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ABSTRACT. In this paper, we study orthonormal matrix valued wavelets for
analyzing matrix (vector) valued signals based on matrix multiresolution anal-
ysis. We present a simple sufficient condition on the matrix filter H(w) that
leads to orthonormal matrix valued wavelets. The sufficient condition is analo-
gous to the one given by Mallat for scalar valued wavelets. The components at
each column of matrix valued wavelets form multiwavelets for a scalar valued
signal, where the orthonormality induced from the orthonormal matrix valued
wavelets is weaker than the one in the current literature on orthonormal multi-
wavelets. With the new orthonormality, one is able to construct orthonormal
matrix valued wavelets similar to the conventional multiresolution analysis
based orthonormal wavelets. Moreover, we show that the new orthonormality
provides a complete Karhunen-Loéve decomposition for matrix valued signals.

1. Introduction

While wavelets and multiwavelets have been extensively studied lately for a
scalar-valued signals, see for example [1]-[17], there are only a few researches, [1],
on matrix (vector) valued wavelets for matrix (vector) valued signals. In practice, it
is however often to encounter matrix (vector) valued signals, such as video images,
multi-spectral images and color images. A significant difference between matrix
(vector) valued signals and scalar valued signals is that there are correlations for a
matrix (vector) valued signal not only in the time domain but also between its com-
ponents (or the spatial domain) at a fixed time while there is correlation for a scalar
valued signal only in the time domain. The aim of the construction of orthonormal
matrix valued wavelets is to decorrelate a matrix (vector) valued signal in both the
time and the spatial domains. As a side result, the components at each column
of orthonormal matrix valued wavelets also form multiwavelets for scalar valued
signals. We will see later that the orthonormality for the multiwavelets generated
from orthonormal matrix valued wavelets is weaker than the orthonormality in cur-
rent literature on orthonormal multiwavelets, [4]-[15]. In [1], orthonormal matrix
(vector) multiresolution analysis was introduced for the purpose of constructing
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orthonormal matrix valued wavelets. However, the theory in [1] is not complete in
the continuous time case in the sense that there is not a simple sufficient condition
on the matrix quadrature mirror filter (MQMF) H(w) that leads to orthonormal
matrix valued wavelets.

In this paper, we first re-introduce matrix valued signal spaces and matrix
valued multiresolution analysis studied in [1]. We then present a simple sufficient
condition on the MQMF H(w) for constructing orthonormal matrix valued wavelets,
which basically proves the conjecture proposed in [1]. A connection between or-
thonormal matrix valued wavelets and orthonormal multiwavelets in the current
literature is studied. It can be seen that the orthonormality for the multiwavelets
induced from the orthonormality of orthonormal matrix valued wavelets is weaker
than the orthonormality for multiwavelets in the recent literature in the continu-
ous time waveform case, see for example [4]-[15], while they are the same in the
discrete time filterbank case. The weaker orthonormality in the continuous time
case provides a weaker sufficient conditon for constructing multiwavelets with this
weaker orthonormality.

In the second part of this paper, we show that the orthonormality studied in this
paper for matrix valued signals gives a complete Karhunen-Loéve decomposition for
matrix valued signals, i.e., this orthonormality provides a complete decorrelation
for a matrix valued signals in both the time and the spatial domains.

2. Matrix Valued Signal Space and Multiresolution Analysis

For convenience, we only study NV x N matrix valued signals and wavelets. We
introduce some notations first.

2.1. Matrix Valued Signal Space. Let
CNXN — fA: Aisan N x N matrix with entries in the complex plane C},
and

L%(a,b; CN*N) 2 {£(t) = (fua(t)) v © fua(t) € L3(a,b),1 <k, 1< N}

The signal space L2(a,b; CV*V) is called a matrix valued signal space. When
a = —oo and b = oo, L?(a,b; CN*V) is also denoted by L2(R,CN*N),
For any A € CN*N and f € L?(a, b; CV*¥), the products

Af, £A € L(a,b; CV V).

This implies that the matrix valued signal space L?(a,b; CV*") is defined over

CNXN and not simply over C.
Let || - ||ar denote a matrix norm on CN*¥. For each f € L?(a, b; CV*N), ||f||
denotes the norm of f associated with the matrix norm || - || as

b 1/2
(2.1) ||f||é( / ||f<t)||%4dt> .

For f € L?(a,b; CN*¥), its integration [ f(t)dt is defined by the integration of its
components.

For two matrix valued signals f, g € L?(a, b; CV*Y), (f, g) denotes the integra-
tion of the matrix product f(t)g'(t):

(2.2) (£,g) 2 /R (g (t)dt,
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where T denotes the conjugate transpose. For convenience, we still call the operation
(,)in (2.2) inner product although it is not the inner product in the common sense.
With the definition (2.2) it is clear that (f,g) = (g, f)T.

A sequence ®(t) € L?(a,b;CN*N), k € Z, is called an orthonormal set in
L2(a,b; CV*N) if

(2.3) (P, @) =0(k - 1IN, k,l€Z,

where 0(k) = 1 when & = 0 and 6(k) = 0 when k # 0 and Iy is the N x N identity
matrix. A sequence ®4(t) € L?(a,b; CN*N), k € Z, is called an orthonormal basis
for L2(a,b; CN*N) if it satisfies (2.3), and moreover, for any f(t) € L?(a,b; CV*N)
there exists a sequence of N x N constant matrices F}, such that

(2.4) f(t) = Y Fe®x(t), fort€ [a,b],
kEZ

where the multiplication F, ® (t) for each fixed ¢ is the N x N matrix multiplication,
and the convergence for the infinite summation is in the sense of the norm || - ||
defined by (2.1) for the matrix valued signal space.

2.2. Matrix Valued Multiresolution Analysis. We next define matrix val-
ued multiresolution analysis, which is similar to the conventional multiresolution
analysis.

A matrix valued multiresolution analysis (MMRA) of L2(R, CN*N) is a nested
sequence of closed subspaces V;, j € Z, of L2(R, CV*N) such that

(). V; C Vi, je7Z,
(ii). UjezV; is dense in L2(R,CNV*N) and N;ezV; = {0}, where 0 is the all
zero matrix,
(iil). f(¢t) € V; if and only if £(2¢) € V41, j € Z,
(iv). There is a ® € Vj such that its translations ®(t — k), k¥ € Z, form an
orthonormal basis for V.

The above definition for an MMRA is notationally similar to the one for the
conventional multiresolution analysis (MRA). We call ®(t) a matriz valued scaling
function (or simply scaling function) for the MMRA {V,}. Since ®(¢) € Vo C V3,
there exist constant N x N matrices Hy, k € Z, such that,

(2.5) o(t) =2 Hp®(2t — k).

Let k

(2.6) H(w) = Hye ™.

Then, k

(2.7) b(w) = H(3)(5) = H(H)H(T) -+ $(0),

where it is assumed that <i>(w) is continuous at w = 0. This assumption is satisfied
when H(w) has only finite terms and H(0) = Iny. In this paper, for convenience
we assume ®(0) = Iy, which makes an important difference between matrix-valued
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wavelets and multiwavelets from the matrix scaling equation or refinable equation
point of view. By this assumption,

(2.8) b(w) = H(HH(S) - = [[ HGp):
k=1
The equation (2.7) implies
(2.9) H(0) = Iy, or » Hy=Iy.
k

It is not hard to see that the orthonormality of ®(t — k), k € Z, (or the
orthonormality of MMRA {V;}) is equivalent to

(2.10) > d(w + 27k)d' (w + 27k) = 271y, Vw € R.
k

In terms of the filter H(w), the above orthonormality implies
(2.11) Hw)H'(w) + Hw + 7)H'(w + 7) = Iy, Yw € R.

The orthonormality (2.10) is in the continuous time domain for continuous-time
waveforms while the one (2.11) is in the discrete time domain for discrete-time
filterbanks.

Assume we have the above MMRA and H(w). We now want to construct its
corresponding matrix valued wavelets that form an orthonormal basis for the whole
matrix valued signal space L?(R, CV*¥),

Let G(w) satisfy

(2.12) Gw)H'(w) + G(w + 7)H(w +7) =0, Yw € R,
and
(2.13) G(w)G'(w) + G(w + )Gl (w +7) = Iy, Yw € R.
Let

5 W, s, W
(2.14) U(w) = G(§)<I>(§).

The following result was proved in [1].

THEOREM 2.1. Let U(t) be the matriz valued function with its Fourier trans-
form defined in (2.14). Then, its translations ©(t—k), k € Z, form an orthonormal
basis for Wo 2 Vi © Vo. Thus, U, x(t) 2 20/2(2it — k), j,k € Z, form an or-
thonormal basis for the matriz valued signal space L?>(R, CN*¥),

The matrix filters H(w) and G(w) in (2.11)-(2.13) are called matriz quadrature
mirror filters (MQMF). Given H(w), G(w) can be constructed by the following
method. .

Let Hw) = (H(w),H(w + 7))f and G(w) = (G(w),G(w + 7))t. Then, the
orthogonality (2.11)-(2.13) is equivalent to the paraunitariness of the 2N x 2N ma-
trix (H(w), G(w)). Let H;(w) and G, (w) for j = 0,1 be the polyphase components
of H(w) and G(w), respectively: F(w) = Fo(2w) + e~ *F;(2w), where F is H or
G. Then, the above paraunitariness is equivalent to the paraunitariness of the
matrix (H(w), G(w)), where F(w) = (Fo(w),F1(w))! for F = H or G. Thus, the
construction of G(w) in (2.11)-(2.13) is equivalent to the completion of a 2N x 2N
paraunitary matrix given its first N orthogonal columns fI(w) This completion
can be obtained by employing the state-space description, see for example [20]-[22],
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where only the orthogonal completion of a constant orthogonal matrix is needed
for the corresponding constant realization matrix.

In the next section, we want to construct orthonormal matrix valued scaling
functions ®(t) from the orthogonal filter H(w) in (2.11).

3. Construction of Matrix Valued Wavelets

It is known that the conventional scaling functions or MRA can be constructed
from QMF H(w) and necessary and sufficient conditions have been obtained, [18]-
[19]. For matrix valued wavelets, we present the following results. We first present
a lemma. In what follows, we are only interested in FIR MQMF H(w), i.e., H(w)
is a polynomial matrix of e ™.

LEMMA 3.1. Let H(w) satisfy (2.9) and (2.11). If there exist a constant C > 0
and an integer Ko such that for any w € (=257, 2K7) and any K > K,

K co
w w
(3.1) ITTHE) e < I TTHE)
=1 =1
then, the solution ®(t) in the matriz dilation equation (2.5) is a matriz valued
scaling function for an MMRA.

Proof. The assumption of the FIR property on H(w) leads to the finiteness
of the right hand side of (3.1). To prove Lemma 3.1 we only need to prove the
orthonormality of ®(t — k), k € Z. The rest is similar to the conventional MRA
theory, see for example [19].

For an integer K > 0, let

K
pr(w) = HH(g)X[ﬁKw,zKW]( )-
=1
Then,
[ k@)
R
2K
w w w Wy inw
= HG) - HGRIR ) B (e
28 w w w
= [ EG) - HGRH GR) - B
M KL w w w w
= = et = | et et T
/ IT 70 [BGrR ) + Bl + g +)
K1 1
( H(§)> e "™dw
=1
27T
by(__z.u) /ItuK_1(uJ)uJ}(_1(w)e_i”“dw:---:/ e dwly = 2md(n)Iy.
0

It is clear that ux (w) converges to ®(w) pointwisely in (2.8) since H(0) = Iy and
H(w) is a polynomial matrix of e~*. By (3.1),

Ik (@)l () = $(W)BT(W)lImr < (C +1)[|8(w)dN(W)[|m, Yw € R.
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By the dominated convergence theorem, we have ||pr}{ — 33t 5 0as K — co.
Therefore,

2T

/ BB (t — n)dt = — / ()8! (w)e= i duy
R

1 —inw
= 5 dim [ (@le@)e s = dn)

This proves the orthonormahty of d(t—k),ke€Z. &
We next want to present a sufficient condition on H(w) so that (3.1) is satisfied.

LEMMA 3.2. Let H(w) be a polynomial matriz of e=™ and H(0) = Ix. Then,
there exist an integer Ko and a constant C' > 0 such that

||HH Yl < anH 1%

=1
forw € (—m,m) and K > K.

Proof. Since H(w) is a polynomial matrix of e and &(0) = In, we have
v w
=] H(2—k)
k=1

and
lim ||®(w) — In|[ar = 0.

w—0

Thus, there exists an integer Ky > 0 such that, for £ > Ky and |w| < /2,
AW
18(2) ~ Inflwr <

and

-1
- 1
l® ( )||M<—, ie., (H H—l> llar < =,

I=k+1

where € is a small positive constant.
Therefore, for K > Ky and |w| < 7/2,

K [eS) [eS) -1 oo
w w w w
| HH(E)HM = ||HH(Q) < 11 H(g)) I < Cl HH(E)”Ma
=1 =1 I=K+1 =1
where C =1/e. &
LEMMA 3.3. Let H(w) be a polynomial matriz of e * and H(0) = In. If

| ‘mf [A(w)| >0

for any eigenvalue function A(w) of the polynomial matriz H(w) of variable e~
then, there exists a constant C' > 0 such that, for any w € (—257,2%7),

||HH )llar <0||HH Yllar-

=1
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Proof. For w € (—2%7,2Kr), if k > K, then w/2* € (—7/2,7/2). By the
proof of Lemma, 3.2, for w € (—2Kr, 2Kx),
o -1 1
w
I ( 11 H(g)) [lar < .
I=K+Ko+1
Let us consider the case of I € {K + 1,K +2,..., K + Ko}. Let & > 0 such that
inf|,|<x/2 [Mw)| > & for all eigenvalue functions of the polynomial matrix H(w).
Then, (A(w)) ! is an eigenvalue function of the function matrix (H(w)) ™! of variable
e~ for |w| < /2. Thus, there exists positive constant C;, which only depends on
d, such that, for |w| < /2,
I(H(w)) " lar < Ci.

Therefore, for any w € (=257, 2K 7),
K w oo w o0 w -1 /K4 K, w
ITTEC) I = ||HH(5)( I H@)) (H H(;)) I
=1 =1

I TTHG I,

=1

IN

where C = Cf°/e. &
By combining the above three lemmas, we have proved the following result.

THEOREM 3.4. Let H(w) be a polynomial matriz of e and satisfy (2.9) and

(2.11). If
inf |[AMw)|>0
oot /2| (@)
for any eigenvalue function A(w) of the polynomial matriz H(w) of variable e~
then, the solution ®(t) in the matriz dilation equation (2.5) is a matriz valued scal-
ing function for an MMRA, and therefore ¥; i (t), j,k € Z, form an orthonormal

basis for the matriz valued signal space L?(R, CN*N),

Notice that the above sufficient condition is analogous of the one given by Mallat
[18]. With the above sufficient condition, it is not hard to construct nontrivial
families of orthonormal matrix valued wavelets. The following is an example.

It is not hard to show that, if H(w) = (Iy+e*E(2w)) and E(w) is paraunitary,
i.e., E(w)Ef(w) = In, then G(w) = e *“Hf(w+7) and H(w) form a pair of MQMF
satisfying (2.11)-(2.13). Such property for H(w) is called the sampling property in
[1]. Let E(w) = U(w)diag(e=*1«, ... Je~#~«)Ut(w) for k; = 0 or 1, where U(w)
is an arbitrary paraunitary polynomial matrix and U(0) = Iy. Then, it is not
hard to see that the above H(w) and G(w) satisfy (2.11)-(2.13) and the sufficient
condition in Theorem 3.4.

4. Connection to Multiwavelets

Let (®(¢))ik, (¥(t))r and (V)1 be the components at the /th column and kth
row of ®(¢t), ¥(t) and V, respectively, I,k =1,2,..., N and j € Z. Then,
)ik

(Vi)ie C(Vjt1)w, and f(t) € (Vj)lk > f(2t) € (Vjt1)u,

and
Njez(V;)ie = {0}, and Ujez (V;)u is dense in LQ(R).
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Moreover, for any fir, € (Vo)ix, there exist constants ag, m,1,x such that

(4.1) Jue(t) Z z akl,m,l,k (t—k1))mr, t € R.

ki1€Z m=1

And, for any f € L?(R), there exist constants a; k, ; x such that

N
(4.2) F& =D ) ajkak(Tje, (), t €R,

Jk1€Z I=1

where k is any integer with 1 < k < N. This implies the following proposition.

THEOREM 4.1. Let ®(t) be a matriz valued scaling function of an MMRA {V ;}
and U(t) be its an associated matriz valued wavelet function. Then, for any fized
k, 1 <k < N, the functions (®(t))ix, | = 1,2,..., N, form multiscaling functions
and (¥ (t))i, | = 1,2,..., N, form multiwavelets. Moreover, for each pair (I,k), the
spaces (V;)ik, j € Z, form a multiresolution analysis of multiplicity ri where ry, is
the mazimum number of linearly independent functions of (®(t))wx, I =1,2,...,N.

For more about multiresolution analysis of multiplicity r, see [2]-[3]. We next
want to study the orthonormality of the column multiscaling functions induced
from the orthonormality for matrix valued scaling functions, which is

N
(4.3) 3 /(<I>(t — 11)) i (B (t = 72) )kt = 8(1 — 72)5(1 — k).
m=1

Or,

(4.4) /(<I>(t—7-1))lk(<1> (t — 72))adlt + Z / (£ = 71) )i (B*(t — 72)) kot
m=1,m#k
= (5(’1’1 — T2)6(l — k)
Consider the multiscaling functions from the kth column (®(¢))ix(t), 1 <1 <
N, of ®(t). The conventional orthogonality studied in the current literature for
multiwavelets is

(45) /(‘P(t - Tl))llk(é*(t - TQ))lzkdt = (5(T1 - 7'2)(5(l1 - lz)

We call the orthogonality (4.5) Orthogonality A, and the orthogonality (4.4) Or-
thogonality B, for multiscaling functions (®(¢))x(t), 1 <1 < N. One can see that
the second term in the left hand side of (4.4), Orthogonality B, is the flexibility
term over (4.5), Orthogonality A.

LEMMA 4.2. The conventional Orthogonality A for all column vectors of a ma-
triz valued scaling function implies Orthogonality B induced from the orthogonality
for matriz valued scaling functions.

Proof. To prove (4.4), we only need to prove (4.3), which is

N
Z/(é(t—n))m(@*(t—n pmdt ) Zén 7)8(l—k) = No(r1 —72)8(1—k).
&

Comparing Orthogonality A in (4.5) and Orthogonality B in (4.4) or (4.3), one
can see that the former requires the orthogonality for each individual component
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in a vector while the later only needs the orthogonality for the vector itself. This
implies that Orthogonality B is weaker than Orthogonality A. On the other hand,
these two orthogonalities imply the same orthogonality (2.11) for the discrete matrix
filterbank H(w).

We now consider a subspace of L2(R, CV*N):

L*R,CN) = {f = (fru(t))nxn € L*(R,CV*N): fr (t) =0for 2 <1< N},

which is isomorphic to the N x 1 vector valued signal space. We may define its
corresponding MAR, scaling functions, wavelet functions similarly. In this case,
®(t) = ((P())r)nNxn With (8(t)) = 0 for 2 < I < N. Clearly, Orthogonality
A and Orthogonality B are equivalent in this case. In other words, Orthogonality
A only corresponds to Orthogonality B in a proper subspace of the matrix valued
signal space.

With Orthogonality A, necessary and sufficient conditions on H(w) that leads
to orthogonal multiwavelets have been obtained, see for example [15]. Since the
stronger Orthogonality A is used, the necessary and sufficient condition on H(w) is
not easy to check or use. However, with the weaker Orthogonality B, the condition
on H(w) in Theorem 3.4 is much easier to check so that one is able to use it to
construct families of nontrivial orthogonal(B) multiwavelets as studied in Section
3. The basic idea doing this is to embed an N x 1 vector into an N x N matrix
and then use the matrix orthogonality. Another way to interpret this idea is that
we lift a one dimensional vector into a two dimensional matrix with additional
freedoms to play with, which makes the construction easier. One now might want
to ask whether this new Orthogonality B is physically meaningful. The answer is
yes because it provides a complete decorrelation for matrix valued signals as we
shall study in the next section.

5. Matrix Karhunen Loéve Expansion

In this section, we show that Orthogonality B provides a complete decorrelation
for matrix valued random processes.

5.1. Matrix KL Expansion: Definition. Let X(t), t € [a,b] with —oc0 <
a < b < oo, be a matrix valued random process with finite second moments, i.e.,

EX!(t)X(t)) e CV*N,
and each path X(t) € L2(R; CNV*N). Let

(5.1) R(s,t) 2 E(X'(s)X(¢)), s, € [a, b)].

If there exist ®,(t) € L?(a,b; CN*N), A,, € CN*N 'n =1,2,..., such that
b

(5.2) / B, (s)R(s,)ds = ApBn(t), n=1,2,... € [a, 1],

(5.3) (Bn,®m) =06(m —n)In, m,n=1,2,..,

and

(5.4) X(t) = > (X, 8,)8n(t), t€ [a,b],

n=1
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then, the expansion of X(t) in (5.4) is called the matriz Karhunen-Loéve expansion
of X(t). If the matrix Karhunen-Loéve (MKL) expansion of X (t) exists, then X (t)

is decorrelated into a matrix valued random sequence Y, E (®n, X) as
(5.5) E(Y,Y!)=6(n—-m)A,, m,n=1,2,..

The random sequence Y,, n = 0,1,2,..., is called the matrix Karhunen-Loéve
transform of X(t).

Notice that when N = 1, the above MKL expansions/transforms are reduced to
the conventional KL expansions/transforms. The object of this section is to study
the MKL expansion of X(t).

Two special cases were studied in [23]-[24]. In one, the constant matrix A, in
(5.2) was replaced by a scalar value and in the other, ®,(¢) in (5.2) was replaced by
a scalar-valued function. As mentioned in §3.7 in [24], only a few cases satisfy these
assumptions, and therefore they are not complete. The main reason for not using
the product of two matrices at the right hand side in (5.2) is due to the difficulty
of handling the noncommutativity of matrix products.

5.2. The Generalized Hilbert-Schmidt and Mercer’s Theorems. With-
out loss of generality, in what follows we assume a =0 and b =T > 0. Let K(s,t),
s,t € [0,T], be a matrix valued function of two variables in L?(0,T; CN*¥). In
other words, for each s € [0,T], K(s,-) € L*(0,T;CN*¥), and for each t € [0,T],
K(-,t) € L?(0,T; CN*N) and

T T
(5.6) / / K (s, )12 dsdt < oo.
0 0

If K(s,t) satisfies the above conditions, then K(s,t) is called a matrix Fredholm
integral operator. It is clear that a matrix Fredholm integral operator K(s,t) maps
L2(0,T; CN*N) into itself:

(Kf)(t) & /OT f(s)K(s,t)ds € L?(0,T; CN*N).

Let ®(¢t) € L?(0,T;CN*N) with (®,®) = Iy, and A € CN*N_ If the following
identity holds:

T
(5.7) /0 B(s)K (s, )ds = AD(t), ¢ € [0,T],

then, ®(t) and A are called eigen-matriz-functions and eigen-matriz-values of the
operator K(s,t), respectively.

Notice that the property (®,®) = Iy is required in the above definitions of
eigen-matrix-functions and eigen-matrix-values, which is different from the scalar-
valued case. In the scalar-valued case, if ¢(t) is an eigenfunction associated with an
eigenvalue \ for a scalar Fredholm integral operator, then a¢(t) for any constant
a # 0 is also an eigenfunction associated with A. It is not known, however, whether
the following statement is true: If ®(¢) is an eigen-matrix-function associated with
an eigen-matrix-value A for a matrix Fredholm integral operator K(s, t), then A®(t)
or ®(t) A for an N x N matrix A € CV*¥ is also an eigen-matrix-function associated
with A for the operator K(s,t). The difficulty is due to the noncommutativity of
matrix multiplications.
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A matrix Fredholm integral operator K(s,t) is called Hermitian if K(s,t) =
K'(t,s) for s,t € [0,T]. If K(s,t) is Hermitian and A is its eigen-matrix-value, then
A = At ie., Ais also Hermitian. This is because

(B, K®) = A = (&, K®))" = ATl

We associate each matrix Fredholm integral operator K(s,t) on [0,T] x [0,T]
with the following scalar Fredholm integral operator K (s,t) on [0, NT] x [0, NT:

(5.8) K(s,t) 2 Kyu(s — (k= )Tt — (I - 1)T),

if (s,t) € ((k —1T,kT] x (I = 1)T,IT), k,1 = 1,2,..., N, where Ky ;(s,t) is the
component function of K(s,t) at the kth row and the l/th column. The property
(5.6) implies the following properties for K (s, t):

NT /NT
(5.9) / / |K (s,t)|*dtds < oo,
0 0

and if K(s,t) is Hermitian then K(s,t) is also Hermitian, i.e., K(s,t) = K*(t,s),
where * means the complex conjugate.
We now have the following generalized Hilbert-Schmidt theorem.

THEOREM 5.1. Let K(s,t), s,t € [0,T), be a Hermitian matriz Fredholm in-
tegral operator and K (s,t), s,t € [0, NT], be its associated scalar Fredholm inte-
gral operator. Let A1, \a, ..., all be eigenvalues (including multiples) of K (s,t) with
[Adi] > |A2| > ---. Then, an N x N matriz A is an eigen-matriz-value of the
operator K(s,t) if and only if

(5.10) A = UdiagAny, -+ » Aay)UT,

where U is a certain N x N unitary matriz, and ny,...,nn are positive integers with
ny < ng < --- < ny. Moreover, if the operator K (s,t) doesn’t have zero eigenvalue,
i.e, |An| > 0, n = 1,2,..., then, the eigen-matriz-functions ®,(t) corresponding
to the eigen-matriz-values A, £ diag(An—1)N+41," - AnN), = 1,2,..., form an
orthonormal basis for the matriz valued signal space L*(0,T; CN*N),

Proof: From the definition of an eigen-matrix-value in (5.7), UtAU is an eigen-
matrix-value of K(s,t) if A is an eigen-matrix-value of K(s,t) and U is an N x N
unitary matrix. Thus, to prove A in (5.10) is an eigen-matrix-value of K(s,t),
we only need to prove the diagonal matrix diag(An,,- -, Any) IS an eigen-matrix-
value of K(s,t). In fact, without loss of generality, we only need to prove A, is an
eigen-matrix-value of K(s,t) for any integer n > 1.

Let ¢n(t), t € [0, NT], be the eigenfunctions of K (s,t) corresponding to A,
n=1,2,.., ie., ¢.(t), n = 1,2, ..., form an orthonormal set of L?(0, NT; C), and

NT

(5.11) On(8)K (s,t)ds = Anpn(t), t €[0,NT).

Then, equation (5.11) can be rewritten as

7 N—1

(5.12) /0 3" Guls + KT)K (s + kT, t)ds = A (t), ¢ € [0, NT].
k=0
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Let ¢n(s) 2 ¢n(s+kT), s€[0,T), k=0,1,..,N — 1. Then,

T N-1
(5.13) / Z b (8)K (5 + KT, t)ds = Mun(t —IT),
0
fort € (IT,(1+1)T],1=0,1,....,N — 1. Let
¢0,(n—1)N+1(8) ¢0,(n—1)N+2(8) T ¢0,nN(S)
(514) (I)n(S) é ¢1,(n—1)N+1(8) ¢1,(n—1)N+2(S) ¢1,nN(s)
ON_1,(n-1)N+1(5)  ON—1,(n—1)N4+2(8) -+ ON_1,an(5)

By (5.8), (5.13) can be rewritten as
T

(5.15) / B, (5)K (s, 8)dt = An®p (), n=1,2,..., t€[0,T].
0

By the orthonormality of ¢, (s), t € [0, NT], it is not hard to see that
(5.16) (B, ®pn) =0(m —n)Iy, m,n=1,2,...

Therefore, we have proved that A,, n = 1,2,..., are eigen-matrix-values of the
operator K(s, ).

Conversely, let A be an eigen-matrix-value of the operator K(s,t). By the
previous discussion we know that A is Hermitian. Thus, there exists a unitary
matrix U such that A = Udiag(ay,--- ,an)U" with |a;| > -+ - > |ay]|. By definition
(5.7) of an eigen-matrix-value, diag(aa,--- ,an) is also an eigen-matrix-value of
K(s, ), i.e., there is ®(t) € L2(0,T; CN*N) with (®, ®) = Iy such that

(5.17) /0T<I>(s)K(s,t)ds = diag(ay,--- ,an)®(t), t €[0,T].

Assume ¢, »(s) is the mth row and the nth column component function of ®(s).
Let ¢n(s) = ¢pmpn(s — (m —1)T) if s € (m — 1)T,mT] for m,n = 1,2,...,N. By
(5.8) and (5.17), the function ¢,(s) is an eigenfunction of the operator K (s,t) with
its corresponding eigenvalue a,, n = 1,2,..., N. Thus, ar = A,, for some k with
ny < mng < --- < ny. This proves (5.10).

When K (s,t) has no zero eigenvalue, by the scalar Hilbert-Schmidt Theorem
(see [25]), the eigenfunctions ¢, (t), n = 1,2,..., form an orthonormal basis for
L2(0, NT; CN*N). Therefore, any f(t) € L2(0, NT; C) can be represented as

oo

(5.18) F&) = (f,6n)9n(t), t € [0,NT).

n=1

Similarly, (5.18) can be rewritten as

Z/ ¢0n ;¢N—1,n(3))Tds(¢0,n(t)a"' 7¢N—1,n(t))a te [OaT]a

for any N x 1 vector-valued f € L?(0, T; CV). By regrouping the above summation,
we have

(5.19) Z/ 3, (t)ds, t € [0,T], £ € L2(0,T; CM).
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Extending f(¢) € L2(0,T; C") to f(t) € L?(0,T; CN*Y), we have
(5.20) £(t) = Y (£, ®n)@n(t), t€[0,T], £(t) € L*(0,T;CN*N).

n=1

This proves that the sequence ®,,(t), n = 1,2,..., forms an orthonormal basis for
L%(0,T;CN*N). &

From the above proof, the eigen-matrix-function ®,,(¢) in Theorem 5.1 associ-
ated with the eigen-matrix-value A, in Theorem 5.1 is formulated by (5.14), for
n = 1,2,.... We next want to generalize Mercer’s Theorem. A matrix Fredholm
integral operator K(s,t) is called positive if the N x N matrix (f,Kf) for any
f(t) € L*(0,T; CVN*N) is nonnegative definite, i.e., x'(f, Kf)x > 0 for any x € CV.

LEMMA 5.2. A matriz Fredholm integral operator K(s,t) is positive if and only
if its associated scalar Fredholm integral operator K (s,t) is positive.

Proof: Writing (f, K f) up, similar to the proof of Theorem 5.1, we have

(5.21) /NT NTf*(s) K*(s,t)f(t)dsdt = // (YK (s, t)fT (s)dtds,

where f(t) € L2(0,T; CY). On the other hand,

(5.22) xf/ / (K (s, t)f(s)dtdsx —/ / (xTf(t)) KT (s, t)(x'£(s)) dtds,

where x € CV and f(t) € L?(0,T; CN*¥). Since

L*0,T;CN) = {f(t)x : x € CN, f e L*0,T;CN*M)},
the values in (5.21) are nonnegative for all f(t) € L?(0,T; C") is equivalent to that
the values in (5.22) are nonnegative for all x € CV and all f(t) € L?(0,T; CN*N).

This proves Lemma 5.2. &
we have the following generalized form of Mercer’s Theorem.

THEOREM 5.3. Let K(s,t) be a Hermitian matrix Fredholm integral operator.
If K(s,t) is positive and its associated scalar Fredholm integral operator K(s,t) is
continuous in [0, NT] x [0, NT], then

(5.23) K(s,t) = i ®f (s)An®,(t), s,t€[0,T],

where ®,,(t) and A,, are the same as in Theorem 5.1 and the convergence of the
infinite summation is uniform.

Proof: By Lemma 5.2, the operator K(s,t) is also positive. By Mercer’s
theorem for the operator K(s,t) (see [25]),

=Y ¢5(8)pn(t)An, s, € [0,NT],
n=1

where ¢,,, A, are eigenfunctions and eigenvalues of K (s,t) and the convergence is
uniform. Regrouping the above summation and using the same technique in the
proof of Theorem 5.1, (5.23) can be proved. &
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5.3. Matrix KL Expansions for Continuous-Time Matrix Valued Sig-
nals. We now come back to the MKL expansions for continuous-time matrix valued
signals.

Let R(s,t) be the correlation matrix function defined by (5.1) of a matrix val-
ued random process X(t) with a = 0 and b = T'. Assume R(s,t) € L2(0,T; CN*N).
Then R(s, t) is a Hermitian matrix Fredholm integral operator on L?(0,7; CN*V);
moreover R(s,t) is positive. Therefore, we can apply the generalized Hilbert-
Schmidt Theorem and the generalized Mercer’s Theorem.

Let R(s,t) be the associated scalar Fredholm integral operator of the operator
R(s,t), that is defined by (5.8). Let ¢n(t), An, n = 1,2, ..., all be eigenfunctions
and eigenvalues (including multiples) of the operator R(s,t) with

NT
(5.24) dn(S)R(s,t)ds = Apon(t), t € [0,NT],n=1,2,...,
0
and
NT
(5.25) Om () (t)dt = 6(m —n), m,n=1,2,...,
0
where |A1| > |Az2| > ---. Since the operator R(s,t) is positive, by Lemma 5.2, the
operator R(s,t) is also positive. Thus, Ay > A2 > --- > 0.
Let
(5.26) An 2 diag(An-1yn41, - > Ann), n=1,2,...,

and, for t € [0,T], n = 1,2,..., and ®,(¢) defined by (5.14). Then, by Theorem
5.1, its proof and (5.25), ®,(t) is an eigen-matrix-function of the operator R(s,t)
corresponding to the eigen-matrix value A, in (5.26) for n = 1,2, .... This gives the
following first condition on signals so that their MKL expansions exist.

THEOREM 5.4. Let X(t), t € [0,T], be a random process with its correlation
matriz function R(s,t) € L2(0,T;CN*N), If \,, > 0, n = 1,2,..., then, for each
path of X(t),

(5.27) X(t) =) (X, 8,)8a(t), t€[0,T],
n=1

i.e., the MKL expansion of X(t) exists in the sense (5.2)-(5.4).
The second condition is given by the following theorem.

THEOREM 5.5. Let X(t), t € [0,T], be a random process with its correlation
matriz function R(s,t) € L*(0,T; CN*N). If its associated scalar Fredholm integral
operator R(s,t) is continuous in [0, NT| %[0, NT, then the MKL expansion of X(t)

exists:
oo

(5.28) X(t) = Y (X, 8,).(t), t€[0,T],
n=1

where the convergence is in the mean square sense.

The proofs of the above two theorems are straightforward by using the results
in Section 5.2.

From Theorems 5.4-5.5, it seems that the MKL expansions of X(¢) depend on
the definition of the associated scalar Fredholm integral operator R(s,t) of R(s,t).
One might ask, when the existence of the MKL expansion of X(t) in the sense
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of (5.2)-(5.4) is assumed, whether the MKL expansion of X(¢) changes if the way
to define R(s,t) in (5.8) changes. The answer is NO. In other words, the MKL
expansions (5.27) and (5.28) in Theorems 5.4-5.5 are necessary.

THEOREM 5.6. Let X(t), t € [0,T], be a random process with its correlation
matriz function R(s,t) € L*(0,T; CN*N). If the MKL expansion of X (t) exists in
the sense of (5.2)-(5.4), then the MKL expansion of X(t) can always be written as

oo

(5.29) X(t) =) (X, 8,),(t), te€0,T),

n=1

where ®,(t), n =1,2..., are defined in (5.14).

Proof: By (5.2)-(5.4), there exist &, () € L2(0,T; CN*N) and A, € CNV*N,
n =1,2,..., such that

T
/ &, (s)R(s,t)ds = A&, (t), n=1,2,...,t € [0,T],
0

<(I)Ina <I>Im> = 6(“ - m)IN7 m,n = ]-; 27 ey

and
(5.30) X(1) = Y 4X, &,)8,(0), ¢ [0,7).

Thus, &, (¢) is an eigen-matrix-function of the operator R(s, t) corresponding to the
eigen-matrix-value Aln forn =1,2,.... By Theorem 5.1, there exist unitary matrices
U, such that A,, = U,’[A'nUn for n = 1,2, ..., where the order of the eigenvalues A,
is rearranged if necessary. Moreover, A, is an eigen-matrix-value of R(s,t) with its
eigen-matrix-function U,®.,(t), n = 1,2, ... . Then, similar to the proof of Theorem
5.1, one can show that &,(t) = U,®, (), n =1,2,... . By (5.30),

X(t) = Y (X, Ul@n)Ul®a(t) = Y (X, &0)&0(0).
n=1 n=1
This proves (5.29). &
From Thoerems 5.1-5.6, one can clearly see that a matrix valued random process
X(t) is completely decorrelated in the both time and the spatial domains using
Orthogonality B.

6. Conclusion

In this paper, we studied orthonormal matrix valued multiresolution analysis
and wavelets. A simple sufficient condition on the matrix filter H(w) that leads
to orthonormal matrix valued wavelets is presented, which is analogous to the
one given by Mallat in [18] for scalar valued wavelets. This sufficient condition
enables us to construct families of nontrivial orthonormal matrix valued wavelets.
With orthonormal matrix valued wavelets, one is able to construct multiwavelets
with a different orthonormality (called Orthogonality B in this paper) from the
one people currently use (called Orthogonality A in this paper). It was shown
that Orthogonality B is weaker than Orthogonality A. We believe that this weaker
orthogonality makes the sufficient condition simple. The main idea behind it is that
one dimensional vectors are lifted to two dimensional matrices, and therefore more
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freedoms are avaliable. It was also shown that Orthogonality B provides a complete
Karhunen-Loeve expansion, i.e., a complete decorrelation, for matrix valued signals.
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