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Abstract—In this paper, we propose a partial interference can-
cellation (PIC) group decoding strategy/scheme for linear disper-
sive space–time block codes (STBC) and a design criterion for the
codes to achieve full diversity when the PIC group decoding is used
at the receiver. A PIC group decoding decodes the symbols em-
bedded in an STBC by dividing them into several groups and de-
coding each group separately after a linear PIC operation is im-
plemented. It can be viewed as an intermediate decoding between
the maximum likelihood (ML) receiver that decodes all the em-
bedded symbols together, i.e., all the embedded symbols are in a
single group, and the zero-forcing (ZF) receiver that decodes all the
embedded symbols separately and independently, i.e., each group
has and only has one embedded symbol, after the ZF operation is
implemented. The PIC group decoding provides a framework to
adjust the complexity-performance tradeoff by choosing the sizes
of the information symbol groups. Our proposed design criterion
(group independence) for the PIC group decoding to achieve full
diversity is an intermediate condition between the loosest ML full
rank criterion of codewords and the strongest ZF linear indepen-
dence condition of the column vectors in the equivalent channel
matrix. We also propose asymptotic optimal (AO) group decoding
algorithm which is an intermediate decoding between the MMSE
decoding algorithm and the ML decoding algorithm. The design
criterion for the PIC group decoding can be applied to the AO
group decoding algorithm because of its asymptotic optimality. It is
well-known that the symbol rate for a full rank linear STBC can be
full, i.e., ��, for �� transmit antennas. It has been recently shown
that its rate is upper bounded by � if a code achieves full diver-
sity with a linear receiver. The intermediate criterion proposed in
this paper provides the possibility for codes of rates between ��

and � that achieve full diversity with the PIC group decoding. This
therefore provides a complexity-performance-rate tradeoff. Some
design examples are given.

Index Terms—Full diversity, group decoding, linear dispersion
codes, partial interference cancellation, space–time block codes,
zero-forcing.

I. INTRODUCTION

M ULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO)
technology is an important advancement in wireless

communications since it offers significant increase in channel
capacity and communication reliability without requiring ad-
ditional bandwidth or transmission power. Space–time coding
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is an effective way to explore the promising potential of an
MIMO system. In the coherent scenario, where the channel
state information (CSI) is available at the receiver, the full rank
design criterion is derived in [13], [40] to achieve the max-
imum diversity order in a quasi-static Rayleigh fading channel.
However, the derivation of the full rank criterion is based on
the assumption of the optimal decoding at the receiver. In order
to achieve the maximum diversity order, received signals must
be decoded using the maximum likelihood (ML) decoding.
Unfortunately, the computational complexity of the ML de-
coding grows exponentially with the number of the embedded
information symbols in the codeword in general. This often
makes the ML decoding infeasible for codes with many infor-
mation symbols embedded in. Although near-optimal decoding
algorithms, such as sphere decoding or lattice-reduction-aided
sphere decoding, exist in the literature, [4], [5], [28], [29], [45],
their complexities may depend on a channel condition.

In order to significantly reduce the decoding complexity,
one may decode one symbol at a time and make the decoding
complexity grow linearly with the number of the embedded
information symbols. This can be achieved by passing the
received signals through a linear filter, which strengthens a
main symbol and suppresses all the other interference symbols
and then one decodes the main symbol from the output of the
filter. By passing the received signal through a filter bank, one
can decode each symbol separately. There are different criteria
to strengthen the main symbol and suppress the interference
symbols. If the filter is designed to completely eliminate the
interferences from the other symbols, we call such decoding
method zero-forcing (ZF) or interference nulling decoding. If
the filter is designed according to the minimum mean square
error (MMSE) criterion, we call the decoding method MMSE
decoding. The well-known algorithms with the above idea are
BLAST-SIC algorithms [48]. Since these symbol-by-symbol
decoding methods may not be ML but only suboptimal, the
full rank criterion can not guarantee the codes to achieve
the maximum diversity order. In some special cases, the
symbol-by-symbol decoding is equivalent to the ML decoding
and thus the full rank property ensures the codes achieve full
diversity in these cases. The first such code is the Alamouti
code for two transmit antennas [1]. The orthogonality structure
of the Alamouti code ensures that symbol-by-symbol decoding
is equivalent to the ML decoding. The Alamouti code has
inspired many studies on orthogonal STBC (OSTBC) [23],
[24], [27], [39], [41], [47]. However, OSTBC suffers from a
low symbol rate. In [47], it has been proved that the symbol
rate of an OSTBC is upper bounded by with or without
linear processing among the embedded information symbols or
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their complex conjugates for more than two transmit antennas
and conjectured that it is upper bounded by for and

transmit antennas, where is a positive integer (this upper
bound was shown in [23] when no linear processing is used
among information symbols). Explicit designs of OSTBCs
with rates achieving the conjectured upper bound have been
given in [23], [27], [39]. Note that the rate only approaches
when the number of transmit antennas goes large. For a general
linear dispersion STBC [15], [16] that has no orthogonality
structure, the full diversity criterion for STBC decoded with a
symbol-by-symbol decoding method has not been discovered
until recently. In [51], Zhang-Liu-Wong proposed a family of
STBC called Toeplitz codes and proved that a Toeplitz code
achieves full diversity with the ZF receiver. The symbol rate
of a Toeplitz code approaches as the block length goes to
infinity. Later in [34]–[36], Shang-Xia extended the results in
[51] and proposed a design criterion for the codes achieving
full diversity with ZF and MMSE receivers. They also proposed
a new family of STBC called overlapped Alamouti codes
(OAC), which has better performance than Toeplitz codes for
any number of transmit antennas. The symbol rate of an OAC
also approaches as the block length goes to infinity. It has
been proved in [36] that the symbol rate of an STBC achieving
full diversity with a linear receiver is upper bounded by .
Simulation results in [36] show that OAC outperform OSTBC
for over 4 transmit antennas. Note that it is shown in [36] that
for any OSTBC, its ZF receiver is the same as the ML receiver.

Although OSTBCs can be optimally decoded in a
symbol-by-symbol way, the orthogonality condition is too
restrictive as we mentioned above. From an information the-
oretical point of view, this can cause a significant loss of
channel capacity [32]. By relaxing the orthogonality condition
on the code matrix, quasi-orthogonal STBC (QOSTBC) was
introduced by Jafarkhani in [17], Tirkkonen-Boariu-Hottinen
in [43] and Papadias-Foschini in [32] to improve the symbol
rate at the tradeoff of a higher decoding complexity. The basic
idea of QOSTBC is to group the column vectors in the code
matrix into pairs and keep the orthogonality among the groups
of the column vectors while relax the orthogonality require-
ment within each group. Because of this partial orthogonality
structure, QOSTBC can be (ML) decoded pair-by-pair complex
symbols, which has a higher decoding complexity compared
to the OSTBC. The original QOSTBCs do not possess the full
diversity property. The idea of rotating information symbols in
a QOSTBC to achieve full diversity and maintain the complex
symbol pair-wise ML decoding has appeared independently in
[37], [53], [38], [42], and the optimal rotation angles and

of the above mentioned information symbols for any signal
constellations on square lattices and equal-literal triangular
lattices, respectively, have been obtained in Su-Xia [38] in the
sense that the diversity products (coding gains) are maximized.
In [20], [46], [49], the authors further studied QOSTBC with
minimum decoding complexity. The underlying constellation
is assumed to be rectangular QAM, which can be viewed as the
cartesian product of two PAM constellations. The minimum
decoding complexity means the code can be optimally decoded
in a real-pair-wise way. Compared to the complex-pair-wise
decodable QOSTBC, the decoding complexity of real-pair-wise

decodable QOSTBC is lower. In [7], [18], [52], [19], [22], [46],
[50], the pair-by-pair decoding was generalized to a general
group-by-group decoding. The symbols in a code matrix are
separated into several groups and each group is decoded sepa-
rately. With the help of graph theory, a rate code was obtained
in [50] that can be decoded in two groups, each group contains
5 real symbols. In [18], [52], [19], a Clifford algebra approach
is applied for multigroup decodable STBCs.

In this paper, we propose a general decoding scheme called
partial interference cancellation (PIC) group decoding algo-
rithm for linear dispersion (complex conjugated symbols may
be embedded) space–time block codes (STBC) [15], [16]. A
PIC group decoding decodes the symbols embedded in an
STBC by dividing them into several groups and decoding each
group separately after a linear PIC operation is implemented.
It can be viewed as an intermediate decoding between the
ML receiver that decodes all the embedded symbols together,
i.e., all embedded symbols are in a single group, and the ZF
receiver that decodes all the embedded symbols separately and
independently, i.e., each group has and only has one embedded
symbol, after the ZF operation is implemented. The PIC group
decoding provides a framework to adjust the complexity-perfor-
mance tradeoff by choosing the sizes of the information symbol
groups. It contains the previously studied decoding algorithms
for codes such as OSTBC [1], [41], QOSTBC [17], [20], [37],
[53], [38], [43], [46], [49], and STBC achieving full diversity
with linear receivers [36], [51] as special cases. Note that a
similar algorithm as the PIC group decoding has been proposed
by Dai, Sfar, and Letaief in [25] for layered space–time block
codes. We propose a design criterion for STBC achieving
full diversity with the PIC decoding algorithm. Our proposed
design criterion is an intermediate criterion between the loosest
ML full rank criterion [13], [40] of codewords and the strongest
ZF linear independence criterion of the column vectors in the
equivalent channel matrix [36]. We then propose asymptotic
optimal (AO) group decoding algorithm which is an interme-
diate decoding between the MMSE decoding algorithm and the
ML decoding algorithm. The design criterion for the PIC group
decoding can be applied to the AO group decoding algorithm
because of its asymptotic optimality. It is well known that the
symbol rate for a full rank linear STBC can be full, i.e., , for

transmit antennas. It has been recently shown in [36] that its
rate is upper bounded by if a code achieves full diversity with
a linear receiver. It will be shown in this paper that symbol rates
for STBC achieving full diversity with the PIC group decoding
of group size is upper bounded by . Thus, the intermediate
criterion proposed in this paper provides the possibility for
codes of rates between and that achieve full diversity
with the PIC group decoding. This therefore provides a com-
plexity-performance-rate tradeoff. Design examples of STBC
achieving full diversity with the PIC group decoding are finally
presented. Our simulations show that these codes can perform
better than the Alamouti code for two transmit antennas and the
QOSTBC with the optimal rotation for four transmit antennas.
Note that a similar algorithm and an STBC design have been
proposed lately in [30] but they do not achieve full diversity.

This paper is organized as follows. In Section II, we describe
the system model; in Section III, we propose the PIC group
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decoding algorithm, its connection with ZF decoding algorithm
and the corresponding successive interference cancellation
(SIC) aided decoding algorithm or PIC-SIC; In Section IV,
we systematically study the diversity property of the codes
decoded with the PIC group decoding and the PIC-SIC group
decoding, and derive the design criterion. In Section V, we
propose AO group decoding. In Section VI, we present two
design examples. In Section VII, we present some simulation
results.

Some notations in this paper are defined as follows:
• : complex number field;
• : real number field;
• : a signal constellation;
• tr: trace of a matrix;
• Bold faced upper-case letters, such as , represent ma-

trices;
• Bold faced lower-case letters, such as , represent column

vectors;
• Superscripts : transpose, complex conjugate trans-

pose, complex conjugate, respectively;
• : -norm of a vector or a matrix;
• : Frobenius norm of a matrix;
• : .

II. SYSTEM MODEL

We consider a quasi-static Rayleigh block-fading channel
with coherence time . Assume there are transmit and
receive antennas. The channel model is written as follows:

(1)

where is the received signal matrix that is
received in time slots, is the channel
matrix, the entries of are assumed independent and identi-
cally distributed (i.i.d.) with distribution
is the codeword matrix that is normalized so that its average en-
ergy is , i.e.

is the additive white Gaussian noise matrix with
i.i.d. entries is the average signal-to-
noise ratio (SNR) at the receiver.

In this paper, we only consider linear dispersion STBC, which
covers most existing STBCs, [15]:

(2)

where , are the embedded informa-
tion symbols, is a signal constellation,

, are constant matrices called dispersion matrices.
We use to denote the codebook, i.e.

(3)
For convenience, we also use to denote the coding scheme
that is associated with the codebook.

In order to apply a linear operation, the system model in (1)
needs to be rewritten as

(4)

where is the received signal vector,
is an equivalent channel matrix [15], [16], [36];

is the information symbol vector;
is the additive white

Gaussian noise, . For many (if not all) existing
linear dispersion (or linear lattice) STBCs, such as those in
[1], [2], [9]–[11], [16], [17], [21], [31], [33], [36], [38], the
channel model can be rewritten in the form of (4). One simple
observation is that for a linear dispersion STBC that is defined
as

(5)

which is a special case of the linear dispersion STBC in (2),
the channel model can always be written in the form of (4).
All the codes in [2], [9]–[11], [16], [21], [31], [33] fall into
this category. Another case in which the channel model can be
rewritten in the form of (4) is that each column of contains
linear combinations of either only or
only . Examples of such codes include
the Alamouti code [1] and QOSTBCs [17], [38] and OAC [36].
For instance, the channel model of the Alamouti code with one
receive antenna is

By taking unitary linear operations and conjugations, which
do not change the probabilistic property of the white Gaussian
noise, we can extract the embedded information symbol vector
and rewrite the above channel model as follows,

(6)
It is shown in [36] that for any OSTBC (a column may include
both and simultaneously), its equivalent channel (4) ex-
ists. In the case when there are multiple receive antennas, an
equivalent channel matrix can be derived by noting that at each
receiver antenna, the received signal model is of the same form
as in (6). For example, if there are two receive antennas for the
Alamouti code, then an equivalent channel model is

It is not hard to see that the original channel and an equivalent
channel satisfy the following property,

(7)

where and are vectors of information sym-
bols embedded in and , respectively.
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For a linear dispersion code with a rectangular signal constel-
lation , which can be viewed as two PAM constellations, if it
does not have its equivalent channel model in (4), the channel
model can always be written in the following form [6], [15],

(8)

where is the received signal vector,
is the equivalent channel matrix,

is the real white Gaussian noise vector, .
The entries of

can be viewed as drawn from a PAM constellation. Hence there
is no essential difference between the models in (4) and (8) ex-
cept that the noise in (8) is real.

Note that for both channel models in (4) and (8), the entries
of the equivalent channel matrix are linear combinations of

and . If we use
the notation , where
denotes the matrix to vector conversion, then both (4) and (8)
are special cases of the following model,

(9)

where is an equivalent channel matrix, which
is a function of

is the information symbol vector,
is the additive white Gaussian noise vector,

, and . For convenience, we always assume
that noise is complex Gaussian, while for real Gaussian , the
derivation is exactly the same. From the following discussions,
we shall see later that not only the channel model in (9) con-
tains the equivalent channel model derived from transforming
the original channel model of linear dispersion STBC in (1), but
also it is a resulted form after each PIC operation.

III. PIC GROUP DECODING ALGORITHM

In this section, we present a PIC group decoding algorithm
that is, as we mentioned before, an intermediate decoding algo-
rithm between the ML decoding algorithm and the ZF decoding
algorithm, and has the ML decoding and the ZF decoding as
two special cases. In the first subsection, we describe the PIC
group decoding algorithm; in the second subsection, we dis-
cuss its connection with the ZF decoding algorithm; in the third
subsection, we discuss the successive interference cancellation
aided PIC group decoding algorithm (PIC-SIC); some examples
are given in the last part of this section to illustrate the PIC group
decoding algorithm.

A. Partial Interference Cancellation Group Decoding
Algorithm

We now present a detailed description of the PIC group de-
coding algorithm. As mentioned in Introduction, a similar algo-
rithm has been proposed by Dai, Sfar, and Letaief in [25] for
layered space–time block codes. All the following discussions

are based on the equivalent channel model in (9). First let us in-
troduce some notations. Define index set as

where is the number of information symbols in . First we
partition into groups: . Each index subset

can be written as follows,

where is the cardinality of the subset . We call
a grouping scheme, where, for simplicity,

we still use to denote a grouping scheme. For such a grouping
scheme, the following two equations must hold,

and

Define as the information symbol vector that contains the
symbols with indices in , i.e.,

Let the column vectors of an equivalent channel matrix be
that have size . Then, we can similarly

define as

(10)

With these notations, (9) can be written as

(11)

Suppose we want to decode the th symbol group . Note
that in the ZF decoding algorithm, to decode the th symbol, the
interferences from the other symbols are completely eliminated
by a linear filter (the th row of the pseudo-inverse matrix of
the equivalent channel). The same idea can be applied here. We
want to find a matrix (linear filter) such that by multiplying

by to the left (linear filtering), all the interferences from
the other symbol groups can be eliminated. Such a matrix
can be found as follows. Define as the projection
matrix that projects a vector in to the subspace that is
defined as

(12)

Let denote the matrix that is obtained by
removing the column vectors in with indices in , i.e.

(13)

Then, the projection matrix can be expressed in terms of
as follows:

(14)

where we assume is full column rank. If is not full
column rank, then we need to pick a maximal linear independent
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vector group from and in this case a projection matrix can
be found as well. Define as

(15)

then is the projection matrix that projects a vector in
onto the orthogonal complementary subspace . Since the
projection of any vector in onto is a zero vector, we
have

(16)

which is due to . Define . By applying
(16), we get

(17)

From (17), we can see that by passing the received signal vector
through the linear filter , the interferences from the other

symbol groups are completely canceled and the output only
contains the components of the symbol group . There may
exist other matrices that can remove the components of the inter-
ference symbol groups in . The following lemma shows that the
linear filter matrix defined above is the best choice among
all the ZF filters.

Lemma 1: Consider the channel model in (11) and let be
the SNR of the system. Suppose we want to detect the symbol
group . Let be the matrix set that contains all the ma-
trices that can cancel the interferences from

, i.e.,

(18)

The block error probability of the system

(19)

from ML decoding is denoted as . Then for any
given , we always have

where is defined as in (15).
A proof of this lemma is given in Appendix A. Note that the

above optimality is among all the filters in (18) and the MMSE
based filter discussed later does not belong to (18) although it
may perform better as we shall discuss it later. Also note that
since in our PIC group decoding, all the symbols in a group are
decoded together, using highest SNR as the optimality may not
be proper. This is the reason why in the above lemma, block
error probability is used as the criterion for the optimality of a
filter. Equation (17) can be viewed as a channel model in which

is the transmitted signal vector and is the received
signal vector. As we mentioned before in Section II, this channel

model is derived from the interference cancellation procedure,
and fits into the general channel model in (9). Note that in (17),
the noise term is no longer a white Gaussian noise. De-
spite the presence of this non-white Gaussian noise term, the
following lemma shows that the minimum distance decision is
still the ML decision in this case.

Lemma 2: Consider the channel model

(20)

where is the channel matrix that is known at the
receiver, is the information symbol vector,

is the white Gaussian noise vector and is
a projection matrix that projects a vector in to a subspace

. Assume the column vectors of belong to . Then,
the decision made by

is the ML decision.
An intuitive explanation for the above lemma is that is a de-

generated white Gaussian noise, which can be a white Gaussian
noise by removing some extra dimensions. Its detailed proof is
given in Appendix B. According to Lemma 2, the optimal de-
tection of from is made by

(21)

which is the PIC group decoding algorithm we propose in this
paper. The complexity of the ML decoding of the dimension-re-
duced system in (17) is obviously lower than that of the original
system in (11). The PIC group decoding algorithm (21) can be
viewed as a decomposition of the original high-dimensional de-
coding problem with high complexity into low-dimensional de-
coding problem with relatively low decoding complexity. In the
extreme case when all the symbols are grouped together, i.e., the
problem is not decomposed at all, the PIC group decoding is the
same as the ML decoding. In another extreme case when each
symbol forms a group, i.e., the problem is completely decom-
posed, the PIC group decoding is equivalent to the ZF decoding.
The detailed description of the connection between these two is
given in the following subsection.

B. Connection Between PIC Group Decoding and ZF
Decoding

In this subsection we discuss the connection between the PIC
group decoding algorithm and the ZF decoding algorithm. In
the case when the decoding problem is completely decomposed,
i.e., each symbol group contains only one symbol, the PIC group
decoding algorithm becomes a symbol-by-symbol decoding al-
gorithm. It is not hard to check that, in this case, the PIC group
decoding is equivalent to ZF decoding [14].

One negative effect of the interference cancellation procedure
is that it may reduce the power gain of the symbol . Before
the interference cancellation, the power gain of is ,
while after the interference cancellation, the power gain of
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becomes , where . Since is a projection
matrix, we always have

The equality holds if and only if is orthogonal to the space
spanned by . In the case of
OSTBC, the columns of the equivalent channel are orthogonal to
each other, and therefore, there is no power gain loss during the
interference cancellation. Hence the performance of the ZF re-
ceiver is the same as the ML receiver for OSTBC. For all non-or-
thogonal STBC, an interference cancellation algorithm usually
causes a power gain loss and therefore performance loss com-
pared to the ML decoding.

C. PIC-SIC Group Decoding Algorithm

Notice that in the ZF decoding algorithm, we may use suc-
cessive interference cancellation (SIC) strategy to aid the de-
coding process. We call the SIC-aided ZF decoding algorithm
ZF-SIC decoding algorithm [44], [48]. The basic idea of SIC is
simple: remove the already-decoded symbols from the received
signals to reduce the interferences. When the SNR is relatively
high, the symbol error rate (SER) of the already-decoded sym-
bols is low and there is a considerable SER performance gain
by using the SIC strategy. The same strategy can also be used
to aid the PIC group decoding process to improve the SER per-
formance. We call the SIC-aided PIC group decoding algorithm
PIC-SIC group decoding algorithm. In the PIC group decoding
algorithm, the decoding order has no effect on the SER per-
formance. For the PIC-SIC group decoding algorithm, different
decoding orders will result in different SER performances. We
can obtain a better performance by choosing a proper decoding
order. The decoding order can be chosen so that the dimen-
sion-reduced system at the current decoding stage has the best
upper-bound of pair-wise error probability performance. At the
beginning, we have symbol groups to decode, and we have
computed . Let and be
two different symbol vectors and . For the

th dimension-reduced system, the pair-wise error probability
is

Let be the SVD de-
composition of , then we have

where denotes the minimum among the absolute
values of the entries of the vector . The above inequality

shows that among all the dimension-reduced systems, the one
with the largest has the smallest upper-bound of
pair-wise error probability. Although this upper-bound may not
be tight, it provides an intuitive explanation: the dimension-
reduced system with the largest has the largest
signal-to-noise ratio (we consider as the signal, and
disregard the interference within the symbol group) and in the
case when there is one symbol in each group, it is the same as
the BLAST ordered SIC algorithm. Note that, due to the reason
that the above pair-wise error probability upper-bound may not
be tight for a general grouping scheme, the ordering using the
signal-to-noise ratio criterion may not be optimal.

Suppose the ordered symbol sets are as follows,

(22)

The ordered PIC-SIC group decoding algorithm is as follows.
1) Decode the first set of symbols using the PIC group

decoding algorithm (21);
2) Let , where is defined as in (11);
3) Remove the components of the already-detected symbol

set from (11)

(23)

4) Decode in (23) using the PIC group decoding algo-
rithm;

5) If , then set , go to Step 3); otherwise
stop the algorithm.

Remark 1: For the PIC group decoding algorithm, the equiv-
alent channel matrix must satisfy the condition

, otherwise , i.e., there is no information left
in about . This requirement is generally weaker than that
of the ZF decoding, which requires that . For example,
consider an uncoded MIMO system with 5 transmit antennas
and 4 receive antennas. In this case, the ZF receiver can not de-
code the received signals, while the PIC group decoding with
the grouping scheme can do
the decoding.

Remark 2: For the PIC-SIC group decoding algorithm, we re-
quire that at each decoding stage, . This requirement
is even weaker than that of the PIC group decoding. Since we
remove the interferences from the already-decoded symbols, the
subspace shrinks each time when we finish decoding one
symbol group. Consider the uncoded MIMO system in Remark
1. Let be the grouping
scheme. Then it is not possible to decode the second group
symbol with the PIC group decoding algorithm, because after
we remove the interferences from , there is nothing
left due to the lack of dimensionality. However, we
can decode with the PIC-SIC group decoding.

D. Examples

Next we give some examples to illustrate the PIC group de-
coding algorithm.
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Example 1: Consider the Alamouti code with one receive
antenna. The equivalent channel matrix can be written as

where

The grouping scheme is . By a
direct computation, we get the projection matrix as follows:

Then, the optimal detection of is

which is the same as the optimal detection formula derived in
[1]. Equation (24) shows the detailed derivation of this detection
formula

(24)

Similarly, the optimal detection for is

Example 2: Consider the quasi-orthogonal STBC proposed
in [43]. The code has the following form:

Suppose we use one receive antenna. The equivalent channel
matrix can be written as

where

Let and . Then, the optimal detection
of is

(25)

It is easy to verify that

so . This fact implies that . The decoding
rule in (25) can be simplified as

The decoding rule of can be similarly derived

From the above equations, we can see that if the groups are
orthogonal to each other, then the decomposition of the system
is easy: just to pick up the column vectors corresponding to a
group in and get a new equivalent channel matrix, then
use this new channel matrix and the received signal to do the
ML decoding. In this case, no linear filtering is needed in the
PIC group decoding and the ML decoding and the PIC group
decoding are the same.
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Example 3: Consider the overlapped Alamouti code
in [36]

An equivalent channel matrix can be written as

Let the grouping scheme be

It is easy to verify that

Similar to Example 2, the system can be decomposed into
two systems without performance degrading. For general over-
lapped Alamouti codes, if we choose the grouping scheme as

for even or

for odd , then the system can always be decomposed into two
systems without performance degrading. This property is the
reason why overlapped Alamouti codes perform better than
Toeplitz codes, since the interference comes from only half of
the symbols.

IV. FULL DIVERSITY CRITERION FOR PIC AND PIC-SIC
GROUP DECODINGS

In this section, we propose a design criterion for linear dis-
persion STBC to achieve full diversity with the PIC and the
PIC-SIC group decodings.

A. Notations and Definitions

For convenience, let us first introduce some notations and def-
initions. Let be a subset of the complex number field , we
define the difference set as follows,

We also introduce the following definition, which can be viewed
as an extension of the conventional linear independence con-
cept.

Definition 1: Let be a subset of and
, be complex vectors.

Vectors are called linearly dependent over
if there exist so that

(26)

where are not all zero; otherwise, vectors
are called linear independent over .

For diversity order, the following definition is known.

Definition 2: Consider a communication system as described
in (9). The system is said to achieve diversity order if the
symbol error rate decays as the inverse of the th
power of , i.e.

where is a constant independent of .
The conventional concepts of linear independence and or-

thogonality are defined among vectors. Next, we define them
among vector groups.

Definition 3: Let be
a set of vectors. Vector is said to be independent of if for
any

Vector is said to be orthogonal to if
.

Definition 4: Let be groups
of vectors. Vector group is said to be independent of

if every vector in is independent of
. Vector group is said to be orthogonal to

if every vector in is orthogonal to
. Vector groups are said to be lin-

early independent if for is independent of
the remaining vector groups .
Vector groups are said to be orthogonal if for

is orthogonal to the remaining vector groups
.

In the remaining of this paper, for convenience, a matrix no-
tation such as is also used to denote the vector group that is
composed of all the column vectors of .

B. Design Criterion of STBC With the PIC Group Decoding

In this subsection, we derive a design criterion of codes de-
coded with the PIC group decoding. First we introduce the fol-
lowing lemma, which gives a sufficient condition to achieve full
diversity for the general channel model in (9) with the ML re-
ceiver.

Lemma 3: Consider a communication system modeled as in
(9). is a signal constellation used in the system. If the channel
matrix satisfies the following inequality,
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for some positive constant , where is any
subset of and is the total number
of the channel coefficients, then the system achieves diversity
order with the ML receiver.

The proof of this lemma is simply a matter of computation
of some integrals, which is quite similar to those derivations in
[13], [40]. A detailed proof is given in Appendix C. To under-
stand the meaning of Lemma 3, let us first define the power gain
for the channel model in (9).

Definition 5: Consider the communication system modeled
as in (9). is a signal constellation used in the system. The
power gain of the system is defined as

If the power gain satisfies the following inequality:

for some positive constant , where is any
subset of and is as before, then we say that
the system achieves power gain order .

From Lemma 3, one can see that the diversity order is ensured
by the above power gain order and it can be further interpreted
as follows. Suppose that there are two different symbol vectors

. The distance between the two symbol vectors is
. Assume there is no noise in the channel,

i.e., , then after the symbol vectors pass through the
channel, we get and . Now the distance between
received signals and is , which is
greater than , i.e., the channel “expanded” the distance
between and by a factor of at least . The expansion
factor determines the diversity order that can be achieved.
Lemma 3 tells us that if the expansion factor of the symbol
vector is greater than for some , then
diversity order can be achieved. Note that the power gain order
can be viewed as a count of the number of path gains summed
up in . We can rephrase Lemma 3 simply as: if the power
gain is a sum of path gains, then the diversity order of the
communication system in (9) is .

Next, we present the main result of this paper, which char-
acterizes the power gain order of a linear dispersion STBC de-
coded with the PIC and the PIC-SIC group decoding algorithms.

Theorem 1 (Main Theorem): Let be a linear dispersion
STBC. There are transmit and receive antennas. The
channel matrix is . The received signal is de-
coded using the PIC group decoding with a grouping scheme

. The equivalent channel is , where
. Then, each

of the following dimension-reduced systems (i.e., the STBC
with the PIC group decoding)

(27)

has power gain order if and only if the following two
conditions are satisfied:

• for any two different codewords
has the full rank property, i.e., the code achieves full
diversity with the ML receiver;

• defined in (10) from are
linearly independent vector groups as long as .

When the received signals are decoded using the PIC-SIC
group decoding with the ordering (22), each dimension-reduced
system derived during the decoding process (i.e., the STBC with
the PIC-SIC group decoding) has power gain order if and
only if

• for any two different codewords
has the full rank property, i.e., the code achieves full
diversity with the ML receiver;

• at each decoding stage, , which corresponds to
the current to-be decoded symbol group , and

are linearly independent vector
groups as long as .

With the above theorem and the preceding discussions on
the relationship between diversity order and power gain order,
the two conditions in the above theorem provide a criterion for
a linear dispersion code to achieve full diversity with the PIC
group decoding.

Let us see an example to use the above main theorem. Con-
sider the rotated quasi-orthogonal scheme proposed in [38] for a
QAM signal constellation, where the code has the following
structure:

(28)

Suppose we use one receive antenna, the column vectors of the
equivalent channel are as follows:

(29)

It has also been proved in [38] that this code achieves full diver-
sity with the ML receiver, hence the first condition is satisfied.
Let the grouping scheme be , then

and are linearly independent. Thus, both conditions
are satisfied. Note that the two groups are actually orthogonal,
which means that every vector in is orthogonal to and
vice versa. Hence after the interference cancellation, there is no
power gain loss. In this case, the PIC group decoding is exactly
the same as the ML receiver.

In the above example, we showed that when there is only one
receive antenna, the group independence condition is satisfied.
It is easy to see that when there are multiple receive antennas, the
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group independence condition is also satisfied. This is because
the equivalent channel matrix for multiple receive antennas is
a stacked version of the equivalent channel matrices of all in-
dividual receive antennas and therefore has the same structure
as the equivalent channel matrix for a single receive antenna. In
general, we have the following corollary.

Corollary 1: Consider the channel described in Theorem 1
with receive antennas and a linear dispersion STBC . Then,
for the equivalent channel matrices of
are linearly independent vector groups for when
if and only if are linearly independent
vector groups for when .

The proof is straightforward and omitted here. According to
this corollary, the full diversity conditions given in the main
theorem only need to be verified for one receive antenna case

, which is similar to what is obtained for linear receivers
in [36].

C. Proof of the Main Theorem

In order to prove the main theorem, let us first introduce the
following lemma.

Lemma 4: Consider a communication system modeled as in
(9). is a signal constellation used in the system. If the equiva-
lent channel matrix satisfies the following two conditions:

• scaling invariance:

(30)

• the column vectors of are linearly independent over
for any ;

then the system has power gain order and thus achieves diver-
sity order with the ML receiver.

A proof is given in Appendix D. Note that if each entry
of is a linear combination of and

, then the scaling invariance (30) always holds.
So we have the following corollary.

Corollary 2: Consider a communication system mod-
eled as in (9). Each entry of is a linear combi-
nation of and . is a
signal constellation used in the system. If the column vec-
tors of are linearly independent over for any

, then the system has power
gain order thus achieves diversity order with the ML receiver.

One may wonder for linear dispersion STBC, whether the
above condition is an equivalent condition of the full rank cri-
terion. The following theorem gives a positive answer to this
question.

Theorem 2: Let be a linear dispersion STBC. Let be a
signal constellation for the coding scheme . Let be the
equivalent channel of and and . Then has the
full rank property if and only if the column vectors of are
linearly independent over .

Its proof is in Appendix E.

Now we are ready to prove the main theorem. The main idea
is to prove that the dimension-reduced systems in (27) satisfy
the two conditions in Lemma 4.

1) Sufficiency Part: First we prove that the two conditions in
the main theorem are sufficient conditions for codes to achieve
the full power gain with the PIC group decoding algorithm. Ac-
cording to Theorem 2, the first condition is equivalent to that
the column vectors of are linearly independent over .
This further implies that the column vectors of are linearly
independent over , i.e., for any

, not all zero, we have

(31)

Since are linearly independent, the
column vectors , in do not
belong1 to the vector space defined in (12). From (31) and
the fact that , we have

By applying the above inequality, we get the following in-
equality:

i.e., the column vectors of are also linearly independent
over .

Now we prove that satisfies the scaling invariance
(30) in Lemma 4. Since both and are determined by
the parameter vector , for a clear exposition, we temporarily
use to denote and use to denote . Then
we have

where the second equality holds since the entries in
are all linear combinations of and

, and the last equality holds since

1Here the linear independence over the whole complex field of the vector sets
is needed/used and the linear independence over�� is not sufficient.
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which is a direct result from the definition of in (14) and
the fact that .

Thus, the two conditions in Lemma 4 are all satisfied and
therefore for any , the dimension-reduced system

has power gain order .
Now let us consider the case when the received signals are

decoded with the PIC-SIC group decoding. We use the conven-
tional assumption that the previous decoded symbols are cor-
rect. Thus, there is no error introduced when we use these de-
coded symbols to reduce the interferences from the received sig-
nals. Under this assumption, the PIC-SIC group decoding algo-
rithm is always better than the PIC group decoding algorithm.
Thus, the two conditions are sufficient for the PIC-SIC case.

2) Necessity Part: We next prove that these two
conditions are also necessary conditions. If and

are not lin-
early independent, i.e., there exists a column vector in
such that this vector belongs to the subspace . Without loss
of generality, we assume this vector is . In this case, we
have

Take , where
, then we have , which contradicts with

the condition that the systems in (27) have power gain order
. Thus, we must have that is linearly independent

of . Since is an arbitrary integer number in
are linearly independent. This proves that

the second condition in the main theorem must hold.
Let and , be the

corresponding subvectors of to the grouping scheme. Thus,
there is at least one . Without loss of generality, we
assume . Then

Since

and

we have

Using Theorem 2, the first condition in the theorem is proved.
In the case that the received signals are decoded with

the PIC-SIC group decoding, we assume the decoding
order is . Similar to the above argu-
ment, we must have that is linearly independent
of is linearly indepen-
dent of is linearly inde-
pendent of , etc. So we have that

are linearly independent. The proof of
the first condition to be necessary is the same as the PIC case.
This completes our proof of the main theorem.

D. Connection With the Full Rank Criterion and the
Shang–Xia Criterion

In the case when there is only one group, then the PIC group
decoding algorithm becomes the ML decoding. In this case the
second condition can always be satisfied. Thus, our proposed
design criterion in Theorem 1 is equivalent to that of [13] and
[40].

We now consider the symbol-by-symbol grouping case of the
PIC group decoding algorithm, which is equivalent to the ZF
decoding algorithm. In this case when each group contains only
one symbol, the second condition can be rephrased as: is
a column full rank matrix for .

Corollary 3: In the case of symbol-by-symbol PIC group de-
coding, i.e., each group only contains one symbol, the design
criterion in the main theorem is equivalent to the Shang–Xia
criterion proposed in [36], i.e.

where is a constant independent of the channel .
Proof: Since we have that is full column rank for

, the following inequality must hold,

Let us restrict the parameter to the unit sphere, i.e., .
Note that the unit sphere is a compact set, is
a continuous function of . There must exist a positive constant

such at
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as what is used in [51]. Generally, for , we have
that

(32)

Since the entries of are linear combinations of
and , inequality (32) can

be rewritten as

(33)

Thus

(34)

which is the Shang-Xia condition given in [36]. This proves that
the criterion in Theorem 1 implies the Shang–Xia criterion in
the case when all symbols are in separate groups, i.e., the ZF
receiver.

Since the criterion in Theorem 1 is necessary and sufficient, it
can be derived from the Shang-Xia criterion too. In other words,
the criterion in Theorem 1 is equivalent to the Shang–Xia crite-
rion in the case when the ZF receiver is used.

E. Some Discussions

From Theorem 1 and Theorem 2, it is interesting to see that
for a linear dispersion STBC (complex conjugates of symbols
may be embedded) to achieve full diversity: i) the weakest crite-
rion is that the column vectors of the equivalent channel matrix
are linearly independent over a difference set of a signal con-
stellation, , when the ML receiver is used, which is equiv-
alent to the code full rank criterion known in the literature; ii)
the strongest criterion (in the sense of the simplest complex-
symbol-wise decoding) is that the column vectors of the equiv-
alent channel matrix are linearly independent over the whole
complex field when the ZF receiver is used, which is, in fact,
weaker than the orthogonality in the OSTBC case that is not
necessary for achieving full diversity with a linear receiver. In
the case of the weakest criterion but the optimal and the most
complicated receiver, i.e., ML receiver, the symbol rate can be

for transmit antennas. In the case of the strongest crite-
rion but the simplest receiver, i.e., linear receiver, the symbol
rate can not be above 1 [36]. Similarly, we have the following
corollary, which includes Shang–Xia’s rate upper bound result
as a special case.

Corollary 4: Let be a linear dispersion STBC. At the re-
ceiver the PIC group decoding is used with a grouping scheme

. Let each group have symbols. If sat-
isfies the full diversity conditions for the PIC group decoding
in Theorem 1, then the maximum symbol rate of is upper
bounded by .

The proof is straightforward. From Corollary 1, we only need
to consider the one receiver antenna case, i.e., . Symbol
rate . We also have , where
and are the vector space dimension of the equivalent channel
column vectors and the time slots used, respectively, as defined
in Section II. In vector space , there are at most vector

groups that can be independent from each other. Thus, .
Hence . As one can see that when

, i.e., each group has only one element, the symbol rate
is upper bounded by , which coincides with the result obtained
for linear receivers in [36]. A more tedious rate upper bound can
be similarly obtained when the groups

, do not have the same number of elements in the grouping
scheme, which is omitted here.

Note that the rates of OSTBC approaches as the number
of transmit antennas goes to infinity and are upper bounded by

for more than two transmit antennas [47]. By increasing the
decoding complexity and improving a receiver as increasing the
group sizes in our proposed PIC group decoding, the criterion to
achieve full diversity becomes weaker. The criterion for the PIC
group decoding serves as a bridge between the strongest and the
weakest criteria for the ZF and the ML receivers, respectively,
and the corresponding symbol rates are expected between 1 and

. The examples to be presented later in Section VI are some
simple examples to show this rate-complexity tradeoff.

V. ASYMPTOTIC OPTIMAL GROUP DECODING

From the above discussions, it is clear that the PIC group de-
coding is an intermediate decoding algorithm between the ML
and the ZF decoding algorithms. In practice, the MMSE de-
coding algorithm has better performance than the ZF decoding
algorithm. One natural question is: is there an intermediate de-
coding algorithm between the ML decoding and the MMSE de-
coding algorithms? The answer is YES. In this section, we pro-
pose such an intermediate algorithm called asymptotic optimal
(AO) group decoding algorithm.

A. Asymptotic Optimal Group Decoding Algorithm

Consider the channel model in (9). Suppose the signals are
decoded using a group decoding algorithm, and the grouping
scheme is . Assume the symbols
are taken from a signal constellation according to the uniform
distribution. The optimal way to decode from the received
signals is to find such that

To derive the decoding rule, let us first write (11) in the fol-
lowing form:

(35)

Note that except for the symbol group , all the other symbols
can be viewed as noises that interfere with . Define the noise
term as

(36)

Then, we can write (35) as

(37)
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The optimal decoding of from the received signal vector
depends on the distribution of the noise , which is dif-

ficult to analyze in general. According to Lyapunov’s central
limit theorem, converges to a Gaussian distribution as the
number of the terms in the summation goes to infinity. To sim-
plify the discussion, we assume that the noise is Gaussian
distributed. Similar assumption has been used in [26]. We call
the optimal result derived under this assumption asymptotically
optimal. Under the above assumption, the probability density
function can be explicitly expressed and the optimal
decoding rule can be easily derived. First let us compute the co-
variance matrix of the noise vector

Hence the probability density function is as follows:

For the above equation, we can see that maximizing
is equivalent to minimizing

where is the square root of the matrix . So the asymp-
totic optimal decoding rule is

(38)

When , we only have one
symbol group , which contains all the symbols. The variance
of the noise is . In this case, the above decoding rule
can be simplified as

which is the ML decoding.
Similar to the PIC case, we can use the SIC technique to aid

the AO group decoding process, the resulting decoding algo-
rithm is called AO-SIC group decoding. The decoding order can
be simply determined according to the maximum SINR crite-
rion, which is similar to the PIC-SIC case.

B. Connection With the MMSE Decoding

Now let us consider the symbol-by-symbol case of the AO
group decoding algorithm. In this case

In the following discussion, we use the simplified notation con-
vention introduced in Section III-B. Thus, we use instead of

to denote

So the decoding rule is

The term is the unbiased estimator of . In this

case, the AO group decoding algorithm is equivalent to the unbi-
ased MMSE decoding [44]. By a proper scaling, we can get the

MMSE estimator from [44]. Although the MMSE

estimator is optimal with respect to the mean squared error, it
may not be optimal with respect to the symbol error probability
and the unbiased MMSE may have a better performance [3].

C. Full Diversity Design Criterion for AO Group Decoding

Since the AO group decoding is asymptotically optimal, the
performance of the AO group decoding outperforms the PIC
group decoding. So the full diversity criterion for codes with
the PIC group decoding can also be applied to the AO group
decoding.

VI. DESIGN EXAMPLES

In this section, we present two design examples that achieve
the full diversity conditions with pair-by-pair PIC group de-
coding.

A. Example 1

Consider a code for two transmit antennas with three time
slots of the following form:

(39)

where . The symbol rate of this
code is .

In the following, we show that this code can be decoded with
pair-by-pair PIC group decoding.

Theorem 3: Let be a QAM signal constellation. Let
be a grouping scheme for the PIC group

decoding algorithm. If , then code in (39) achieves
full diversity using the PIC group decoding algorithm with the
grouping scheme .

Proof: First, we prove that the code given in (39) has full
rank property for any . In order to prove this, we only
need to prove that for any , which satis-
fies that not all equal to zero, is full rank. Since ,
equation holds for if and only if
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. Similarly, equation holds for
if and only if . Next, we discuss two

different cases.
i) When and are not all equal to zero and and

not all equal to zero, then .
In this case, is full rank;

ii) When and are not all equal to zero but ,
then

is full rank; similarly, in the case when and are not
all equal to zero but is full rank too.

So the code in (39) has full rank property.
Next, we prove that the code satisfies the second condition

in the main theorem. Suppose there is only one receive antenna,
the equivalent channel can be written as

obviously and can not be expressed as a linear combi-
nation of , and vice versa, when . Thus,
and are linearly independent, when . According
to the main theorem, the code achieves full diversity with the
PIC decoding algorithm provided that the grouping scheme is

.

B. Example 2

The code shown in (40) at the bottom of the page, is designed
for four transmit antennas with six time slots. The parameters

and are defined as .
Clearly, its rate is also . It can be proved that this code satis-
fies the two conditions given in the main theorem if the grouping
scheme is .

Theorem 4: Let be a QAM signal constellation. Let
be a grouping scheme for

the PIC group algorithm. If , then the code in (40)

achieves full diversity using the PIC group decoding algorithm
with the grouping scheme .

Proof: The proof is similar to the 2-transmit-antenna case.
First we prove that this code satisfies the full rank criterion. This
is easy to verify just by looking into the code case by case as the
previous proof.

Next we prove that the second condition in the main theorem
also holds. In the case when there is only one receive antenna,
the equivalent channel matrix is shown in (41) at the bottom
of the page. Let . We can see that is orthogonal
to . Vector group is also linearly independent of

. Thus, can not be expressed by any linear
combination of the rest column vectors in . A similar discus-
sion can be applied to the other vector groups. Therefore, the
second condition in the main theorem also holds. This completes
the proof.

VII. SIMULATION

In this section, we present some simulation results. In all the
simulations, the channel is assumed quasi-static Rayleigh flat
fading. First we choose the rotation angle for the codes in (39)
and (40) by numerically estimating the coding gains of the codes
for a series of values of . Here the coding gain is defined as

(42)

where is the diversity order. We use Monte Carlo simula-
tions to estimate the coding gains for different ’s. As we can
see from Fig. 1, the peak value of is reached at two points:

and . Interestingly enough, these two values
of are very close to and , which
maximize the coding gain of the diagonal code [44]. An
intuitive explanation is that the code in (39) can be viewed as
two diagonal codes stacked together and even after the interfer-
ence cancellation, and
still maximize the coding gain.

In Figs. 2 and 3, we compare our new code in (39) to the
Alamouti code and Golden code [2] at the bandwidth efficien-
cies of 4 and 8 bits/s/Hz, respectively, with two transmit and
three receive antennas. For both new code and Golden code, the

(40)

(41)
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Fig. 1. Coding gain estimation for � � ��� �.

group size of the group decoders are all set to . Both Figs. 2 and
3 show that Golden code with the ML decoder performs the best.
Also we can see that Golden code does not achieve full diversity
with the PIC group decoding or ZF decoding. At the bandwidth
efficiency of 4 bits/s/Hz, Alamouti code outperforms our new
code, while at the high bandwidth efficiency of 8 bits/s/Hz, its
performance degrades significantly.

For the code in (40) for four transmit antennas, we
compare it with the QOSTBC with the optimal rotation [38]
and Nguyen–Choi code [30]. The number of receive antennas
is also three for all these codes. Our new coding scheme uses a
64-QAM constellation and the QOSTBC uses a 256-QAM con-
stellation so that the bit rates for both schemes are 8 bits/s/Hz.
For Nguyen-Choi code, the constellation is 32-QAM (it is ob-
tained by deleting the four corner points from the square
QAM as what is commonly used) so that the bit rate is 7.5
bits/s/Hz. We use the PIC and PIC-SIC group decodings for the
new code, respectively, and the ML decoding for the QOSTBC,
and the PIC-SIC group decoding for Nguyen–Choi code. In
this case, all these decodings are symbol-pair-wise based. The
simulation results show that our new code with the PIC group
decoding and the PIC-SIC group decoding is 2.3 dB and 2.8
dB better than the QOSTBC, respectively. From Fig. 4, one
can see that our new code does achieve full diversity as com-
pared with the full diversity QOSTBC and the diversity gain of
Nguyen–Choi code is smaller than that of our new code.

VIII. CONCLUSION

In this paper, we first proposed a PIC group decoding algo-
rithm and an AO group decoding algorithm that fill the gaps be-
tween the ML decoding algorithm and the symbol-by-symbol
linear decoding algorithms namely the ZF and the MMSE de-
coding algorithms, respectively. We then derived a design cri-

terion for codes to achieve full diversity when they are decoded
with the PIC and AO group decoding algorithms. The new de-
rived criterion is a group independence criterion for an equiv-
alent channel matrix and fills the gap between the loosest full
rank criterion for the ML receiver and the strongest linear in-
dependence criterion of the equivalent channel matrix for linear
receivers. Note that the full rank criterion is equivalent to the
loosest linear independence for the column vectors of the equiv-
alent channel matrix over a difference set of a finite signal con-
stellation while the strongest linear independence criterion is
the linear independence for the column vectors of the equiva-
lent channel matrix over the whole complex field. The relaxed
condition in the new design criterion for STBC to achieve full
diversity with the PIC group decoding provides an STBC rate
bridge between and , where rate is the full symbol rate
for the ML receiver and rate is the symbol rate upper bound for
linear receivers. Thus, it provides a tradeoff between decoding
complexity and symbol rate when full diversity is required. We
finally presented two design examples for two and four transmit
antennas of rate that satisfy the new design criterion and
thus they achieve full diversity with the PIC group decoding of
group size , i.e., complex-pair-wise decoding.

APPENDIX A
PROOF OF LEMMA 1

Proof: Writing defined in (15) and an arbitrary matrix
in the following forms:

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on January 17, 2010 at 15:54 from IEEE Xplore.  Restrictions apply. 



GUO AND XIA: ON FULL DIVERSITY SPACE–TIME BLOCK CODES 4381

Fig. 2. Performance comparison of several coding schemes, bandwidth efficiency is 4 bits/s/Hz, two transmit and three receive antennas.

Fig. 3. Performance comparison of several coding schemes, bandwidth efficiency is 8 bits/s/Hz, two transmit and three receive antennas.
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Fig. 4. Performance comparison of several coding schemes for four transmit and three receive antennas.

according to the definition of in (18), we must have
that . Note that

, which implies that all
the vectors in can be expressed as linear combinations of

. So there must exist ,
such that

or in the matrix form we have , where the th
entry of is . So can be viewed as a concatenation of
the linear filters and . Substituting the above equation into
(19), we get

(43)

where . For an , the optimal
decoding of from is as follows:

and the optimal decoding of from is as follows:

(44)

Notice that any filtering may not help an ML decision. There-
fore, for an , we have

which completes the proof.

APPENDIX B
PROOF OF LEMMA 2

Proof: Since is a projection matrix, can be decom-
posed as

(45)

where is an unitary matrix and

(46)

By multiplying both sides of (20) by to the left, we have

(47)

Since the column vectors of belong to , (47) can
be written as

(48)

Note that the effect of multiplying to the left of a vector is
picking up the first entries and setting the rest entries
to zero. Hence from (48), we can see that only the first entries
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of matter and all other entries are zeros. We also have that
the first entries of are i.i.d. Gaussian noise since is
unitary, the rest entries are all zeros. Use to denote
the vector that contains the first entries of . Then, (48)
is equivalent to

(49)

Since is a white Gaussian noise, the ML decision is the
same as the minimum distance decision for (49), i.e.

(50)

where the second equality holds because the last entries
have no effect on the distance. Noting that is an unitary matrix
and , the above detection is equivalent to

(51)

Thus, we conclude that the minimum distance decision in this
case is equivalent to the maximum likelihood decision.

APPENDIX C
PROOF OF LEMMA 3

Proof: For a given , and two
symbol vectors with , the pairwise error
probability with ML receiver is as follows,

(52)

where the last inequality is obtained by applying the well-known
upper-bound for the -function,

By taking expectation over at both sides of (52), we get

To evaluate the above expectation, we use

and note that the expectation can be taken separately to each
, which leads to the following result,

Since and is a finite set, there exists a
such that

Hence for any with , we always have

The symbol error probability is upper-bounded by

i.e., the system achieves the diversity order .

APPENDIX D
PROOF OF LEMMA 4

Proof: For a given and ,
since the column vectors of are linearly independent over

, or

(53)

Now let us consider a fixed and restrict the param-
eter to the unit sphere, i.e., . Since the unit sphere is a
compact set, from (53), for this there must exist a constant

such that

(54)

For , we always have

(55)

(56)

Since is a finite set, we can define and so that

(57)

(58)

Then

(59)

where . This completes the proof.
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APPENDIX E
PROOF OF THEOREM 2

Proof: Let be the channel matrix
as in (1) and . Suppose is an STBC that satisfies
the full rank criterion, i.e., any matrix is a full
rank matrix. Write into the following decomposition

(60)

where is an unitary matrix and
. Since is a full rank matrix,

. Note that is
a finite set, we can define such that

(61)

Hence we have

(62)

As (7) mentioned in Section II, can also be written as

(63)

where . By (62) and (63), we can see that for
if and only if , i.e., the column vectors of

are linearly independent over .
We now prove the necessity. Since is a linear dispersion

code, the scaling invariance (30) is satisfied. If the column vec-
tors of are linearly independent over , then according
to Lemma 4, there exists a constant such that

(64)

Next we prove that the above inequality implies that the eigen-
values of are all greater than zero for . The
uniqueness from the decodablity of the STBC tells us that

implies . Consider the decomposition (60)
for . If there is an eigenvalue , then we can find an

such that

(65)

where the th column vector can be arbitrary non-zero
vector. The existence of such is ensured since is
invertible. For the that satisfies (65),

(66)

which contradicts with the inequality in (64). So we have proved
that all the eigenvalues of must satisfy , i.e.,

is a full rank matrix.
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