basic SSFR matrix and different
’s are different. From the form of

in (20), we know that the last rows are always the same and
at least one row in the first rows is different for different

’s. Now we consider the shift equivalence
in the sense of a row permutation. For the th row of a matrix,
we have , but since (from Lemma 7 and
Theorem 4) for , and for

TABLE II
THE NUMBERS OF SSFR MATRICES DERIVED FROM G

. Obviously, there does not exist any permutation for the
last rows of any two matrices. Assume the th row of one
matrix is equal to the th row of the other matrix with ,
we have for and

for . This is
a contradiction and hence every SSFR matrix derived from
with the form (20) corresponds to a unique .

By the above derivations and Theorem 4, the number of dif-
ferent SSFR matrices of size derived from is equal
to the number of possible such that
are odd and . For any given integer , the
number of odd weight vectors such that is

where for odd and for even. Therefore,
the number of possible is and the number of possible

is

(24)

Conversely, if is basic, the conclusion is obvious. Other-
wise, assume of size is not basic, then it must have
a unique odd weight row vector because of Corollary 3 and
the definition of basic SSFR matrices, and an even weight row
vector of length because, otherwise, it contradicts with The-
orem 5. Thus, we can get another SSFR matrix of size

from by first deleting the unique odd weight
row vector and then dividing all the remaining rows by .
If the resulted matrix is basic, the conclusion holds. Otherwise,
this process continues until we find a basic one. The uniqueness
of the resulted basic SSFR matrix, which is traced back to, is
from the uniqueness of every step in this process.

Obviously, the single-entry matrix is the simplest
basic SSFR matrix. Then, the number of different SSFR ma-
trices of size derived from is by
(24). We list the values of for in Table II.
Moreover, from this theorem, we can see that any nonbasic
SSFR matrix must have the form (20) with being a basic
SSFR matrix and , i.e., it can be derived from a basic
SSFR matrix with the form (20).

Corollary 4: Any two SSFR matrices of standard form with
the same size but derived from two different basic SSFR ma-
trices are different.

Proof: If they are the same, we can trace them back to
the same basic SSFR matrix due to the uniqueness of the in-
verse process in the Proof of Theorem 6. Therefore, we get a
contradiction.

With the above results, the following corollary is immediate.
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Corollary 5: Let denote the number of different basic
SSFR matrices of size for . Then, the number
of different SSFR matrices of standard form of size is

Obviously, and . A further
problem is if there exist basic SSFR matrices other than . We
claim there are other such matrices by presenting the following
theorem.

Theorem 7: The following two matrices

and

are basic SSFR matrices of size , where
is shown in Example 3 and is shown in (23).

Proof: Let denote the th row of , then
. Consider their nonzero shift linear combination

with any , not all zero, and . We now discuss all
the possible cases for the values of .

a) When they are different with each other, it is obvious that
regardless of the values of as and are

nonzero because is an SFR matrix by Corollary 1 and
there is a 4 bits position difference between the most left
1’s of and .

b) When and , obviously .
c) When three row vectors have the same shift and cor-

responding coefficients , their shift linear combination
must have at the coordinate . Thus, for shift linear de-
pendence, the fourth row vector must have the same shift
as the others, which is reduced to b).

d) When two of are equal and both have the co-
efficients , we can verify by enumerating all the possi-
bilities that their shift linear combination has length less
than the lengths of the other two vectors. Therefore, the
remaining two row vectors must have the same shift and
also the coefficients . Certainly, in this case due
to the SFR property of .

Therefore, is a basic SSFR matrix. Using the same proce-
dure, we know is also a basic SSFR matrix.

The construction method in Theorem 7 cannot be applied to
any nonbasic SSFR matrices of size to construct basic
ones other than and . However, we can easily generalize
it to more general cases in the following theorem, while the
resulted SFR matrices are not the shortest ones.

Theorem 8: Given any SFR matrix of
standard form of size with , the following matrix:

is an SFR matrix of standard form of size for any
.

Notice that Theorem 7 is not contained in Theorem 8 because
in Theorem 7 that does not satisfy in Theorem

8. But their proofs are similar. Moreover, the converse of The-
orem 8 does not hold, i.e., is an SFR matrix does not imply

is also an SFR matrix. For example

and

are such a pair of matrices. It is not difficult to notice that The-
orem 8 is similar to Theorem 2 (iii) in [12], where all row vec-
tors of a matrix have the same length, i.e., the first and the last
column vectors are all-one vectors, but the construction here is
more intuitive. Also, the method used in Theorem 8 can be ap-
plied to any SFR matrix of standard form with the number of
rows less than , but unfortunately can not be applied to those
with more rows. For example, matrix

is not an SFR matrix because
, although

is an SFR matrix.
By searching all binary matrices of standard form with

more than one odd weight row vector for , we find
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TABLE III
VALUES OF N

that and are the only basic SSFR matrices of size
,

is the unique basic SSFR matrix of size , and there is
no basic SSFR matrices. Hence, we have

and . By Corollary 5, we list the values of
for in Table III. From Table III, the following

corollary is immediate.
Corrolary 6: Matrices and constructed above are the

only two different SSFR matrices of standard form of size 3 3,
and matrices for , and and
constructed above are the only ten different SSFR matrices of
standard form of size 4 4.

While the exact values of for are not given here, we
can see that the numbers are surprisingly large even for not large

. For example, when , there exist at least
different binary SSFR matrices. Moreover, for

a small , we find that the number of the SSFR matrices
derived from contributes the most to the value of and the
number of basic SSFR matrices is not large. We conjecture
that is always small and therefore contributes the most
to the value of for any .

As a final comment, after having discussed all the above con-
structions of SFR matrices, for a given matrix, one may be able
to also check whether it is SFR in some way by following the
converse steps of the above construction methods. For example,
for a given matrix of rows, one may check whether its
row vectors can be factorized so that it can be converted to a
smaller size matrix. If so, factorize the rows and form a
submatrix of rows, and then repeat this procedure until
the last one whose rows can not be factorized anymore.

VI. SIMULATION RESULTS

In all our simulations, we assume that the channel is qua-
sistatic Rayleigh flat fading. Furthermore, we assume that no
errors occur in phase I transmission, i.e., what the relays detect
is the same as what the source terminal has sent. We also as-
sume that there is only one antenna in the destination terminal
and the random delays are uniformly generated from the set

, where is the maximum relative timing error.

In [12], [26], [27], the SFR matrix designed for 3 relays with
the smallest number of columns is

which is from the systematic construction (21) introduced in
[12], [26], [27]. In Fig. 2, we compare the frame error rate (FER)
performances of the space–time trellis code generated from the

SSFR matrix in (22) with delay diversity code [22],
[23] and the space–time trellis code generated from , where
both synchronous (i.e., ) and asynchronous
cases are considered. As we have discussed, for the space–time
trellis codes associated with and , full diversity can be
achieved for arbitrary delays, while it is not the case for delay
diversity code. This can be clearly seen in Fig. 2. In synchronous
case, the slopes of the performance curves for the three codes are
the same at high SNR, while the code generated from has
the biggest coding gain among them. However, in asynchronous
cases, the performances of the trellis codes with asynchronous
full diversity further improve as increases, which is the same
as what has been observed in [12], [26], [27], while the per-
formance of delay diversity code degrades and its full diversity
property is lost. Furthermore, we can see in Fig. 2 that, com-
pared with the trellis code generated from , the code gener-
ated from the SSFR matrix has not only the smaller memory
size and hence the lower decoding complexity but also the better
performance in asynchronous cases.

VII. CONCLUSION

In this paper, we introduced the concept of shift-full-rank
(SFR) matrices and systematically studied and constructed SFR
matrices for any sizes. Note that it was shown in [12], [26],
[27] that SFR matrices can be used to construct space–time
trellis codes for relay networks to have full cooperative diversity
order without the symbol synchronization requirement. Since
the number of columns of SFR matrices determines the memory
size of the corresponding space–time trellis codes, we then sys-
tematically constructed shortest (square) SFR (SSFR) matrices
for any number of rows, i.e., relay terminals. Furthermore, we
presented some numbers and properties of SSFR matrices. Al-
though our studies on SFR matrices were carried out over the
binary field, the constructions can be generalized to any com-
mutative integral domain. For example, Lemma 2, Theorem 3,
Corollary 1, Lemma 4, Lemma 5, Corollary 2, Lemma 6 can be
easily generalized from the binary field to any commutative inte-
gral domain. Finally, some simulation results were presented to
illustrate the performances of the space–time trellis codes gen-
erated from SFR (including SSFR) matrices in asynchronous
cooperative communications. As a remark, in our recent work
[24], it has been shown that the space–time trellis codes gener-
ated from SFR matrices, which are descried in [12], [26], [27]
and this paper, can also achieve asynchronous full cooperative
diversity in a relay network where the delays can be fractional
symbol duration and oversampling is used at the destination.
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Fig. 2. Comparison of the performances of delay diversity code and the space–time trellis codes generated from G and G for different L ’s.
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