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Abstract

In this correspondence, we present a systematic and closed form constafctomplex orthogonal space-
time block codes from complex orthogonal designs of rékes 1) /2k for 2k — 1 or 2k transmit antennas for any

positive integerk.

Index Terms

Complex orthogonal designs, orthogonal space-time block codes,itdtRadon theory

. INTRODUCTION

Since the pioneering work of Alamoulti [1] in 1998, orthogonal design has become an effiectinnique
for the design of space-time block codes (STBC). The importance of this clasgle$ comes from the
fact that they achieve full diversity and have the fast maximum-likelih@éd) decoding. In this paper,
we are interested in complex orthogonal designs (CODs).

Let B, be ap x n matrix. It is a COD of variables;, x,, - - -, z,, if entries of B, are complex linear

* such that

u?

combinations of these variables and their complex conjugatesyi,ey, - - -, z,, 5, x5, -+, x
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the following orthogonality holds for any complex valuesaof

BIB, = (|o1)* 4+ |22 + - 4 |zu DI (1)

n

where!! denotes the complex conjugate transposeladdnotes the: x n identity matrix. Theu variables
Ty, T9, - -, T, represent information symbols from a signal constellation, such as QPSK, tansenitted

throughn transmit antennas ip time slots. There are two criteria for the evaluation of a COD code:

. RateR: R = u/p, higher rate means more information carried by the code;

« Block lengthp: givenn and R, smallerp results less delay in en/decoding.

Considerable efforts have been made on the search of CODs for different numaetsrofas. Alamouti
[1] proposed the following scheme far= 2 with R =1 andp = 2:

[ o ] - 2)

It is known that real orthogonal designs (ROD) of maximum rateith minimum delay for real
variables, such as PAM, can be systematically constructed for any numbetransmit antennas from
Hurwitz-Radon theory [14], [15], [2]. In [7], @ comprehensive study on complex orthoggpeade-time
codes, CODs, and some historical background can be found. Tutorials on this subjbet aso found
in [13], [9]. In [2], a systematic COD construction with ratg2 for any number of transmit antennas
is proposed by using rate ROD. The question is then how to construct CODs of rates abgveFor
n = 3 andn = 4, CODs of rateR = 3/4 andp = 4 are developed in [2]-[5]. It is shown in [11] that a
rate R = 1 COD whenn > 2 does not exist no matter how largeis. In [7], it is shown that rat&/4 is
an upper bound for rates of CODs without linear processing of synthats:;, or £z; whenn > 2 for
anyp, wherex; or z; is forced to appear at most once in each column of a COD. It is shown in [12] that
rate3/4 is an upper bound for rates of CODs when- 2 for any p when the entries of CODs may have
linear processing of-z; and £z as in the definition of a COD used in this paper. Furthermore, in [12],
it is conjectured that the ratB of a COD is upper bounded hiy: + 1)/(2k) for 2k — 1 or 2k transmit
antennas no matter how largeis. Forn = 5 andn = 6, rates7/11 and 3/5 generalized CODs are
constructed in [6], respectively. In [8], a ral¢3 and sizel5 x 5 COD is reported fob transmit antennas.
While individual discoveries for different numbers of antennas appear interemticignotivating, it is
highly desirable that a systematic method can be applied for the construction@$ GOrates above
1/2 for arbitraryn. In [10], a systematic and computer-aided method (not with closed formsppoped
to design CODs for any number of transmit antennas. Although a computer algorithm for angnd
CODs of rategk + 1)/(2k) for n = 2k — 1, 2k < 18 are presented in [10], the computer algorithm is
prohibitive whenn is large and furthermore it is not proved that a COD generated from the algorithm

has its rate always abovie’2. In addition, the algorithm may generate a block sizthat may be too

2



large to be necessary for the given For example, the sizg of the COD forn = 4 is 8 but not4 as
existed and mentioned previously. So far, we have not seen any systernagd ¢brm construction of
CODs with rates abové/2 for an arbitrary number of transmit antennas in any literature.

As a note, after we submitted this paper in the August of 2003, we came acrossfaulaished paper
[9]. In [9], a systematic construction of CODs with ratgs+ 1)/(2k) for any numbem = 2k — 1 or
n = 2k of transmit antennas is proposed. However, the design method in [9] does not ¢tiasedeorm.

In [9], the definition of a COD does not allow the entries of a COD to have a linearepsing of0,
+ux;, or £z} and therefore, symbols; or z; can not repeat in any column of a COD, which is different
with the definition of a COD used in [8] where linear processings are alloweith W& assumption of
no linear processing, it is shown in [9] that the maximum rate of a COD (k& + 1)/(2k) for 2k — 1 or

2k transmit antennas no matter how larges, which coincides with the conjecture presented in [12].
However, the conjecture for a COD with linear processing is spéin for a generak.

The goal of this correspondence is to present a systematic closed form constaidci@Ds of rates
(k+1)/(2k) for n = 2k — 1 or n = 2k transmit antennas for any positive integerin this construction,
the entries of a CODB,, are from the sef0, +u,, a3, +xq, +ai, - - -, +x,, +2} where for eachi, z; or
x} occurs once and only once in each column. Starting from a given BQr an oddn, we construct
CODs of closed forms forn + 1 andn + 2 with the above mentioned ratd®. Another closed form
construction is also presented whens a multiple of4, where the delay sizg is only half of the first
construction and the designs obtained in [9], [10]. It should be emphasized here thanstmuctions
are closed-form constructions while the ones in [9], [10] are not closed-form ootistrs.

This paper is organized as follows. In Section I, we present the COD cotistrsidncluding the
orthogonality property. In Section Ill, we give the CODs result/ior 8 as a design example, where the
delay sizep is only half of the one in [9], [10] while their rates are the same.

[I. CONSTRUCTIONS OFCOMPLEX ORTHOGONAL DESIGNS

In this section, we first present notations in Section II-A. The closed foDE are proposed in
Section II-B. The rates and sizes of these CODs are discussed inrSBdil. In Section II-D we propose

another construction to achieve smaller sizes when the number of transnmhaste a multiple of 4.

A. Notation

To construct CODs, we define the following matrices:

. For any matrixA4, its all entries are of forms, or +x;, or £z} for i = (,---,( +u — 1 for some

positive integers: and ¢, where for each, z; or z occurs once and only once in each column;

3



« B, is ap, x n COD forn antennas and the number of nonzero complex variablds, irs u,,;

. B, is ap, x 1 column vector that contains the same set of complex variablés, @nd the number
of nonzero complex variables is,;

. B, is aq , x 1 column vector that contains the same set of complex variablés, @nd the number
of nonzero complex variables is,;

o Qmn IS agy, x n COD forn antennas, where we let < n and (@, = B,, and the number of
nonzero complex variables is, ,, < uy,;

. @m’n IS agm-1, x 1 column vector that contains the same set of complex variabl€g,as and
@ = B,, and the number of nonzero complex variables,js,;

. an IS & gm11,, x 1 column vector that contains the same set of complex variabl€g,as and
Q — B,, and the number of nonzero complex variables,is,,

where the parameters are specified later. In the rest of this paper, veiffesent indices in brackets to
distinguish different sets of nonzero complex variables, which is specifidcegplained as follows:

. For any matrixA, matrix A(:) has the same structure but different variablesiashen: > 1 and

A(l) = A;
. Consider anyw submatrices4;(1),---, A, (w) appearing in a bigger matrix simultaneously, where
A, has nonzero complex variables, - - -, z,, for [ = 1,---,w. Then, the nonzero complex variables

in these submatrices appear consecutively in the bigger matrix without a&nlaps, i.e., the indices
of the nonzero complex variables iy (/) are fromu; + -+ u; 1 + 1 t0 uy + -+ - + w4 + u; for
=2, w

As an example, considés; of the following form

Ty T T3
xy —xi 0

By = . 3)

r3 0  —a]
0 T3 —T9

In the above matrixy; = 3, and the indices of the nonzero complex variableBinare from1 to 3.

Consider a bigger matrix
Bs(1)

By(i)

Then, the indices of the nonzero complex variable®ifi) are from3(i — 1) + 1 to 3¢ and Bs(i) is as

follows:
T3(i—1)+1 33’5(2;1”2 -77;,(1‘71)+3
. T3(i— —x i 0
B3(Z) _ 3(. 1)+2 3(0 1)+1 . ) 4)
T3(i—1)+3 La(i—1)+1
0 T3(i—1)+3  —T3(i—1)+2
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Note that, the structure oBs(i) is the same as that dB;, but the subscripts of the variables in the
matrices are different. For example, the subscript of the term in the dwstand the first column i3
is 1, while that of B3(i) is 3(: — 1) + 1.

B. Closed Form Construction of CODs

The main idea of our method is to construct CODs inductively. Specificallgngivset of CODs fon
antennas, where is an odd integer, we can construct codgs , and B,,., for n+1 andn + 2 antennas.
Based on the definitions in Section II-A, we provide the following method to cocts€CODs forn + 1
andn + 2 antennas througt,,, B.,,, B,,, Qi,, and@,,, wheren =2k — 1, k= 1,2,

_ | Ba(1) B,(2)
Bu1 = Bn(2) (=1)*B,(1) |’ ©
and _ _
B, (1) B, (2) B, (3)
| B2 (1B Q1,,(4)
Bn+2 = Bn(3) *an(él) (fl) @n(l) . (6)
Q1n(4) B, (3) —B,(2)

Therefore, through inductive construction Bf, 5,,, B,, Q1.5 and@],n we can construct CODs for any
n + 1 andn + 2 antennas.
The inductive construction starts with the following initial settings:

o By =[11];
o By =[2}];
e By =[x];
o Qi1 =[0];
o @1,1 - [0};
o @2,1 - [0};
o Qo1 =[0];

. @m,1 = ¢, i.e., empty (does not appear), for > 0;
e« Qm1 = 0, 1.e., empty (does not appear), for > 1,
. @mﬂ = ¢, i.e., empty (does not appear), for > 2.
To complete the inductive method, we also provide the construction schenig, for Bn+2, Qm.n+2s

Qunyzr AN Qo as follows:

)
) ’ (7)
)



(—1)*B(1)
Bn+2 - Aén(?)) ) (8)
*Q1,n(4)
[ mel,n(l) A@m,n(Q) _@m,n(g) -|
Q Qm,n(z) *mel,n(]-) Qm+],n(4) (9)
e \‘ Qm,n(g) _Qn}\+1,n(4) _Qm/\fl,n(l) ‘ ’
Qm+1,n(4) Qm,n(?)) _Qm H(Z)
{ Q- 1,n51§ }
ra) _ an 2
Qmnio = e | (10)
[ _Qm+1 n(4) J
and ~
Qm/\fl,n(l)
2 _ *Qm,n(z)
Qm,n+2 - ij’n (3) 3 (11)
Qm—H n(4)

wherem > 0, Qo = By, @M = B,, and@o,n — B, as described in the definitions in the beginning of
this section.

Before the proof of the construction, we have a general property on the orthogonality.
Theorem 1. Let A be a complex orthogonal design and has the form

AH A]Q
AQ] A22 ’

A:

where

(i) A;; and Ay, have the same set of nonzero complex variables;
(i) A, and A}, have the same set of nonzero complex variables;

(i) A;; and A}, do not share any common nonzero complex variable.
Then, the followingA

5N

_ (—1)*kA; (=1)1 Ay
(=)™ Ay (—1)" Ay
is also a complex orthogonal designkif+ [ + m + n is even.
Proof: See Appendix I.

From Theorem 1, the following corollary is immediate.
Corollary 1: Let

5N

(—DFA; (1) Ay
(=)™ Ay (—1)" Ay
be a COD and conditions (i)-(iii) in Theorem 1 hold. Then,

A= e
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isalsoaCODifk+l+m+n+p+q+r+siseven.

To validate our method, we also have following theorem.

Theorem 2: Forn = 2k — 1, k = 1,2,--+, if By, B, By, Quny Qe @nd Qe are inductively
constructed from (6)-(11), then the following matrices are complex orthogongnges

[ B B
B““—[Bn(j) (1>'@n<z’>]’ (12

[EZ((;; —ZZ((Q ] (13)
o wa | (14)
oo aD | (15)
lgﬂ’:g; ?ﬂffé; ] (16)
PRl -
l@ig @2*1((72; ] (18)
lgmﬂ% %Z“;Z(é; ] (19)

Proof: We can easily see that when the initial set of codes is used, all nsmatndé2)-(19) are CODs.
Now we show that if the matrices in (12)-(19) are CODs for some 2k — 1, k= 1,2, ---, they are

still CODs for n + 2 given the construction scheme in (6)-(11) by using Theorem 1 and Corollary 1 as

follows.
For (12), we have B
B 43 = Bn+2(i) §n+2( —
o Bnia(j) (=1)*'B,1a(i)

( B,(1) B.(2) _B.(3) | (-1)FQ..(8) ]
Bn(2) (-1)*B.(1) Q1,n(4) B.(7)
B,(3) @ ,(4) (=1)"Bn(1) —B,(6) (20)
Q1,n(4) B.(3) —B,.(2) B.(5)
B,(5) B..(6) _B.(7) —Q1,,(4)
Bn(6) (=1)"B,(5) Q1.,(8) | (=1)**'B,(3)
B,(7) —@1.(8) (=1)"Bn(5) (-1)¥B.(2)

L Qua®  Bun) - Ba©) | (1B




To show (20) is a COD, we need to prove that any column in (20) is orthogonal teeadther columns
in (20). For simplicity, we only show that the first column of (20) is orthogonal to &ésé dolumn. From
(14) we know that

is a COD. From (12) and Corollary 1, we have that

Ba(6) (=1)"*'By(3)

is a COD. And from (14) and Corollary 1 we have that

l Bu(5) ~0,,(4)
Qual4)  Ba(5)

is also a COD. Thus the first column in (20) is orthogonal to the last column in (2@)la8y, we can
verify that any column in (20) is orthogonal to all the other columns, which, thus, shioat (20) is a
COD. With the same approach we can show that the matrices in (13)-(19)sar€@Ds forn + 2 by

using our construction scheme as follows.

(D) | (1408
B, (3) B (7)
B.(2) ~B,(6)
B.(1) B.(5) (21)
(~1)¥Ba(5) | (~1)*'B, (1)
Ba(7) B, (3)
Qi) Qrn(4) |




7Bn+2 (Z)

Bn+2(i) Q'l*n+2(j)

Q1,n+2(7)

|

(22)
(23)
(24)

Lokt x Z—anz
B g B S
— — =™ —
,_Q_O;n_w T Qe
=
= I @ BerR® Tma= o
N e N S e e — N TN TN N
> —_— s & = g g & & & 1O © I~ 00
| = — — NS e I | o= 58 8 B
NI e i f il T F & & T
g Sded] 5 G| S ¢t = S 2 _Om_Q_Q_Qm
— - ™ — g, [N m
o= 1| I < o n S _
- _ IS | < f
(_\ e N N N N
=S IR BeiRm =3 === Z
RANEANING NaENE AN + 3 n_Bn_BnABn _Bn 82 & g H H = & g -
2 8 & & g = & & = & — — 4 [ +
RIR SR SV ES S T eI sy Qe s
= | &g S 2 | P~
= _ , -— I« f _
SN~— _ | S L
N—r
SIS BSOS _
S - R
— — — o~
& S &




|: Qm,n+2(i) amj17n+2(j)
Qm+1,n+2(j) _Qm,n+2(i)

(o) Cua® Tual® | ~Tnald)
Qm,n(2) *mel,n(l) Qri1,n(4) 9m+1,n(6)
Qm n(?’) QmA+1,n(4) 7Qm/51,n(1) 9m+1,n(7) (25)
Qm+1 n(4) Qmm(?’) _Qm,n(2) Qm+2 n(S)
Q3 Qui1n(6)  Qoyr1n(D | Q1)
Qm+1 n(6) __Qm7n(5) Qm/\+27n(8) _Qm,n@)
Qm+1 n(7) _Q\m+2 n(S) :Qm,n(5) :Qm,n(?’)
| Quern®  Quarn® Qo1 n6) | Quisr () |
l _§n+2(i) Qop12(7) _
Q, n+2(.7) _Bn+2(Z>
DB | )
B, (3) Q2,,(7)
- X 26
Q)| Q® (20
“0,,0) | (CDMTBa(1)
Q)| B
Q.| B
L@ Q]
[ mel n+2 (Z) @Am—l—l n+2 (]) —
Qm+1 n+2(j> Qm—1 n+2(Z>
mezn(l) :@m,n(5) ]
*mel,n(z) Qm—H n(6)
_QmAfl,n (3) Qm—H n(7> 27
Q) |~ Diza® &0
:@m,n(‘:)) _Qm*Q n(1>
Qm+1 n(6) mel n(2)
9m+1 n(7) QmAfl n(3>
Qm+2,n(8) _Qm,n (4>

As a conclusion, Theorem 2 is proved inductivejye.d.
Thus, by the induction, for any odd numberwe can inductively construd,,, B,,, B, Q1. and@l’n.
Because of the orthogonalities in (12)-(19,.1, B..2 in (5) and (6) are also CODs, which completes

the proof of our construction.
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C. Rate Formula

For the sizes of matrice®, and @), ;,, we have following partial difference equations from (6) and

(9)*

Qon+2 = 3o T q1n (28)
dmn+2 = Gm—1,n + qu,n + Am+1n, T > 0;
with initial conditions
Gdo,1 = 1,
q1,1 = 1,

Gma =0, m > 1.
Similarly, we have the following partial difference equations for numbersiefcdomplex variables i,

and @), ,:
{ Vo,n+2 = 37)0,71 + D1,n, (29)

Ummn+2 = Um—1,n + 2vm,n + Um+1,n, 1M > 07
with initial conditions
7)07] = ]_,
Uma =0, m > 0.

The solutions of the above two partial difference equations are given as follows

Gm,2k—1 =0 m >k 0
2k x [ A D)
qm,?kfl - ((k—)F;l[—l-l)'(kjm)'} O S m S k
and
Umok—1 = 0 m>k—1
’ ) 31
{”m,le_% Ogmgk—l ( )

Both (30) and (31) can be shown by induction. Therefore, whes 0, we have the rate formula

V0,2k—1 k+1 1
Ry = — = > —. 32
e qo,2k—1 2k 2 (32)

It is interesting to note that it is conjectured in [12] that the rate of a CO2E — 1 or 2k antennas is

upper bounded byk + 1)/(2k). And in [9] Liang showed that when there is no linear processing in a
COD, the rate upper bound fak — 1 or 2k transmit antennas igt + 1)/(2k). However, it is still open

for a COD with linear processing.

D. Construction of Smaller Sze COD for 4/ Transmit Antennas

Let us consider the case of= 2k — 1, wheren is the number of transmit antennas ands an odd
integer. Based on the construction procedure in Section 1I-B, we can conat@@D B,,,, from (6).

From B,,,» we can construct a COIB,, .3 from (5), which is rewritten as follows:

Bn+2(1) Bn+2(2>

Bui2(2) (—1)"B,42(1) (33)

Bn+3 -

Note thatQo,,, = B, by definition, we usejo,, = p, andwo,, = .
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To compute the rate of the COB,,, 3, we have
QEk+1)) x(k+1)

Prt3 = 2Qon+2 = 2qo2(k+1)-1 = 2 2010k + 1)) (34)
and
Un+3 = 200 nt2 = 200 2(k+1)-1 = 2(2((5111)),(;)1,)' (35)
Therefore, the rate is:
Ry — Upyz  k+2 (36)

Puss  2(k+1)
However, we find that whert is odd, there exists one smaller size CQI),, than B, .3, which is
constructed directly fronB,,:

K R S

' By, (2 B,(1) Q,,(4 B, (3

Brs=| Bu3) —Qu.4) ~Bal))| ~Bal2) 37)
Based on the COD assumptions in (12)-(19) and Theorem 1, we can see/thas a COD. Since

@k x k (2B)x [k+ 2]

Prugs = 30on + @ = 30 F G aE - 1) (38)
and
;o -, 2E=1)! (2k —1)!
we have that the rate d§,,_; is:
., k+2
A X . (40)

Phys  2(k+1)

while B]  , has a smaller size:
1
/
Pnys = 5Pn+3-

Note that in this case, sindeis an odd number, the number of antennas 3 = 2(k + 1) is in the form

of 41,1 = 1,2,---. This shows that the COD construction (37) for- 3 = 4/ for any positive integet
has only half delay of the delay of COB,, 3 in the first construction and also the one in the literature
[9], [10].

[1l. DESIGN EXAMPLES

In this section, we will give some design examples. From the initial settimtjsn = 2k — 1 =1 and
k =1, B, and B3 can be easily constructed from (5), (6) and have the form in (2), (3), respgctiVe

can also construct the following matrices:

e Qo
Qs = [0] (41)



From the definition of@ we can see tha),, is aq; x 1 column vector, which contains the

m,n?

same set of nonzero complex variablesas. Since). 1 = ¢ (initial setting) andg, ; = 1, there is

no nonzero complex variables in bathy; and @, ,. As a result the only entry of, , is zero.

e Qi3

T 0 0
iz=1| 0 —m 0 (42)
0 0 —T

Note that in matrix (42), we eliminate the last row in matrix (9) sintielee terms of this row are

¢, i.e., do not appear.

e By
0
— T
o
. By )
_ —
B; = T2 (44)
T3 |
In (44), we eliminate the last row for the same reason as that of (42).
e Qs
— 0
Q],g = 0 (45)
0
o CA21,3
CA21,3 = [ Ty } (46)
o Qa3
Q=0 0 0] (47)
° 62,3
B 0
2,3 — 0 (48)
0
With all matrices above, we can construct a COD for 4 antennas as:
( ST S A 07
Ty —a] 0] g
T3 0 —aj | —a;
_ 0 T3 —Xy T4
By = xy  xE xh 0|’ (49)
Ty —T 0] a3
Te 0 —xy | —a35
L 0 Te —Ts T |
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which has the same rate = 3/4 and delayp = 8 as the ones constructed in [9], [10]. However, from

(37), the COD for4 antennas can be constructed as:

ST S A 0
Ty —X 0 Th

B, = ! X 30 (50)
T3 0 —x] —5

0 r3 —T9 T

which coincides with the existing one fdrantennas and has only half delay as that in [9], [10].

Also we can construct a COD for 5 antennas as:

T x5 T 0 0
Ty  —T] 0] g T
T3 0 —a) | —ax:| —uag

0 T3 —T9 Ty T
i TE Tg 0| —273,
Ts  —T 0] a3 0
T 0 —xy| —a3 0

B5 = 0 Tg —T5 T 0 s (51)

7 Ty Ty | X7 0
Ty @7 0 0 T3
T 0 —xz7 0| —3

0 Tg — X 0 T

0 —T10 0 T —T5

L 0 0 —T10 Tg —Tg ]

which has the same parameters as the one constructed by Liang in [8]. To coa<i@b for8 antennas,
we have following CODs:

e Qus
[ x4 x5y x| —xy | —TE ]
Ty —I] 0 0 0
T3 0 —a3 0 0
0 T3 —T9 0 0
i 0 0] a3 0
Q],g, = 0 —XTy 0 —XT9 0 (52)
0 0 —XTy | —T3 0
T5 0 0 0] a3
0 — Ty 0 0 —XT9
0 0 —T5 0 — XT3
L 0 0 0 Ty | —Tg

° BS! 351 and@]ﬁ
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1o 0
0 — 3
0 I 07 Ty
0 T3 —x
0 —x5 —x;
TZ; T 0
—T R - 0
B5 = 7 |, B5 = Ts s Ql 5 = 0
0 Tg *T%
—Tg —x3 0
TE xg 0
—xy Ty 0
—ZCT Ll —T10 J 0
T 0

L 3 i L 0 i

Sincek = 3 whenn = 2k — 1 = 5, we can construct a COB, shown at the end of the paper for
n + 3 = 8 antennas based on (37). The delay size and the number of variables in the aboveeCBD a
and35, respectively. These values can be predicted through the solutions of therm#egquations (30)
and (31), wheren = 0 andk = 4:

o _8!><4_56
p8—p7—QO,7—5!X4! =
and
7!
Ug = U7 = Vo7 = m = 35.

Note that the block length or delay sizeis 56, while in [9], [10], it is 112.

To further compare our construction schemes with that of [9], [10], we list thgmesamples fron
to 16 antennas in Table | where “Liang” and “Su-Xia-Liu” are for the schemes infjé][40], respectively,
and “Lu-Fu-Xia” is for our new closed form designs. One can clearly see th#teathree constructions
have the same rate. However, when the number of transmit antennas is aiplenailtt, the CODs in
our scheme have only half delays of that of [9], [10].

IV. CONCLUSION

In this correspondence, a novel inductive and closed-form method has been propogsdramscally
construct a complex orthogonal design (COD) of rdter 1)/(2k) for 2k — 1 or 2k transmit antennas
for any positive integek. These rates are conjectured optimal in [12] with or without linear processing.
Although it is shown in [9] that when there is no linear processing the upper bound oftéhforak — 1
or 2k transmit antennas iRk — 1)/(2k), it is still open for CODs with linear processing. Another closed

form COD construction forl/ transmit antennas has also been presented with smaller delay sizes that
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TABLE |

COMPARISON OFDESIGNEXAMPLES

# of Tx Liang & Su-Xia-Liu Lu-Fu-Xia Rate
n u p U | P u/p
1 1 1 1 1 1
2 2 2 2 2 1
3 3 4 3 4 3/4
4 6 8 g 4 3/4
5 10 15 10 15 2/3
6 20 30 20 30 2/3
7 35 56 35 56 5/8
8 70 112 35 56 5/8

9 126 210 126 210 6/10
10 252 420 252 420 6/10
11 462 792 462 792 7/12
12 924 1584 462 792 7112
13 1716 3003 1716 3003 8/14
14 3432 6006 3432 6006 8/14
15 6435 11440 6435 11440 9/16
16 12870 22880 6435 11440 9/16

are only half of the ones of the first construction and the ones appeared in [9], [10]thdilgates are

the same. However, the optimal delay for any number of transmit antennaisiralopen question for

future research.

As we mentioned in Introduction, after we submitted this correspondence in the AafgR803, we
came across with [9] where also a systematic construction of CODs of(katel)/(2k) for 2k — 1

or 2k transmit antennas for any positive integemwas proposed. Comparing to [9], our designs have
closed-forms while the method in [9] is not a closed-form method, and furthermorejesigns have

only half of the delays of the ones in [9] when the number of transmit antennas is anplenafti, such
as4,8,12,16, 20, - - -.
16



APPENDIX |
PROOF OFTHEOREM 1

Define 4, A,, A,, and A, as:

v -]
w -]
A= [ G
A= | G ]

Since A is a COD, we can see thal; and A, are both CODs. Also, sincé;; and A,; have disjoint sets
of nonzero complex variables, matrik, is a COD too regardless of the numbérsaand m. Similarly,
matrix A, is a COD for any values of andn. Thus, we see thafl is a COD if and only if any column
in 4, is orthogonal to all columns inl,. Without lose of generality, we consider two columnandj in
matrix A, where column belongs to4; and column;j belongs toA,.

Write matrix A = [ac]. For any rowp in A, we letz = a,,. According to the definition in the theorem,

if  # 0, we can find another row such that:
(g = [z
Now let Z = a4, y = a,;, andz = a,. Since matrix4 is a COD, we have # ¢ and
xy* + 22" =0,

which is because the remaining of the inner product ofitheand thejth column of A do not contain
variablex due to the assumption in beginning of this section that each complex variableconjtgyate
appears once and only once in each colummof

In matrix A, the left hand side of the above equation becomes
(=D)Fa x (=1)'y* + (=1)"2 x (=1)"z"
Note that ifk + [ + m + n is even, then—1)**! = (—1)™*", Therefore,
(=DFz x (=D)'y* + (=1)"z x (=1)"z* =0,
which proves that théth column is orthogonal to thg¢th column and therefordl is a COD.q.e.d.

17
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