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Abstract—Differential space-time modulation has been re- product and the largest possible diversity sum that unitary signal
cently proposed in the literature for multiple-antenna systems constellations of any size can achieve.
over Rayleigh-fading channels, where neither the transmitter
nor the receiver knows the fading coefficients. For the practical ~ Index Terms—Differential space-time modulation, diversity
success of differential space-time modulation, it has been shownproducts, diversity sums, Rayleigh-fading channels, sphere
critical to design unitary space—time signal constellations with packing, spherical codes, transmitter diversity, unitary matrices,
large diversity product which is a primary property for the signal  unitary space—time codes, wireless communications.
constellations to have good performance in high signal-to-noise
ratio (SNR) scenarios.

In this paper, we focus on the design of unitary signal constella- |. INTRODUCTION
tions for differential space—time modulation with double transmit
antennas. By using the parametric form of a two-by-two unitary N THE last several years, there has been considerable
matrix, we present a class of unitary space—time codes callgdra- . . . - . . .
metric codesand show that this class of unitary space—time codes 1 interest in the wireless communication link using multiple
leads to a five-signal constellation with the largest possible diversity transmit antennas for the Rayleigh-fading channel models.
product and a 16-signal constellation with the largest known diver- The basic information-theoretic results of transmit diversity
sity product. Although the parametric code of sizel6 isnotagroup  syggest that the capacity of a communication link with multiple

by itself, we show that it is a subset of a group of ordeB2. Fur- ; ; .
thermore, the unitary signal constellations of size32, 64, 128, transmit antennas can remarkably exceed that of a single-an

and 256 obtained by taking the subsets of the parametric codes of €Nna link [36], [7], [8], [22], [45]. There have also been
sizes37, 75, 135, and 273, respectively, have the largest known Several coding and modulation schemes proposed to exploit
diversity products. o . . . the potential increase in the capacity through space diversity.

We also use large diversity sum of unitary space—time signal For the coherent multiple-antenna channel, several transmit

constellat!ons as another significant property for the sign.al diversity methods have been presented in [35], [34], [25] and
constellations to have good performance in low-SNR scenarios. ' !

The newly introduced unitary space—time codes can lead to signal féferences therein (see, e.g., [2], [9], [12], [26], [27], [30],
constellations with sizes of5 and 9 through 16 that have the [38]-[41]). Specifically, Tarokh, Seshadri, and Calderbank [35]
largest possible diversity sums. Subsequently, we construct a fewproposed space—time codes which combine signal processing
sporadic unitary signal constellations with the largest possible di- 5t the receiver with coding techniques appropriate to multiple

versity product or diversity sum. A four-signal constellation which transmit antennas. For the noncoherent multiple-antenna
has both the largest possible diversity product and the largest '

possible diversity sum and three unitary signal constellations channel, Marzetta and Hochwald [22] proposed a general
with the largest possible diversity sums for sizes 06, 7, and 8 signaling scheme, called unitary space-time modulation, and
are constructed, respectively. Furthermore, by making use of the showed that this scheme can achieve a high ratio of channel
existing results in sphere packing and spherical codes, we provide capacity in combination with channel coding. The design of

several upper and lower bounds on the largest possible diversity unitary space—time constellations was investigated in [15] and

[1].
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of the block error rate, is dominantly determined by the divethat for the2 x 2 unitary signal constellations, the optimal diver-
sity product of the unitary space—time constellations and hersity product and sum are of an order betwéert/? andL—1/4,

that the design of unitary space—time constellations with largénereL is the constellation size. For genefdl x M (M > 2)
diversity products is crucial for the good performance of diffenitary signal constellations, the optimal diversity product and
ential unitary modulation schemes. In [16] and [18], a diagonalim are of an order not greater thant/M* for large constel-
cyclic code was developed. A fast decoding algorithm for diation sizeL.

agonal codes was proposed in [4]. In [31] and [19], the unitary This paper is organized as follows. In Section Il, some prelim-
space—time group codes with positive diversity product were draries in differential unitary space-time modulation and a de-
tensively investigated. When the constellation size is a powersin criterion for unitary signal constellations with large diver-
two, Hughes [19] obtained the characterization of space—tiraigy product and/or diversity sum are presented. In Section |ll,
group codes which are either diagonal cyclic codes or dicycicnhovel class of unitary space—time signal constellations for
group codes. In a recent work [31], a thorough classificatiatouble transmit antennas, i.e., the parametric codes, are devel-
of unitary space—time group codes of any finite order was preped. Some numerical results in terms of the diversity product
sented. The best one among the space—time group codesarah sum and the block error rate are also given for the com-
therefore be found by an exhaustive computer search in a finiterison among the existing known unitary space—time codes. In
set of unitary signal constellations. It is remarked that the gro@ection IV, we construct a four-signal constellation with the op-
code has the practical merit that every transmitted signal is stithal diversity product and sum and three signal constellations
a codeword in the group code and, consequently, can be detdrsizes6, 7, and8 with the optimal diversity sums, none of
mined by a simple group table lookup. which belongs to the class of parametric codes. In Section V,

The primary purpose of the current paper is to design unita$¢me upper and lower bounds on the optimal diversity product
space—time codes for the differential modulation scheme wiiid the optimal diversity sum for unitary signal constellations
double transmit antennas. By using the parameterization of upith any size are obtained. Some asymptotic upper and lower
tary groups, we construct a class of unitary signal constellatioR9unds on the optimal diversity product and sum for large-size
calledparametric codesfor two-transmit-antenna systems. Th&ignal constellations are also presented. In Section VI, we make
parametric codes are demonstrated to have a significant peme concluding remarks.
formance improvement over the cyclic group codes. Remark-
ably, the parametric codes lead to a five-signal constellatidh DIFFERENTIAL UNITARY SPACE-TIME MODULATION AND A
with the largest possible diversity product and a 16-signal cORRITERION FORDESIGNING UNITARY SIGNAL CONSTELLATIONS

stellation with the largest known diversity product. Compared |, this section, we present some necessary preliminaries

with the existing unitary space-time codes for two-transmit-aQ gt the differential unitary space—time modulation scheme
tenna systems, the above generated 16-signal constellationmﬁosed by Hochwald and Sweldens in [16] and Hughes in
an improvement in terms of the block error rate up to 1 dB gig) for the Rayleigh-fading channel model, where the channel
SNR 22 dB in the case of two receive antennas and at SKRjing coefficients are unknown to both the transmitter and the

10 dB in the case of five receive antennas. We also show thateiver an upper bound for the block probability of error and
the unitary signal constellations of siz&3, 64, 128, and256 4 gesign criterion for unitary signal constellations.
obtained by taking the subsets of the parametric codes of sizes
37, 75, 135, and273, respectively, have the largest known dia_ Differential Unitary Space—Time Modulation
versity products in the literature. Furthermore, for two-transmit- . .
: . . . In what follows, we adopt the relevant notations used in [16].
antenna systems, we employ the diversity sum of unitary S|gr}§| . ) )
; - . n M x M complex matrixV' is called unitary if
constellations as another efficient metric for good performance

of the signal constellations in low-SNR situations. The para- VHV = Iy

metric codes can also lead to unitary signal constellations WWhereIM is theM x M identity matrix and the superscrifi
the largest possible diversity sums for sizess@nd9-16. A stands for the complex conjugate transpose or Hermitian trans-

few sporadic unitary constellations with the largest possible (ﬁose of a complex matrix. A/ x M unitary signal constella-
versity product and/or sum for sizes 4f6, 7, and8 are also tjgn of sizeZ, > 2 means a subset of

presented. Finally, by making use of extensive results in sphere -

packing and spherical codes, we present some upper and lower V=VelViVe=1u, L€ L1}

bounds on the largest possible diversity product and the largestere the index set of signals is

possible diversity sum of unitary signal constellations with any 7 det (0,1 L-1}

size. Thelargest possibldiversity product and sum are also L= 5o ’

called theoptimaldiversity product and sum, respectively. NoFor anM x N complex matrix4d = (a,» ), its Frobenius norm

tice that the optimal diversity product is alwagmaller than or Euclidean norm is defined by [21]

or equal tothe optimal diversity sum for any constellation size,

as v?e shall seeplater. It will f)l/thher be srzlown that, while the 1Allr = \/Tr (4f4) = \/Tr (4A4H)

two quantities are equal for constellation sizeg ahrough5, < M N , 1/2
|arnn| )

the optimal diversity product of a unitary signal constellation is = Z Z
strictly smaller tharthe optimal diversity sum for constellation m=1 n=1
sizes of6—9. A main result for large-size signal constellations isvhereTr (-) denotes the trace of the argument matrix.
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Consider a communication link with/ transmit antennas the above semigroup. Here, the binary operation on the semi-
and N receive antennas operating in a Rayleigh flat-fading egroup is the usual matrix multiplication. In the following, for
vironment, which can be described by the following channsimplicity we assume that the initial transmitted signal matrix

model [16]: So = Iy, although it is not necessary for the differential mod-
ulation scheme.
Xr = VpS-Hr + Wo, 7=0,12,... ) Substituting (2) into the channel model (1) and using the as-
wherer is the index of the time block within which sumption ofH- ~ Hr_; for 7 = 1, 2, ..., we can obtain
t=7M,TM+1,..., T M+M-1 Xr = VpVer Sri He + Wr
:‘/Z,—XTfl—i_WT_VZ,—WT*]J T=12 ... (3)

time samples are assembled in ord&r, = (s:,,) the trans-

mitted M x M matrix-valued signal whose expected total poweWe define
i i i i 1
at any timet is normalized to be one, i.e., W = ﬁ (W, — V. Wo_1) (4)
M
E Z |sem|? =1 then we can rewrite (3) as the followifighdamental differential
m=1 receiver equation§l6]:
whereE denotes expectatiok - = (x4, ) the receivedd x N X, =V. X, +V2W, =12, ...

matrix-valued signalHd., = (47,,,) the M x N channel fading-

coefficient matrix,W,. = (wtn) the additiveM x N matrix- WheI’EW; defined by (4) is add x N matrix with additive inde-
valued noise, anglis the expected SNR at each receive antenriggndent A’ (0, 1) distributed noise entries. The maximum-like-
which does not depend on the number of transmit antefthas lihood (ML) demodulator for differential space-time modula-

Here, the subscripts m, andn satisfy tion is given by [13], [16]
sMT. . -
TM<t<iM+M-1, 1<m<M, andl<n<N o =argmin X — VXl
_ - H H H
in the rth time block. We assume that the additive naisg at — At pgx T (Xoy Vi X + X2 VeXo ),

time ¢ and receiving antenna is independent, with respect to r=1,2.... (5
botht andn, identically zero-mean and unit-variance complex

Gaussian distributed (0, 1) and that the fading coefficients
hl.., are constant in theth time block, independently of the
timet =+M,7M +1,...,7M+ M — 1, and also independent The pairwise probability?, ,» of mistaking V; for Vy
identically complex normaf’ (0, 1) distributed with respect (V4,¢ € Z;, £ # ¢') or vice versafor the ML demodulator
to m andn. The fading-coefficient matrixf, indexed byr is (5) has a closed-form expression of [13], [16]

assumed to be nearly equal to its adjacent fading-coefficient N}gu — Prob{chooseV | V; transmitted

trices, i.e. H, ~ H,y; forr=10,1,2, ...

B. An Upper Bound on the Block Error Rate

In a single time block of siz&7 there are// channel uses, and = Prob{chooseV; | V- transmitted
atransmission rat& requiresL = 2% different signals. Each 1 > 1 M pra2 [, I\
signal is am\/ x M unitary matrixV; from a signal constellation =9 241 H + 1+2p + 1 dw
V consisting ofl. > 2 such distinct unitary matrices. We assume 4 m=1 N
that the data to be transmitted is an integer sequeqnce,, . .. 1 2 M cos? 0-+1—sgn(o2,) "
withz. € 7y forr =1, 2, .... The transmitted signal sequence ~ ~— = 29 2 2
. T . D - ; . . i 1—sg
is then determined by the followirfgndamental differential en- 0 i1 L008” O gy o 1 —sen(on,)
coding or transmitter equatiorf4 6]: (6)

S, =V. S, _, =192 @) wheres,,, & 5,,,(V, — Vi) represents theuth singular value of

the M x M difference matrixv, — Vi form = 1,2,..., M,
where the initial transmitted sign&}, can be any gived/ x A  andProb{-} the probability of a random event, and the function
unitary matrix. Therefore, the transmitted signal in time block sgn(-) is the signum function defined &sf the argument vari-
is a product ofr + 1 manyM x M unitary matrices as follows: able is zero and if the variable is larger than zero, and the last

equality in (6) utilizes the following coordinate transformation

S‘r = <H ‘/Z,-lwrl) 507 T = 17 27 s [14]

k=1
w= - tan@.

which is still anAZ x M unitary matrix and therefore satisfies
the power normalization. If the initial transmitted signal matrifhe pairwise probability of errof, » has the Chernoff upper
So = In, then the set of all possibly transmitted signéls bound [13], [16]

form =0, 1, 2, ... is a semigroup [20] which is finitely gen- M 5 o N
erated by the signal constellatidh This conclusion is actually Poy< 1 H [1 L P Om } ) @)
true if only the initial transmitted signal matri%, belongs to et 4(1 + 2p)
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Furthermore, it is clear that the pairwise probability of erroE. A Design Criterion for Unitary Signal Constellations
Fe e can generally be bounded from above by the following the chernoff bound on the pairwise error probability,,
summation of a finite integral and a positive number: given by the right-hand side of (7), can be rewritten as

_N M -N
1
Pre d <= Gm
bt ‘27r/ 2+1H{ 1+2 < +4)} v Pre=s 1+;P En, (10)
M _N
1 arctan(2a) p?o? , 1 where
Z_ 1 m Z
+ <2 7r )nll__[j +1—|—2p “ +4 ﬁdéf p’
B ) 4(1 + 2p)
and
for all a 2_0. _ o B = E(Vi— Vé,)déf Z H . Vi)

Let the right-hand side of (8) be denoted Bya), which is a
function in terms ofy > 0. Clearly, F'(0) is the Chernoff bound
(7). The functionf'(a) has the following properties.

1<y < <ippy <M k=1

form =1, 2, ..., M. Moreover, the Chernoff union bound on

the block probability of erroi®., given by the right-hand side
Proposition 1: The functionF'(a) in terms ofa > 0 given of (9), can also be represented by

by the right-hand side of (8) satisfies the following conditions.

L—2 L-1 -N
1) ?(a) is monotonically decreasing far> 0 and tends to = Z > o1+ Z P Em
¢ aSa — +0o. £=0 ¢'=(+1 m=1
2) WhenF(a) is used to numerically evaluate the pairwise We may give a geometrical interpretation Bf,, for m =
error probability?, ., the nonnegative relative error 1, 2, ..., M as follows. LetQ = Q(07,03,...,03,) be a hy-
percube in théZ-dimensional Euclidean real spa& defined
Fla) — Py
(a; Ly < 5 t7r - 1, fora> 0 by the set
Lt arctan(2a) (Mo, Ao, . Awad)T
which is less tha.0032 whena > 100. =M(07,0,...,07 + 200,02, ...,0)7
3) When the SNR is large, the pairwise error probability + 4+ Am(0, ..., 0,037,
P, ¢ and its Chernoff bound in the right-hand side of (7), 0<A,<1, m=12 ..M

i.e., F'(0), decay at a rate of the same order. To be preciseh th it denotes the t ¢ tor. Th
if M > 1isthe number of nonzero singular values of th ere the superscrifit denotes the transpose of a vector. Then,

M x M difference matrixy;— V,r, then, for large SN m is a sum of them-dimen;ional vqume; pf those-dimen-
X e g 4 sional faces of2 each of which has the origin iR* as one of

MN its vertices. It is clear that there are
PZ,[’_H<1 1>+0() M det M' m M m
F(0) 2k ? el 2 1 -
© k=1 <m> ml(M — m)! g( + k )
whereo,(1) represents a variable in terms pfwhich many suchn-dimensional faces having a vertex in the origin.
approaches zero astends to infinity. For example, in the case 8f = 3, we have
Proof: See Appendix A. O By =02+ 02+ 03

We assume that thk transmitted unitary signals are equally
probablea priori. Then, the performance of a general constel-
lation consisting of unitary space—time signals can be measufit od
by the following Chernoff union bound on the block probability Es =oio303.

of error . [15], [16] Moreover, for the general case bf > 1

2 2 2 2 2 2
By =0705 + 0705 + 0503

1 L=t 9
Po=q >~ Prob{error| V; transmitted Ei=) on
m=1
£=0
o L and
M
S — é Y _ 2
L ; ; E]\l — H Im
L-2 L-1 2 2 —N . m=t .
< il Z H [ &} 9) which are the sum and product of the squared singular values
R Wt 4(1 + 2p) o2 forallm =1, 2, ..., M, respectively.

It is seen from (10) that the Chernoff bound on the pairwise
We shall use the above first inequality and Property 2) in Propprobability of error?; . is small when the termg,,, for all
sition 1 to evaluate numerically the block probability of erfor m=1,2, ..., M are large. The Chernoff bound (9) on the block
in the subsequent section. probability of errorP. is small when the term&,,,(V, — Vi)
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are largeforallm =1,2,..., M andforall0 < £ < ¢ < In [16], the quantity((L, V) is called thediversity product
L—1. Now, we want to introduce some quantities that are closeaty the constellatiorV, which is represented in terms of the min-
related to the evaluation of the pairwise probability of error arichum among th@roductsof the squared singular values for all
the block probability of error. difference signal matrices. Analogously, we may ¢alL, V)
For any twoM x M unitary matriced; andVs, we defined  the diversity sunof the constellatio’, since it is represented
guantities that reflect the dissimilarity between the two matricésterms of the minimum among tlseamsof the squared singular

as follows: values for all difference signal matrices. Thé quantities de-
\ (BoVe— V) 1/(2m) fined by (12) possess the following properties.
Dy, (V1, Va) = > <%> ; Proposition 2: For any givenM x M unitary signal constel-
() lation V of size L, the nonnegative quantiti€s,(L, V) given

m=1,2 ..., M. (11) py@a2)form=1,2, ..., M andL > 2 satisfy the following

In the extreme cases @b = 1 andm = M, the quantities conditions.
D,.(Vi, V,) are related to the Frobenius norm and determinant 1) Foreachn =1,2,..., M —1
of the difference matri¥; — V5, respectively. We rewrite them Em(L, V) 2 &nir(L, V)
as . and foreachn = 2,3, ..., M —1
Deue(Vi, V2) = Dy(Vi, Vo) = Sz IV~ Vellr (L, V) > SZiIi(L VIERTI(L, V).
1 M 1/2 2) If2 < L <2M? +1, then
(3 i) ;
VM <m_1 (LWL | =——, forallm=1,2,..., M.
and 2(L-1)
D ‘D /e (Vi — V)] o
aet (V1 VQ) m(Vi, Vo) = 5 V/ldet(Vi = Va) In the casem = 1, the above inequality holds with
1/M equality if and only if any two distinct matrices Whave
H om(Vi the same normalized Euclidean distance and that the sum
oot} of all the L signal matrices irV is anM x M all-zero

wheredet(-) denotes the determinant of the argument matrix. matr|x2. )

In the following, the quantitie®.,.(V1, V2) and Dy (V1, Va) 3) IF2M7 +1 < L < 4M°7, then

are called the normalized Euclidean distance and normalized Em(L, V) < forallm=1,2, ..., M.
determinant dissimilarity between the two matriéésand Vs, \/_

respectively. In addition, the quantifjf; — Vz|| ¢ is called the 4) If L > 4M?, then

Euclidean distance betweén and V5.

For any given\/ x M unitary signal constellation of sizeL, ¢m(L, V) < i, forallm=1,2,..., M.
namely,Y = {V; | VRV, = I, ¢ € Z, }, we may define the V2
following A quantities that reflect the minimum dissimilarity ~ Proof: See Appendix B. O
between any two different unitary signalsihas follows: According to (10) and (11), the Chernoff bound on the
En Y= min_ Dn(Vi, Vi), pairwise probability of error . is small when the dissim-
0<L<t/<L—1 ilarity quantities D,,,(V;, Vi) for all m = 1,2, ..., M are
m=1,2,..., M. (12) large. Therefore, when the minimum-dissimilarity quantities

&n(L, V) of the signal constellatiov, defined by (12), are
large for allm = 1, 2, ..., M, the Chernoff bound (9) on the
block probability of errorP. becomes small correspondingly,

In the extreme cases @f = 1 andm = M, the quantities
¢n(L,V) are, respectively,

def at any SNRp. Moreover, it is easy to see that the diversity
6(L, V) = 51(1L V) product, i.e.£p (L, V), is crucial for the performance of the
Ve — Vel p unitary space-time constellations at high-SiRwhile the
2\/_ O<é<é'<L ' diversity sum, i.e.£1(L, V), is at low-SNRp (see also [16],
1 _ M 12 [18]). For the sake of simplicity, we shall only consider to
= 3737 o<t 3, <Z om(Ve sz)) (13)  design the unitary signal constellatidn with diversity sum
T m=1 (13) and diversity product (14) as large as possible. If the
and e unitary signal constellatiol’ has thdargest possiblealiversity
(L, V)= &u(L, V) product (14) (respectively, diversity sum (13)), then we say that
_ % » min X/ ldet(Ve — Vo)) the_constgllatipn has aptimaldiversity product (respectively,
<e<l<I—1 optimal diversity sum).

1 .
- min
2 0<é<#/<L—1

H o2 (Vi — V) (14) constellations for differential space-time modulation with

g In the sequel, we shall focus on the design of unitary signal
<m_ ) M = 2 transmit antennas while allowing any number of re-
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ceiving antennasV > 1. Then, a signal constellation wesuch thatthe unitary signal constellation has the largest diversity
shall consider consists & x 2 unitary matrices. Our design product and/or the largest diversity sum in the constellation class
objective is to find a unitary signal constellation with larg€20). We call the found signal constellatiof(k;, k2, k3) for
minimum normalized Euclidean distance and/or normalizesbmek;, ko, k3 € Z; asparametric codesince every signal
determinant dissimilarity, or equivalently, with large diversitymatrix in the constellation possessesplaeametric formof 2 x

sum and/or diversity product. The diversity sum and diversiB/ unitary matrices, as shown in (19). It is seen that when the

product of a2 x 2 unitary signal constellation conditionk, = k3 = 0 is imposed in the constellation class
V={V,|VIV, = I, £ € 7} (20), the parametric code (18) is exactly thagonal cyclic code
_ _ ) in the casel = 2 [16], [18], [19].
of size L > 2 are, respectively, given by For the signal constellation cla€g, given by (20), we have
§(L, V) = min Doy (Ve, Vir) the following result.
0<e<'<L—1
1 . Theorem 1: Let L = 27, wherep € N andN is the set of all
T2/ 0<tePLL_1 Ve =Vellr (16) positive integers. The signal constellativik, , k2, k3) in the
and constellation clas§;, given by (20) has a positive diversity sum
(L, V) = min Dawi(Ve, Vi) (16) if and only if none of the following three cases occurs.
iékf’SL*l 1) p > 3,k =3 (mod 4), and(ks, ks) = (odd odd).

=3 0<[2[1,11<1L71 V|det (Ve — Vi) 17) 2) p > land(ky, k2, k3) = (odd even odd).

-7 3) p > land(ki, ko, k3) = (odd odd, even, wherek; =
odd andk; = even fori = 1, 2, 3representthat; € 7,
is an odd and even number, respectively.

Proof: See Appendix C. O

I1l. A CLASS OF UNITARY SPACE-TIME SIGNAL
CONSTELLATIONS

In this section, we use the parametric form2ok 2 unitary
matrices to construct a class of unitary signal constellations. Weln the case of the constellation siZe being a power of
shall see that this construction method can lead to a five-sig@alTheorem 1 can be utilized to reduce the search range of
constellation with both the optimal diversity product and th&:, k2, k3 € Z, such that the signal constellatiof(k, ko, ks3)
optimal diversity sum and a 16-signal constellation with theas the largest diversity sum and/or product in the constellation
largest known diversity product in addition to the optimal diverclassCy, given by (20), especially for large constellation size
sity sum. Moreover, the unitary signal constellations for sizes & Moreover, Theorem 1 implies that the diagonal signal
9-15 in the class have the optimal diversity sums. constellation, which is in the form of (18) withy € 7, and

ko = k3 =0 always has a positive diversity sum.

A. A Class of Unitary Signal Constellations for Double

Transmit Antennas ) ) . . i
o . . B. Comparison With Previous Unitary Space-Time Codes and
Let the positive integel. > 2 denote the size of a uni- Ny, merical Simulation Results

tary signal constellatiorf);, def 27 /L, andy déf\/—_l being the

imaginary unit in the complex plar@. For any given three in-  There have been several classeg af 2 unitary space-time

tegersky, ko, k3 € 71, we define the2 x 2 unitary matrix constellations proposed in the previous works. In [16] and [18],

A(ky, ks, k3) as a product of thre x 2 unitary matrices as a diagonal code or cyclic group code was introduced. The gen-

follows: eral M x M diagonal code is the first that appeared in the

o g cos(ka0r) sin(ko67) literature as a unitary space—time code for ifeantenna dif-
A(ky, ko, k3)= < 0 kit )( —sin(k,61) cos(kﬁd) ferential modulation scheme. Tiex 2 diagonal code can be
cikatr 0 thought of as the above parametric code imposed by the con-

X < ) straintsk; € 77 andke, = k3 = 0. In other words, the para-

. . . . metric codeV(ky, k2, k3) is an extension to the three-param-
a.nd then construct the following unitary signal constellation %fter case of the x 2 diagonal cod&’(k:, 0, 0) with a single
size L: parametett; € Zr. A main difference between the diagonal
V(ki, ko, k3) = {Ae(ky, ko, k3) | £ € 21} (18) cyclic code and the parametric code is that the diagonal code

where the2 x 2 unitary matrixA(ky, ka, ks) is defined by the has an algebraic group structure while the parametric code is in

following product of three powers @ x 2 unitary matrices; ~ 9eneral a nongroup signal constellation.
Another class of codes, called generalized quaternion codes

6, 14 . 14
Aglky, ko, ks) = <61 0 ) < cos(k20r,) Sm(k?e’») or dicyclic group codes, was developed in [18] and [19]. The

0 e—iksfr

jk16 o . 1 ) ) ;
0 et sin(k20r) cos(k261) signal constellation is of sizé = 29, whereQ € N, and, in
eikafr. 0 ¢ the caseM = 2, can be described by
x 0 o—ikabr (19)

For any given constellation size we select a unitary signal V(k1) =
constellation from the following constellation class: cIZka by, 0 tro —1\™
(20) < 0 e/ ) < )

CL Y (V(ky, ko, ks) | k1, ko, ks € 71} Lo

KEZg,mz(),l}
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for k1 € Zy. The quaternion code is the signal constellatiodiversity product and sum of/5/8 and a nine-signal constel-
with the largest diversity product in the following constellatiomation achieving the largest possible diversity sun8pi. By

class: using Property 3) in Proposition 2, the 16-signal constellation
V(3, 4, 2) in the class of parametric codes also has the largest

{V(kl) k=12, ... L 1 } ) p_ossible diversity sum of/2/2 _in additi_on tq the largest knpwn

2 diversity product ofy/2/2. This also implies that the unitary

) ] ) ) signal constellations with sized)—15, as any of thesubsets
By a simple calculation, we can see that the diversity sum of@ihe above 16-signal constellatiof(3, 4, 2), can also attain

quaternion code is identical to its diversity product. the largest possible diversity sum ¢f2/2. It is worth noting

In [33], a two-antenna differential detection scheme has begyy; although the above parametric code of $ize/(3, 4, 2)
proposed, which is based on the well-tailored orthogonal desiggy is not a group, its finitely generated semigroup is actually
of 2 x 2 unitary matrices [2]. Tr;e signal constellation in the, finjte group of ordes?, i.e., it is a subset of a group of order
orthogonal design is of size = Q~, whereQ € NandQ > 2, 35 Thys, like other group codes, when the parametric code

and can be described by V(3, 4, 2) is used for differential modulation, every transmitted
1 [z o ' ' signal can also be determined by a simple table lookup in the
V= {ﬁ <y ?“) x = dkba g = eikfo above finite group. More precisely, the 16-signal constellation

of parametric code
andky, ko € ZQ} V(3, 4, 2) = {A¢| £ € Z16}
wherefg = 27 /Q, z andy are both theQth roots of unitl, and  as shown in Table Ill, has the following property.
«* andy* denote the complex conjugatenéndy, respectively.

- ) . ) AR Proposition 3: When the 16-signal constellation
The diversity sum and diversity product of this signal constella-

tion are the following: V={A/|l € s}
S(L. W = (L. V) = 1 . ™ given in Table Il is used for differential modulation, the set of
(L, V) = (L, V) = NG sin VL all possibly transmitted signals. for ~ = 0, 1, 2, ... encoded

by (2) in which the initial transmitted sign&l = I, is a finite
Like the parametric codes, the signal constellations in tRgoup given by

orthogonal design are generally nongroup matrix-valued signal

sets. Therefore, when these signal constellations are used for {1 A€ € Zigandm =0, 1}.
differential space—time modulation, the transmitted symb
generated from the fundamental differential encoding equati
(2) are possibly arbitrary unitary signals.

In[31], the authors presented athorough classification of fixed-
point free (FPF) unitary group codes of any finite order. An FPF From Proposition 3, we know that, when the parametric code
unitary group code itselfis agroup consisting of the unitary signad size 16, V(3, 4, 2), given in Table Ill is used for differen-
matrices in which the difference matrix of any two different unitial modulation with double transmit antennas, each transmitted
tary signals has a nonzero determinant. The FPF group code is 2 unitary signal is a diagonal matrix or a matrix with zero
also called dull-diversitygroup code [31]. The group code hagliagonal entries. Hence, only one of the two transmit antennas
the practical meritthat every transmitted signaliin the differentiéd activated at each time when the signals are transmitted. The
modulation scheme is still a codeword in the group code and cammputer-simulated performance in terms of the block error
thus be determined by a simple group table lookup. Moreover rate of the parametric cod&3, 4, 2), quaternion code, and the
[31], the authors also investigated the construction methodolagjgnal constellations in orthogonal design, each of sizeis
of general unitary space—time codes, which may or may not lgown in Figs. 1 and 2. The union bound on the block error
group codes, inspired by the FPF group codes. probability in Figs. 1 and 2 is obtained by summing all the pair-

The diversity products and diversity sums of the above uniise error probability divided by, and the pairwise error prob-
tary space—time codes for some constellation sizes are preseatatity is numerically evaluated by using the right-hand side of
in Tables | and Il, respectively. We observe that the FPF gro(®), where we takes = 100. We can see from Figs. 1 and 2
codes can provide better diversity products than the other codlest the union bound and the simulation result of the block error
in Table | for relatively large constellation sizes. Parametrigrobability fit each other quite well. As shown in Fig. 1, in the
codes possess comparable diversity products with those of FfaBe of two receive antennas, the parametric code has an im-
group codes, as shown in Table I. It is seen from Tables | andoilovement in block error rate of about 1 dB over the existing
that the parametric codes have equal or better diversity produntsies at SNR 22 dB. In the case of five receive antennas, the
and sums than those of the cyclic codes, quaternion codes, angrovement is over 1 dB at SNR 10 dB as seen from Fig. 2.
the signal constellations in orthogonal design. Furthermore, from Table |, one can see that, the unitary

According to Property 2) in Proposition 2 and Tables $pace—time codes of siz&8, 64, 128, and256 as the subsets
and Il, we can see that the parametric codes can lead toaken from the parametric codes of sid&s 75, 135, and273,
five-signal constellation(4, 2, 0) with the largest possible respectively, have the largest known diversity products.

e above conclusion remains true if only the initial transmitted
signal.Sy in (2) belongs to the above finite group.
Proof: See Appendix D. O
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TABLE |
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DIVERSITY PRODUCTS((L, V) OF UNITARY SPACE-TIME CODES FORTWO TRANSMIT ANTENNAS

L | ¢(L,V) | codes and comments |
2 1 parametric code of (ki, ks, k3) = (1,0, 0) |
’ 3| v3/2 | parametric code of (ky, ks, k3) = (0,0,1) 7
4] 0.7071 | cyclic code, quaternion code, orthogonal design, parametric code
4 2/3 | optimal code
5 5/8 | parametric code of (k1, k2, k3) = (4,2, 0) with the optimal diversity product |
8 | 0.5946 | cyclic code
8 | 0.7071 | quaternion code, parametric code of (ky, ks, k3) = (7,2, 0)
16 | 0.3827 | cyclic code, quaternion code
16 | 0.5000 | orthogonal design
16 | v/2/2 | parametric code of (ki, k2, k3) = (3,4,2)
[ 24 ] 0.5000 | FPF group code, parametric code of (ki, ko, k3) = (5,6,0)
32 | 0.1951 | quaternion code
32 | 0.2494 | cyclic code
32 | 0.3827 | parametric code of (ky, k2, k3) = (7,8,2)
37 | 0.4461 | parametric code of (ky, k2, k3) = (30, 6,0) |
48 1 0.3868 | FPF group code |
55 | 0.3874 | parametric code of (k1, ks, k3) = (34,15,0)
64 | 0.0980 | quaternion code
64 | 0.1985 | cyclic code
64 | 0.2706 | orthogonal design
64 | 0.3070 | parametric code of (ky, ks, k3) = (7,10,0)
| 75 0.3535 | parametric code of (ky, k2, k3) = (49,18,0)
91 | 0.3451 | parametric code of (k1, ko, ks3) = (64,21, 0)
105 | 0.3116 | parametric code of (ki, ks, ks) = (34, 42,0)
120 | 0.3090 | FPF group code
121 | 0.1992 | orthogonal design
128 | 0.0491 | quaternion code
128 | 0.1498 | cyclic code
128 | 0.2606 | parametric code of (ki, ks, k3) = (1, 8,20)
135 | 0.2869 | parametric code of (ky, ks, ks) = (14,34,0)
145 | 0.2841 | parametric code of (ki, k2, k3) = (62, 38,0) |
[ 203 | 0.2603 | parametric code of (ki, ks, k3) = (146,35, 0)
217 | 0.2511 | parametric code of (ky, ko, k3) = (125, 84, 0)
240 | 0.2257 | FPF group code |
[ 273 | 0.2152 | parametric code of (ky, ks, k3) = (104, 71, 0) ]

IV. UNITARY SIGNAL CONSTELLATIONS WITH OPTIMAL
DIVERSITY SUM AND PRODUCT FORL = 4 AND WITH
OPTIMAL DIVERSITY SUMS FORL = 6, 7, 8

Inthe preceding section, we have shown that the unitary signal
constellations in the class of parametric codes for siz@s1#,
except for4, 6, 7, andg, can attain th@ptimal diversity sums.
Thus, a natural question that arises is what are the unitary signal
constellationsforsizesdf 6, 7,anddwhichachieve theptimal
diversity sums. The question can well be answered by providing
several examples of unitary signal constellations, as shown later.

A. Unitary Signal Constellation With Optimal Diversity Sum
and Product forl. = 4

The following result indicates that there is a unitary signal
constellation of sizd which has both the optimal diversity sumhas the
and the optimal diversity product. 2/3.

Proposition 4: Leta; € Rfori = 1, 2, 3 satisfya? + a3 +
a3 = 1. If af + a3 = 2/3, then the four-signal constellation
of 2 x 2 unitary matrices given by

Vo = jair as— jas
—az — jaz —Jjay

v, = —jar —az— 1a2
az — jaz

V, = —jas a1+ jao
—ai + jaz jas

T
a1+ jaz —Jjas

optimal diversity sum and product of the same value
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TABLE I
DIVERSITY SUMS 6(L, V) OF UNITARY SPACE-TIME CODES FORTWO TRANSMIT ANTENNAS

L | 3(L,V) | codes and comments
2 1 parametric code of (ki, k2, k3) = (1,0,0)
| 3] V3/2 | parametric code of (ki, ky, k3) = (0,0,1) |
41 0.7071 | cyclic code, quaternion code, orthogonal design, parametric code
4 2/3 | optimal code
| 5 5/8 | parametric code of (ky, k2, k3) = (4,2,0) with the optimal diversity sum |
6 3/5 | optimal code
7 | /7/12 | optimal code
8| 0.5946 | cyclic code
8 [ 0.7071 | quaternion code, parametric code of (kq, ks, k3) = (7,2,0)
8 4/7 | optimal code
9| 3/4 | parametric code of (ky, ko, k3) = (1,2,4) with the optimal diversity sum

16 | 0.3827 | quaternion code

16 | 0.5000 | cyclic code, orthogonal design

16 | /2/2 | parametric code of (ky, ks, k3) = (3, 4, 2) with the optimal diversity sum

32 | 0.1951 | quaternion code

32| 0.3827 | cyclic code

32| 0.5621 | parametric code of (kq, ks, k3) = (8,3, 16)

64 | 0.0980 | quaternion code

64 | 0.2706 | orthogonal design

64 | 0.2753 | cyclic code

64 | 0.4852 | parametric code of (ky, ks, k3) = (18, 5,64)
121 | 0.1992 | orthogonal design

128 | 0.0491 | quaternion code
128 | 0.2009 | cyclic code
128 | 0.3936 | parametric code of (ky, k2, k3) = (48, 30,64)

Proof: Letd;; = det(V; — Vi) for0 < ¢ < k < 3.Bya 1dB over cyclic code at SNR 14 dB. In the case of five receive

simple calculation, we have antennas, the improvement is 1 dB at SNR 8 dB as shown in
Fig. 4.
doy =das = 4(a} +a3) = 8/3 ’
and B. Unitary Signal Constellations With Optimal Diversity Sums
doz =doz = dio = di3 = 2(@% + CL%) + 4@% = 8/3 forL =6,7,38

The signal constellations of sizés7, and8 with the largest
possible diversity sums given as follows are constructed mainly
through a computer search. According to inequality (15) in
8/3 Proposition 2, we can verify the following two results through

According to (17), the above four-signal constellatidas a
diversity product of

4, V) = T T 2/3. direct numerical evaluation.
Furthermore, it follows from Properties 1) and 2) in Proposi- Proposition 5: Let a = /3/5¢/("/% b = /2/5¢4(7/6),
tion 2 that c=+/3/5C d=/2/56/07/6) h =/3/5—4,/2/5,
A = ¢iarecos(=1/5) Then, the six-signal constellatidn com-
¢(4,V) <6(4, V) < v2/3. posed of the following x 2 unitary matrices
Therefore, the diversity sum of the above four-signal constella- |, _ < a b ) V= <a* —b*>
tion Vis alsoé(4, V) = /2/3. The optimality of the diversity 0T\ b et ) LT\b o«
product and sum of valug/2/3 for L = 4 is seen from in- . .
equality (15) in Proposition 2. Vy = < ‘. Cf) , Vs = <C —d )
The proof of Proposition 4 is thus completed. O —d" d ¢

In Figs. 3 and 4, we present computer simulation results of v, _ < 0 h) Ve — < 0 —h*>
the block error rate of the above four-signal constellation, where —h*A 0)7 hA*

we takea; = ay = a3 = 1/+/3, compared with the cyclic code has the optimal diversity sum of

of size4. It is seen from Fig. 3 that, in the case of two receive

antennas, the code given in Proposition 4 has an improvement of \/% = 0.7745966692414834 . . ..
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TABLE Il
THE SIGNAL CONSTELLATION OF PARAMETRIC CODE V(3, 4, 2) OF
SIZE 16 FOR TWO TRANSMIT ANTENNAS

A0=((1)‘1)> Al:(ejggﬂ ej?)
(4 8) ()
A= (ef” egﬂ) A= (egﬂ afw)
Ay = ( ejj” e]o) A = ( o eJO)
e(35) ()
-1 es™ 0
A = ( ejjﬂ eJ%W ) Ay = ( eJ‘O%W ejf W )
Aiz = ( ej()%7r eJ'O%W ) Ap = ( ejog” ej()gﬂ )
Am:(e?';;) Aw=(diﬂi?>

Proposition 6: We construct a seven-signal constellatidn
as follows.

1) The first unitary matrix is

1 0
wen=(10).

2) Letf, = 67/7 andf,, = 12x/7. We define three real
numbers of

1 1

fa =" 3[cos(fa) + cos(fa — Oa,,)]  6cos(6m/7)

rp = +/1—72 and

Oy =

1 7/6 — 2r2sin’(6,) — r}
— |0a,,—arccos / ;“Sln( ) =7 mod 27
2 7 cos(Oa,,)

and three complex numbers @f= r,e/%, b = r,ei%,
andA;; = ¢/%212, The second and third unitary matrices
are given by

a b
‘/1 o <—b*A12 CL*A12>
—b*

a*
Va= <bA’{2 aA;Z)'

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 8, AUGUST 2002

3) Letd. = 9r/7 andba,, = 47 /7. We define the three
real numbers of

1 1

e = ~ 3[cos(0,) + cos(B — Oa,,)]  6cos(5m/7)

rqg = /1 —7r2 and

04 =

1 7/6 — 2r2sin®(6.) — 1’
= [GAM—arccos( / 27‘: sin (6.) 7‘1)} mod 27
2 75 cos(0a,,)

and the three complex numbers of = reedfe d =
rqe??, andAsy = ¢/%2ss. The fourth and fifth unitary
matrices are given by

c d
Vs = <—d*A34 c A34)
&t —d*
Vo= (s, cas,)

4) Letba,, = 67/7, Az = e’?236, and the2 x 2 complex
matrix

<m
1)
We define the four real numbers gf = Re{s:1}/2,
hQ = Im{/}g}/Z

gj) E Vot Vit Vot Va+ V).

_ Re{f4}/2 — g1 cos(fa,,)
T Sin(eﬁse)

and

hacos(0a.,) — Im{Bs}/2
hy = :
sin(fa.,)

and the two complex numbers gf= g; + jg» andh =

hi + jhs, whereRe{-} andlm{-} stand for the real and
imaginary parts of a complex number, respectively. The
sixth and seventh matrices are given by

_( 9 h
Vs = <_h*A56 Q*AE)G)

(¢ -
Vo= <hA§6 9A§6>'

Then, the seven-signal constellatidh= {V;| ¢ € Z7}
defined in the above consists fx 2 unitary matrices and has
the optimal diversity sum of

7/12 = 0.7637626158259734.. . ..
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2 bits per channel use, 2 transmit antennas, 2 receive antennas

Quaternion code: Simulation
Orthogonal design: Simulation
Parametric code: Simulation
Quaternion code: Union bound
Orthogonal design: Union bound
Parametric code: Union bound

Block error probability

14 15 16 17 18 19 20 21 22 23 24
SNR (dB) per receive antenna

Fig. 1. Simulation results and union bounds on the block error rates for signal constellationslofsizé with A/ = 2 andN = 2.

]
~

—_
o

Block error probability

—— Quaternion code: Simulation
Orthogonal design: Simulation
—— Parametric: code: Simulation
— Quaternion code: Union bound
—*— Orthogonal design: Union bound
—— Parametric code: Union bound

10 T T Lovocr [ EoAN ) " 5

-
o
T

SNR (dB) per receive antenna

Fig. 2. Simulation results and union bounds on the block error rates for signal constellationslofsizé with M/ = 2 andN = 5.
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1 bit per channel use, 2 transmit antennas, 2 receive antennas

Block error probability

Cyclic code
—a— A code with optimal diversity sum and product | Tt TN

1 1 1 1 1 1 1 1 %
0 2 4 6 8 10 12 14 16

SNR (dB) per receive antenna

Fig. 3. Simulation results of the block error rates for signal constellations offsize4 with A/ = 2 andN = 2.

1 bit per channel use, 2 transmit antennas, 5 receive antennas

Cyclic code
A code with optimal diversity sum and product

Block error probability

]
IS

-
(=]

o]t
©
-
o

0 1 2 3 4 5 6 7
SNR (dB) per receive antenna

Fig. 4. Simulation results of the block error rates for signal constellations of size4 with A/ = 2 andN = 5.
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In Propositions 5 and 6, the unitary signal constellations aaelmits a solutior; € [0, 27) satisfying
presented directly. Contrary to this, the eight-signal constella- g [_1 3 a/7/21. -1 7} U [_1 34+ 4/7/21 1}
tion described in what follows is somewhat complicated ancfosb i€ / \/_/ 1/ : / _+ \/_/ ’ .
determined by three parameters which satisfy a systemonf for i = 1,2, 3, then the above eight-signal constellation
linear equations in order that the eight-signal constellation ha&?1. 62, 63) possesses the optimal diversity sum of

an optimal diversity sum.
Proposition 7: We define¢ = arccos(—1/7) and
= 2j(e! = 1)/(Tsing) = —2/7 - j (4V3/21).

Letd; € [0, 2m) (¢ = 1, 2, 3) be three free parameters afid)
an auxiliary function in terms of € [0, 27) given by

34 5cosb
16) = - (194 21 cos ) cos
Let
B =p1(61) = % [01 + arccos(f(61))] mod 2w
B2 =P2(62) = % [#2 — arccos(f(02))] mod 27
and

s = fs(8s) = % [0 — arccos(f(63))] mod 2r.

Fori = 1,2, 3, we define the following four numbers of for ¢
A; = 9
=1 4 jan(6)2)]
az—1+A:—2 J vaniv;

1 1/2
’iI\/l—)\iQI 1—4
! Aail < 21 C082(97¢/2)>

andb; = r;¢?% . We introduce the following eight matrices:

Ai:Ai(ei):<_2§‘iAi A5A> i=1,2,3
Bi:Bi(ei):<_2?2:- )\*ZA;?)’ t=1,23
C(:<e(j)¢ CO’W>
D212=<(1) ?)

Then, for any; € [0, 2x) (¢ = 1, 2, 3) satisfying|f(8;)| <
land|Ag;| < 1, i.e., that
cost; € [~1/3 - 4v/T/21, —1/7) U [-1/3+4v/7/21, 1]
the eight-signal constellation defined by
V(61, 02, 63) = {A1(61), A2(62), A3(03), B1(61), Ba2(62),
Bs(63), C, D
consists o2 x 2 unitary matrices and satisfies
|4i = Billr = [|4i = Cl|r = [|4 — Dl|lr =[|B; = Cl|r
=|Bi — Dlr = ||C - D|[r = v/32/7,
fori=1,2,3
and||4;— Ax||r = ||B;—Bxl|r and||A; — By|| r = || Ax—Bi|| r

for 1 < i < k < 3. Therefore, if the following system of
nonlinear equations in terms &f € [0, 27) for: =1, 2, 3

14:(0:) — Ar(0i)llF = || 4:(0:) — Bi(bw)llr = V/32/7,
1<i<k<3 (21)

}

4/7 = 0.7559289460184544 . . ..

Proof: See Appendix E. O

We are not able to find an analytical proof of the existence of
solutions to the nonlinear equation (21) in term$ o€ [0, 2r)
for i = 1, 2, 3. However, we find two numerical solutions of
(21), namely

(61, B2, 03) = (2.537158998077295, 0.9578023163753372,
4.530318445275019)
and

(27r — 51, 21 — 52, 21 — 53)
satisfying
cosf; € [—1/3 — 47)21, —1/7} u [—1/3 +4V7/21, 1}

= 1,2, 3. The resultant unitary signal constellation
V(61, 02, 63) of size8 has a diversity sum of

0.7559289460184543

which is approximate to the analytical valu)ém of optimal
diversity sum within the precision df.110223025 x 1016, |t

is remarked that the above three unitary signal constellations of
sizes6, 7, and8 with the optimal diversity sums possess the
diversity products of

0.6887246539984297
0.6673338402524986
and

0.6235414450084460

respectively.

V. UPPER ANDLOWER BOUNDS ON THEOPTIMAL DIVERSITY
SuM AND OPTIMAL DIVERSITY PRODUCT OFUNITARY SIGNAL
CONSTELLATIONS

It is known that a unitary signal constellation can achieve
good performance in terms of block error rate if it has large
minimum normalized Euclidean distance and/or large minimum
normalized determinant dissimilarity. Thus, it is meaningful to
examine the largest possible minimum normalized Euclidean
distance and the largest possible minimum normalized deter-
minant dissimilarity that a unitary signal constellation of any
size L > 2 can attain. Theptimal diversity sum and product
of orderL are, respectively, the above largest possible minimum
normalized Euclidean distance and normalized determinant dis-
similarity. Clearly, the optimal diversity sum and product for
unitary signal constellations of size also provide the funda-
mental limits on how well we can separateelements in the
space ofM x M unitary matrices. In what follows, we shall
investigate the exact values of the optimal diversity sum and
product that can be achieved by unitary signal constellations and
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EXACT VALUES OF OPTIMAL DIVERSITY SUMS AT(AE')LAENDI\I/:’RODUCTSE(L) FOR TWO TRANSMIT ANTENNAS
L |2 3 4 5 6 7 8 9 | 10 through 16
ALY T V321231581 V3/5] /T/12] /4/7]3/4 V2/2
(L) [ 1] v3/2] v2/3 | /5/8 unknown

provide some upper and lower bounds on the optimal diversitye caseM = 2 and present some upper and lower bounds on

sum and product in the case that the exact values are not avail{ L) and=,(L) in case their exact values are not available.

able. For simplicity, in the following we denot&(L) = A,(L) and
LetV = {V,|VRV, =1y, £ € Z; } beanM x M unitary Z(L) = Z(L) for L > 2 in the caseM = 2.

signal constellation of sizé. The optimal diversity sum and

the optimal diversity product of orddt for the unitary signal A. The Known Exact Values of Optimal Diversity Sum and

constellationV’ are, respectively, given by Product

The known exact values of optimal diversity sukfL) for
2 < L < 16 and optimal diversity produ@(L) for2 < L <5
are summarized in Table IV. Fdr = 2 and L = 3, the op-
timal diversity product and sum are derived from (24) and (25).

An(L) & max 8(L, V)

1 .
=570 max o min Ve —Vellr (22)

and Proposition 4 presented a unitary code of sizeith the op-
- def timal diversity product and sum. The parametric code of Size
(L) v (&) attains the optimal diversity product and sum. The unitary codes
1 . B . . .
R — min M /—|det(w Vo). (23) of S|zes_6, 7, gnd8 with .the optimal dlverery sums are shown,
2V o< <L-1 respectively, in Propositions 5-7. The unitary codes of sizes

It is emphasized that each of the optimal values defined in (28y0u9h16 with the optimal diversity sums are the parametric
and (23) must be attained at some unitary signal constellatiGd€Y (1; 2, 4) of size9 and the parametric code(3, 4, 2) ?f
since the optimization in (22) and (23) is essentially performétf€ 16 and its subsets with the corresponding sizestsil5,

over a compact subset of parameters of the unitary matriced G§Pectively. _ o
V [24]. We do not know the exact values of optimal diversity sum

By Property 1) in Proposition 2 and definitions of (13) and(%) for L > 17 and optimal diversity produ&(/.) for I, > 6.
(14), the diversity product of a unitary signal constellatioH! What follows, we shall present some upper and lower bounds

cannot exceed its diversity sum. Therefore, we have onA(L) for L > 17 and=(L) for L > 6 and some asymptotic
upper and lower bounds ai(L) and=(L) whenL is large. It

0<=Ey(l)<Ay(L)<1 is obvious that the largest known diversity sum and product are

also lower bounds on the optimal diversity sum and product, re-

spectively. We shall use the notatiop(1) to represent a vari-
E1(L)=A(L) =sin(w/L) able in terms ofZL w_hich approaches8 Wh_enL — oo It is

noted that for any fixed. > 2, the functionL~" in terms of
forall L > 2. ~ > 0 is strictly monotonically decreasing.
For the general caskl > 2, let theM x M unitary signal
constellatiory be composed df; = ¢/2~¢/ "1, forall£ € Z;, B. Upperand Lower Bounds on the Optimal Diversity Product
we can know that for L = 6 Through16

An(L) > Exi(L) > sin(r /L), L>2 M>2 (24) We see from (25) that the optimal diversity product

forall L > 2 and for allAf > 1. Specifically, it is clear that

Moreover, by using Properties 2)-4) in Proposition 2, we have, =(L) < L 7 for L=6,7, 8,9
forany M > 2 2(L—1)
1
Em(L) < Apm(L) E(L) < 75 forl0< L <16
<\egem,  f2<L<2M?+1 and
1
1 H 2 2 = -
<L if 2M2 +1 < L <4M? (25) (L) < 73 for L > 17.
1 H 2
< V3 if L > AM*. For the cases af. from 6 to 9, the following result indicates
Therefore, it follows from (24) and (25) that that the optimal diversity produ&(L) is actuallysmallerthan
L

T That is, there do not exist unitary signal constella-
tions with sizedl. of 6 through9 whosediversity productsan
for L = 2, 3, and anyM > 2. reach, /ﬁ, while there are indeed unitary signal constel-

In the following, we want to find some exact values of optimdations whoseliversity sumgan attain the upper bound as seen
diversity sumA,(L) and optimal diversity producE;(L) in  from Table IV.

En(L) = An(L) = sin(n /L)
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TABLE V
BOUNDS ON THEOPTIMAL DIVERSITY PRODUCTS=(L) FOR6 < L < 16 FOR TWO TRANSMIT ANTENNAS
L 6 7 8 9 10 11[12[13|14|15|16
Upper Bounds | /3/5 | /7/12 | v/4/7| 3/4 | v2/2 V2/2
Lower Bounds V2/2 3/8 v2/2

Theorem 2: The optimal diversity producE(L) in the case Let|C| > 2 denote the number of code points in the spherical

M = 2 has the following property: codeC, i.e., the code size of the spherical cadld heminimum
distanceof a k-dimensional spherical code C £} is defined
- _ L _ as
=L)< A(L) = L-1) forL=6,7,8,9.

Apin(C) = min ||z —y||

Proof: From Table 1V, it is known that the optimal diver- YEC, =y
sity sum where|| - || is the Euclidean norm ifR* defined by|jx| =
(xT2)Y/2 for x € R*. The minimum angular separatioof
A(L) = L forL—=6.7. 8. 9. spherical cod€ is defined as
AL—-1) S

¢Pmin(C) = 2arcsin(dyin(C)/2).
Therefore, to prove Theorem 2, we need only to prove that )
Equivalently, we have

L

E(L) < m, for L = 6, 7, 8, 9 dmin(c) = 2Sin(¢min(c)/2)-
o _ _ It is obvious that for any spherical codec €, with |C| > 2,
which is shown in Appendix F. O there mustb® < d,,i,(C) <2, or equivalentlyd) < ¢, (C) <.

Theorem 2 says that, the optimal diversity product f§°Fa9iven space-dimensiénaminimum distance <d < 2,
strictly smallerthan the optimal diversity sum for the unitary"d code size., we define
space-time codes of sizes®through9 in the caseVl = 2. A(k, d) = max{L | there is a spherical codeC 2,
Contrary to this, the optimal diversity product and the optimal ~ S .
diversity sum in the casd/ = 2 are equalfor orders of2 with L code points and.in(C) z d}  (27)
through5, as shown in Table IV. The upper and lower boundghich denotes the largest number of code points fefhmen-

on the optimal diversity products(L) for 6 < L < 16 are sjonal spherical code with minimum distance not less than
given in Table V, where the upper bounds for< . < 9 gnd

are unattainable from Theorem 2 and the lower bounds are _ _
the largest known diversity products the parametric codes cBi%, L) = max{d|there is a spherical codeC €

attain. with L code points and,,;»(C) > d} (28)
C. Bounds on the Optimal Diversity Product and Sum which is the largest possible minimum distantéhat ak-di-
for L > 17 mensional spherical code C 2, of given sizeL can achieve.

Itis clear that, for any given space dimensiok 2, A(k, d) de-

The subsequent results about the upper and lower bound$;88 in (27) is a monotonically decreasing staircase-like func-
the optimal diversity product and sum of unitary signal constely in terms ofo < d < 2 andD(k, L) defined in (28) is a

lations will resort to the arguments in the areas of sphere paCkir‘?\%notonically decreasing sequence in terms of 2. Further-
and spherical codes (see, [5] and [10]). Actually, we can rega{fhre for each: > 2. we have -

the design problem of unitary signal constellations as the con-

struction of “spherical codes” in the following complex Stiefel dlilgl+ Ak, d) =40
manifold: and
S(M, M) ={V e CMM | yviy =1/} Jim D(k, L) =0.

which is simply the unit-radius circle i€ or R? in the case On the other hand, for any fixedid< d < 2andL > 2, A(k, d)

M = 1. In the following, we give some preliminaries in spher@nd D(k, L) are both monotonically increasing sequences in
packing and spherical codes, which are particularly relevantt@ms ofk: > 2, since any:-dimensional spherical codec €2,

our need. is also a(k + 1)-dimensional spherical code {2y, .

A k-dimensionalispherical codeC is a finite set of distinct  The two metrics defined above, namely(k, d) and
points inR* that lie on the surface of the unit radiksdimen- D(k, L), for evaluating the quality of a spherical code are
sional Euclidean sphere defined by essentially equivalent. In the current application situation, we

k are more interested in the quantiy(k, L) than A(k, d),
Z 22 = 1}_ (26) since we can employD(k, L) to get the upper and lower
=1

QU =< (z1, 2o, ..., 25) €RF ) ] . |
bounds on the optimal diversity product and sum of unitary
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signal constellations with any code size through the following Proposition 8: Let At (k, d) andA_(k, d) be, respectively,
approach. the upper and lower bounds of(%, d) for all £ > 2 and0 <

. . . < ie.
Theorem 3: For any constellation sizé > 2, the optimal d=2ie,

diversity product and sum have the following bounds. A_(k, d) < A(k, d) < A*(k, d).

1) Inthe case/ = 2, we have
Then, for allk > 2 and for allL > 2, we have

A(L) > E(L) > = D(4, L),
2 inf{d| A_(k, d) < L} < D(k, L)
2) In the caseV/ = 2, we have < sup{d|At(k, d) > L}
d
_ 1+ \/5 an
E(L) £ —— D6, L) sup{d| A_(k, d) > L} < D(k, L)

< i +/7.
3) In the casel/ = 2, we have < inf{d | A™(k, d) < L}.

A(L) < V3++/5 DG, L) By applying the preceding method, we can give the following
- 2v2 T result based on which the upper bound on the optimal diversity

4) ForallM > 1 h product and sum given in Proposition 2 can be derived.
or a > 1, we have
1 Proposition 9: The quantityD(k, L) satisfies
Em(L) € Ap(L) < 5 D(2M?, L) 1) D(2, L) = 2sin(«/L) forall L > 2;

where the equality holds in the caéé = 1, i.e., 2) forallk > 3 and forallL > 2, we have

E1(L) = Ay(L) = %D(2, L) = sin(n/L). =7y f1<L<k+1
, Dk, L) = /3. frr1<L<2k G
Proof: See Appendix G. O )
<V2, if L > 2k.

It is noted that the lower bound in Property 1) of Theorem

3 for the optimal diversity product af x 2 unitary constella-  The above proposition is essentially Rankin's result on the
tions, i.e..D(4, L)/2, is actually the maximal possible diversityprecise values afi(k, ¢) whenn/2 < ¢ < , or equivalently,

product of2 x 2 Hamiltonian constellations [31], which formthe 4 (1 4) wheny/2 < d < 2, which can be stated as follows (see,
group of Hamiltonian quaternions of normwith sizeL > 2. [28, p. 139] and [5, p. 27)).

We emphasize that most studies in the earlier works on spher-
ical codes have used(k, d) as the figure of merit for a spher- Lémma 1: For each > 2, we have
ical code. As a result, there have been extensive upper and lowet) A(k,¢) = |1 — sec$|, for arcsec (—k) < ¢ < 7w, where
bounds onA(k, d), while few ones onD(k, L), in the litera- |-] denotes the integer part of a nonnegative real number;
ture, as shown in the seminal book of Conway and Sloane [5].2) A(k, ¢) = k + 1, for /2 < ¢ < arcsec (—k);
Moreover, the upper and lower bounds &%, d) were gen- 3) A(k, 7/2) = 2k
erally given in terms ofA(k, ¢) [5], where¢ = 2 arcsin(d/2) ’ '
satisfying0d < ¢ < w, or equivalentlyd = 2sin(¢/2) satis- From Lemma 1, it is known that(k, ¢) cannot take a value
fying 0 < d < 2. The notation4(%, ¢) means the maximal size betweenk + 1 and2k.
of a spherical cod€ with minimum angular separation larger
than or equal t@, i.e., with the property that "y < cos ¢ for
anyz, y € C satisfyingx # .

In order to make Theorem 3 useful in practice, we have to
establish the upper and lower boundsdfk, L) from the ex-
isting ones oM (%, d) in the literature. It is clear that

Proof of Proposition 9:

1) The quantity D(2, L) means the largest possible
minimum distanced of a spherical code consisting
of L distinct code points in the unit circle in the
two-dimensional plandR?. From this, it follows that
D(2, L) = 2sin(nx/L).

Ak, d) = max{L | D(k, L) > d} 2) From Properties 1) and 2) in Lemma 1, it follows that

= min{L | D(k, L) < d} — 1 A(ﬁ’ ¢) =1L /Im Zrcieia(x(_/fz/; </>k5 ar;rsec (/—L 4(;) 1)
. andl < L < kand tha , =k+1lforn/2 < ¢ <
min{ L | Dk, L +1) < d} arcsec (—k). By using

> min{L | D(k, L) < d} (29)
and D(k, L) = max{d| A(k, d) > L}
D(k, L) = max{d| A(k, d) = L} whered = 2sin(¢/2), we can have that for < L <
— inf{d| A(k, d) < L}. (30) k41

From the above relationship betweet{k, d) and D(k, L),

. 1
namely, (29) and (30), we have immediately the following. D(k, L) = 2sin <§ arcsec (—L + 1)> :
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From the definition of highest density of any sphere packindth, denoted b)A}zaCk,
1 is the density of the denséestdimensional sphere packing. It is
sect = —— € (—00, ~1JU[L, +00) known thatA}™* = 1andAS** = . They are the only two
for 6 € R satisfyingcos 6 # 0, we know that known and provably precise values amomb“k fork € N[5].
1 A long-standing conjecture, the so-called “Kepler conjecture,”
arcsec T = arccos <—> € [0, 7/2) U (7 /2, 7], stated that no packing of three-dimensional spheres can have a
x greater density than that of the face-centered cubic lattice. The

forz € R density of the three-dimensional face-centered cubic lattice is

satisfying|z| > 1. By virtue of these facts and makingﬂ/‘/18 =0.74048. ... The current status of Kepler conjecture
has been examined in [5] and [32]. Moreover, Muder [23] ob-

use of . _ 5
tained the upper bound 6773055 . .. on the densityA}**".
sind— 17 COS(29)7 for 6 € [0, 7 /2] Yaglom’s lower bound omi(k, ¢) for 0 < ¢ < « can be
2 stated as follows (see [44], [5, p. 265]).

we obtain that fol < L < &+ 1 Lemma 2: For allk > 2 and0 < ¢ < 7, we have

1 1 2L
D(k, L) =2sin | —arccos | —— ) ) = . k—1
b <2 <1 - L)) L-1 Ak, ¢) > (sin(¢/2))~ D APk — <§) Apsck

Whenk + 1 < L < 2k, by Lemma 1, it holds that
D(k, L) = max{d| A(k, d) > L}
= max{d| A(k, d) > 2k} Therefore, according to (30) and Proposition 8, we have, for
. e allk > 2andforallL > 2
= 2sin(r/4) = V2.

whered = 2sin(¢/2).

If L > 2k, then D(k, L) > 2 (Agajf)m L7 (32)
D(k, L) = max{d| A(k, d) = L} From (32) and Property 1) in Theorem 3, we get the following
< max{d| Ak, d) > 2k + 1} corollary.
< 2sin(r/4) = V2 Corollary 1: In the case\ = 2, we have
where the last strict inequality is implied by Property 3) pack\ &
in Lemma 1. A(L) >E(L) > Az
The proof of Proposition 9 is thus completed. [ L
By using the result (31), we can see that the strict inequality S r \? -4
in (29) can hold in some case such as = \3v2
A (8, \/i) =16 > 10 = min {L ‘D(& L)< \/5} . 20904699 L5,  for L >2 (33)

It is interesting to note that we also haik, A(k, d)) > d where the notatiom = & means that the numberis greater
andA(k, D(k, L)) > Lforanyk > 2,0 < d < 2,andL > 2, than but similar ta.
where the strict inequality may hold in some cases suchas |t is noted that the lower bound on the optimal diversity
D(8, A(8, d)) = D(8, 9) = 3/2 > d, for v2 < d < 3/2 product and sum given in Corollary 1 is represerdggglicitly
forall L > 2. That is, the lower bound given in Corollary 1 is
and a function of the constellation sizZein anexplicitform. More
_ _ available bounds on the optimal diversity product and sum can
A8, D(8,10)) = A (8’ ﬁ) = 16> 10. only be obtained generally through anplicit method in the

Now, we want to present Yaglom’s lower bound on the Opﬁ_ense t?a:] the bour|1|ds_ are .erttel'r]]. ahs |thp||t::|t ;uncno_ns,dlnb
timal diversity product and sum & x 2 unitary signal con- €'Ms Of the constellation sizk, which can be determined by

stellations. We need some knowledge in sphere packing (Seeatg‘]leptimizatign procedure. _ o
and [10]). Asphere packingor simplypacking is a set of mu- e can derive Coxete_r s upper bound on the optimal diversity
tually disjoint, equal radius, open spheres. Paeking radius Product and sum by using Coxeter's upper boundgh, ¢)

is the radius of the spheres in a packing. The packing radiud@§ 0 < ¢ < =, which employs the Schiafli's function defined
normally as large as possible such that there are tangent sphEfEYTSively by

in the packing but no overlapping spheres. As defined in [29], a 9 |o
packing is said to havaensityA if the ratio of the volume of the Fryi(a) = — / Fy—1(B3)de

™ (arcsec k) /2

part of a hypercube covered by the spheres of the packing to the
volume of the whole hypercube tends to the lithitas the side wheresec(23) = sec(26) — 2 and the initial conditions are
length of the hypercube tends to infinity. That is, the density i («) = Fi(«) = 1. Coxeter [6] conjectured and Boréczky
the fraction of space occupied by the spheres of the packing. TBgproved the following result.
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Lemma 3: For allk > 2 and0 < ¢ < w, we have It is remarked that whe# lying in (0, =/2) is very close to
o 2F (o 7 /2, the above functiot,.,xin (£, ¢) tends to infinity. In fact
A(ka d)) S Acoxeter(ka d)) d:f ;%OC())
K lim  Apankin(k, ¢) =  lim = 40
whereq is determined by P (7/2)” p=(x/2)- cosf

2 where the positive constaidt, does not depend o and 3.
sec(20) =seco+k-2= g Tk Therefore, the preceding Rankin’s upper bound Ak, ¢)
is not effective in estimatingA(k, ¢) in practice when
Then, according to Properties 2)-4) in Theorem 3 and Propp-c (0, 7/2) and is very close ta/2. Rankin’s upper bound
sition 8, we can obtain can apply to the unitary signal constellations with size- 17
and be given by
sup{d | Acoxeter (6, ¢) > L},

forL >2 (34) =(L) < sup{d | Arankin(6, ¢) > L},

forL > 17 (38)

5

Sup{d | Acoxeter(67 d)) 2 L}7

5

o5 W3
I

for L Z 2 (35) Sup{d| Arankin(67 d)) 2 L}7

and for L > 17 (39)
1
A(L) < 5 Sup{d|Acoxeter(87 d)) > L}, for L > 2 and
1
(36) A(L) < > sup{d | Arankin(8, ¢) > L}, for L > 17

where the functionsl oxeier (%, ¢) for k = 6 andk = 8 are (40)
defined in Lemma 3 ang = 2 arcsin(d/2). ]

We emphasize that, by applying Lemma 3 and Proposition'ihere the functionsi,anin(k, ¢) for k = 6 andk = 8 are
we can provide an upper bound on the maximal possible divéiefined in Lemma 1 and = 2 arcsin(d/2).

sity product of2 x 2 Hamiltonian constellations [31] with any It can be shown by asymptotic analysis that, for large constel-
sizeL > 2, namely,D(4, L)/2, given by lation sizeL, the above Coxeter’s upper bounds of (34)—(36) on

1 1 the optimal diversity product and sum are better than Rankin’s
§D(4, L)< 3 sup{d| Acoxeter(4, ¢ )> L, p=2arcsin(d/2)}, upperbounds of (38)—(40), respectively, the details of which are
omitted here due to the limitation of space. R@r< L < 128,

for L>2 (37) the comparison between them can be made through numerical
where the functioM coxete: (4, ¢) is defined in Lemma 3. With evaluation, as shown in Fig. 5. Itis seen from Fig. 5 that Coxeter
the help of inequality (37), we can obtain, by using a con&nd Rankin’s upper bounds di(k, L) satisfy
puter program, an upper bound on the maximal possible diver-
sity product of2 x 2 Hamiltonian constellations with6é unitary sup{d | Acoxeter(k, ¢) > L} < sup{d| Aranxin(k, ¢) > L}
signals beind).58196571 . .., which issmaller thanthe diver- ¢or 1. — ¢ andk = 8 and for17 < L < 128. Hence, for

sity product of the parametric cod¥3, 4, 2) of sizel6, given 17 < 1, < 128, Coxeter's upper bounds of (34)—(36) on the

in Table 111, being0.59460356 . . .. This indicates that the para-optimal diversity product and sum are, respectively, better than
metric code of sizd6 has a diversity product better than thakankin's upper bounds of (38)—(40).

of any Hamiltonian constellation of the same slgegenerated  The numerical values of Coxeter’s upper bounds of (34)—(36)
from a spherical code lying af1, defined in (26). for 17 < L < 128 are plotted in Fig. 6, which shows that

In a similar way as for obtaining Coxeter's upper bounthe ypper bound (36) is the best among the above three upper
in the inequalities (34)—(36), we can also derive the Ranking,ynds. However, for largk, the upper bounds of (34) and (35)
upper bound on the optimal diversity product and sum by usiggoy|d be better than (36), since the former two bounds can be
Rankin's upper bound or(k, ¢) for 0 < ¢ < x/2[28] @S shown to be of the order di—1/> while the upper bound (36)

o3 W3
¥

stated in the following lemma. is of the order ofL=1/7 for large constellation sizé.
Lemma 4: For allk > 2 and0 < ¢ < x/2, we have Besides Yaglom’s lower bound given in Corollary 1, another
lower bound on the optimal diversity product and sum can be de-
Ak, ¢) < Araniin(k; @) duced by using the following Wyner’s lower bound dfk, ¢)
def NZa N (%) sin 3 tan /3 for0 < ¢ < m/2[42].
2T (%) fd"(sm 6)%~2(cos§ — cos 3) df Lemma 5: For allk > 2 and0 < ¢ < 7/2, we have

wheref3 = arcsin(v/2sin(¢/2)) andI'(z) is the usual gamma Ak, ¢) 2 Awyner(E, ¢)
function defined by

+oo det K I (&L ¢
I(z) = / ettt dt, forz € R andz > 0. T r_1 v T (é) /0 (Sme)k 2 df
0 2
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Fig. 7. Comparison of Yaglom’s and Wyner's lower bounds on the optimal diversity pra@géts

Wyner's lower bound can apply to the unitary signal consteThereforep} (x) > 0 for = > 0. By applying Taylor's theorem,

lations with sizeL > 17 and be given by we know thath, (z) > 0 for z > 0.
A(L) >E(L) The first- to fourth-order derivatives dfs(x) are, respec-
= ; tively
> —inf{d| Awyner(4, ¢) < L, ¢ = 2arcsin(d/2)}, / 1, 1,
hy(e) =1—cosz — Sa" + @
forL > 17  (41) 21 4
" o 3
where Ay yne: (4, #) defined in Lemma 5 can be written as hy(z) =sinz -z + 3t

AWyﬂer(4v ¢) = 27[2¢ — Sin(Z(/))]_l. B
For17 < L < 128, the numerical simulation results of Ya- 2 (2)

glom’s lower bound given by (33) and Wyner's lower bounénd

given by (41) are presented in Fig. 7, which shows that Yaglom’s Ry"(z) = x —sinx

lower bound on the optimal diversity product and sum is better

than Wyner’s lower bound. Furthermore, we can prove analywhich is larger than zero for > 0. By applying Taylor’s the-

cally that Yaglom’s lower bound given by (33) is actually betteprem again, we obtaih,(x) > 0 for z > 0 as well. The proof

= —14 =g
cos & +2a:

than Wyner's lower bound in (41) for all. > 128. The fol- is completed. u
lowing lemma is needed for our proof. Proposition 10: For all L > 128, we have
Lemma 6: Forz € R andz > 0, we have .1
] ) ) 083440415 < J inf{d| Awyner(d. ¢) < L}
—x?’—r—x°<x—sinx<—x3. 1
3! 5! 6 <0.844644 L™ s.
Proof: Let the functions def ) L
1 Proof. Let ¢g = 0.33517, which satisfies
hi(z) = = 2® —z +sing )
| 6 2o — sin(2¢o) > 0.490875 > 2 /128.
an
. 1 1 . >
ho(z) = 7 — sing — 2 + —— o7, for z > 0. Then, forL > 128, we have

6 120
Then, the first-order derivative éf,(x) is

inf{¢|27/L < 2¢—sin(2¢)}
< inf{¢ |27 /128 < 2¢—sin(2¢)}
th(ac):%352—1—1—(308352%3&2—251112 (g) < ¢o.

mf{(/) | Awyner(47 (/)) < L}
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From this and Lemma 6, we can obtain, for> 128
lnf{d) | Awyner(47 d)) < L}
=inf{¢ < ¢o| 27 /L < 2¢ — sin(2¢)}

sint{o<on| T < 20° - 50 )
5inf{¢<¢o 2%<§¢3 <1—%¢3)}

157

Therefore, byl = 2sin(¢/2) < ¢

157

1 ! ’ g
1, G N
5 1nf{d | Awyner(47 d)) < L} -9 <]_O — 2(/)3) L

<0.844644 L%,
On the other hand, by Lemma 6, we have, fop 128
illf{(/) | Awyner(47 ¢) < L}
=inf{¢|2r/L < 2¢—sin(2¢)}
3 \%
>inf{¢|2r/L < 4¢°/3} = <§ 7r> L~s,
Then, byd = 2sin(¢/2) > ¢ — 2 ¢°, we obtain, forL > 128
1
5 inf{d| Awyner (4, ¢) < L}

3 3 i
> iﬂ L™= 1—i §7r 12873
16 24\ 2

> 0.834404 L%
The proof of Proposition 10 is thus completed. O

According to Proposition 10 and Fig. 7, Yaglom’'s lowe

bound on the optimal diversity product and sum, given

L > 17.

Now, we give some asymptotic bounds on the optimal diver-

analysis is needed and described in what follows. For any
nonnegative real-number sequengés) andg(L) in terms of
L € N, the notationf(L) = O(g(L))
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(36) for 17 < L < 128 and the best known Yaglom’s lower
bound in ananalytical form given by (33) are also shown in
Fig. 8. It can be seen from Fig. 8 that the parametric codes have
a large improvement in both diversity product and diversity sum
over the cyclic codes. The numerical values of Coxeter’s upper
bounds on the optimal diversity product and sum in the case
M = 2 for some constellation sizdsare listed in Table VI.

VI. CONCLUSION

In this paper, by making use of the parameterization of uni-
tary groups, we have proposed a new class of unitary space—time
codes, called parametric codes, for the differential modulation
with double transmit antennas across a Rayleigh-fading channel
whose fading coefficients are unknown to both the transmitterand
thereceiver. The parametric codes have beenshowntohave alarge
improvementindiversity productand diversity sum overthe diag-
onal cycliccodes. It has been shown that the parametric codes can
leadto afive-signal constellationwhich hasthe largest possible di-
versity product and sum and a 16-signal constellation which pos-
sessesthelargestknown diversity productand the largest possible
diversity sum. Although the parametric code of sifds not a
groupbyitself,itisasubsetofagroup of ord@rComputer simu-
lation results have demonstrated that, compared with the existing
unitary space—time codes, the above 16-signal constellation has
animprovementinterms of the block errorrateupto 1 dB at SNR
22 dBinthe case of tworeceive antennas and at SNR 10 dB inthe
case offivereceive antennas. Furthermore, the unitary space—time
codes of size82, 64, 128, and256 as the subsets taken from the
parametriccodesofsiz8%, 75, 135,and273, respectively, have
the largest known diversity products in the literature. Ttiese
Il,mitary space—time codes may be useful notonly intwo-transmit-
antennasystems butalso in single-transmit-antenna systems with

(33), is better than Wyner's lower bound given by (41) for ;{fequency—selectivefading asdescribedin [43]where aprecoded

and vector orthogonal frequency-division multiplexing (OFDM)
was introduced.

For the differential modulation with double transmit antennas,
e have presented unitary signal constellations with the optimal

t(l.ﬁversity products for sizes up faand the unitary signal constel-

ions with the optimal diversity sums for sizes ug6oConsid-
ering the theoretical and practical significance of the upper and

means that there XISt ower bounds on the optimal diversity product and sum that uni-

a positive constart’ > 0 independent of. and some positive 5. signal constellations of any given size can achieve, we have

integerLy such thatf(L) < Cg(L) forall L > L.

Theorem 4: For large constellation sizk, the optimal diver-
sity product and sum satisfy the following conditions.

1) Inthe caseV = 2, we have

A(L) >E(L) > ”—2 L5 (14 or(1))

NG
21516764 L75 (1 + or,(1)).

2) ForallM > 2, we have
Ev(L) LAmL)=0 (L_#) .
Proof: See Appendix H. O

The numerical values of the diversity product and sum of the M

parametric codes and cyclic codes are plotted in Fig. 8Tox

L < 128. The best known Coxeter’s upper bound given by

investigated these bounds by resorting to the existing numerous
results in sphere packing and spherical codes. A main conclusion
isthatforthe x 2 unitary signal constellations, the optimal diver-
sity productand sum are of an order betw&en/? andZ—*/* for

large constellation sizk. For the generald x M (M > 1) uni-

tary signal constellations, the optimal diversity product and sum
are of an order of(L=1/") for a large constellation siz&.

APPENDIX A
PROOF OFPROPOSITION1

We define the function

pio; 2 1 -
H(w):H[l—i—m(w +Z):| s weR
1

m=
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Diversity product and sum
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o
w

o
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Coxeter upper bound

Diversity sum of parametric code
Diversity sum of cyclic code
Diversity product of parametric code | -
Diversity product of cyclic code
Yaglom lower bound

40
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Sizes of unitary signal constellations (L)

Fig. 8. Diversity products and sums of parametric and cyclic codes with lower and upper bounds.

TABLE VI

COXETER'S UPPERBOUNDS ON THEOPTIMAL DIVERSITY PRODUCTS AND SUMS FOR TWO TRANSMIT ANTENNAS

L

17

18

24

32

48 64 80 100 120 128

UBs

0.7023

0.6977

0.6746

0.6515

0.6193 | 0.5969 | 0.5799 | 0.5632 | 0.5499 | 0.5452

which is even and monotonically decreasing with respect tespect tav > 0. Hence, the functiod'(«) in term ofa > 0 is
w > 0. Then the right-hand side of (8) is

Fla)< !

e 1 1
N - H d — —

1 /T 1
:P 7 —_—
e, 0 +27f/a 2L

for a € [0, +00).

1) Let0 < a < b < 400, then we have

b
F(a)—F(b):%[/ ot
a 1

+o0
+/
b

m@—mm/W>1

v

2m

2

1

B < 1 arctan(2b)

™

1
w2+%

) (H(a) — H(b) > 0

arctan(2a)

v

H(a) — H(w)) dw

)H(a)

strictly monotonically decreasing as well.
It is clear thatF'(a) approached” ,» asa tends to infinity.
That is,

1 [ 1
i P =5 [ g H@d = R

2) Now, we derive an upper bound on the nonnegative relative
error of F'(a) for ¢ > 0 when used to numerically evaluate the
pairwise error probability” ,» as follows:

Fla)— Pe |, ( ) (H H(w))dw
Poe ( +i) 1 H(w) dw
<H<a>fj°°< P+q) e

H(a) foa (w? + ) dw

 2arctan(2a)

3) LetM > 1 be the number of nonzero singular values of the

which means thaf'(a) is monotonically decreasing with re- M x M matrixV; — V. We want to prove that, for large-SNR
spect toa > 0. Moreover, ifp > 0 and there is at least one sin-the pairwise error probability’; » and its Chernoff bound'(0)
gular value oV, — V» which is nonzero (i.e¥; # Vi), thenthe decay at a rate of the same order. Without loss of generality, we
above functiond (w) is strictly monotonically decreasing with assumeV/ = M in the sequel.
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By use of the relatiori/[1 + p] =
400, we can see that for large

L y <1+op<1>>] |

pQUrQn (WQ +1
14+ 2p v
1)

p20727l (w2 + 14

Hw) = H [

m=1 o
=(1+0,1) ] <

m=1

wheres,, = 7,,(V, —
M x M difference matriX/; —
for largep

1= 1
P ——
¢ 27r/ w2+ 1

x |t +o,1) [T <

m=1

:1+op( ) <1+2 )MN

Ao [ (o

m=1

Veform=1,2, ...,

12 )N dw
prog, (W + 1)

—(MN+1)
) dw.

On the other hand, for large, the Chernoff bound of the

pairwise error probability? ¢ is

F(0) = %H(O) = ;

m=1

Therefore, for large

Py 1 /°° , 1\ "MV
= (1 1 - d
F(O) 4IWN7T ( +0P( )) N w” + 4 W

1 oo ) 1 —(MN+1)
m A w +Z dw—i—op(l)

2 [°° .
—/ (#2 + 1)~ MNFD g 1 o,(1)

™ Jo

(|
wol=
~+

t=tano 2 [/* 2MN
= — (cos ) dé +o,(1)
0

w
MN 1
k=1
The proof of Proposition 1 is thus completed. O

APPENDIX B
PROOF OFPROPOSITIONZ2

We first introduce two inequalities which play a key role in

our subsequent proof.
Letay, as, ..., apr be M positive-real numbers and

def T M
a = (al, az, ..., CL]\{) e R™.

(14 0,(1))/p whenp —

Vi) is themth singular value of the
M. Then,

4MN 4o\ MY M
o, - () T sz

We define theelementary symmetric functiofidegreen of the
M elementsuy, ao, ..., aps as follows:

Ern :Ern(a) = Ern(alv az, ...

m
= 2w

1<i < <im <M k=1

For themth elementary symmetric functia#i,,, we call

Ern

()

themth weighted elementary symmetric functafrthe M ele-
mentsay, ao, ..., ap. Then, forthe weighted elementary sym-

metric functionsP;, P, ..., Py, we have the following two
inequalities [21, p. 106]:

’ a]\l)

m=12, ..., M.

Prn:

P > P21/2 > P?}/?’ o> Pl/M
andP? > Pyy1Pn_y for 1 <m < M. By (11), we have
Py = (2Dyn)?™ = (4D2)" = (27 D}1)?
whereD,, d_efDm(Vl, Vo) form =1, 2,
the above two inequalities, we obtaln

, M. By virtue of

and
D2™(Vy, Vo) > Dt H(Vy, Vo) D=1 (Vi Va)

m—+1 m—1

for 1 < m < M. Therefore, according to the definition of
¢n(L, V) givenin (12), the conclusions in Propoerty 1) can im-
mediately be derived. In the sequel, we give a proof of Properties
2)-4). By Property 1), it suffices to prove these inequalities in
the casen = 1.

For anyM x M unitary matrixV, the A2 many complex
numbers in thé/ x M complex matrix//+/M can be regarded
as2M? many real numbers whose squared sum is unity. Hence,
a finite set of theM x M matriceng/\/M for? € 75 is
equivalent to a spherical code lying on the surface of the unit-
radius spher&,,,- defined by (26). Thereforé; (L, V) in (13)
cannot exceed half of the largest possible minimum distance of
a spherical code witl. code points on the surface 6.
That is,

&(L, V) < = D(2M? L)

1
2
whereD(., -) is defined in (28). According to (31) in Proposi-
tion 9, the three inequalities abait{ L, V) given in Properties
2)-4) are true.

We now prove that the equality in (15) holds in the case
m = 1 if and only if the Euclidean distance between any two
distinct matrices iV is the same and the sum of all thema-
trices inV is an all-zero matrix.

We define

— _ 2
Er=2rVo, Vi, .., Vi) = Z Ve = Vel
0<b<t’ <L—1

It is easy to see that

-1 |2
S| =ML+ >
£=0

F 0<0<l/ <L—1

Te (VAVE + VAV, .
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Therefore, by a simple calculation, we obtain B5) mks =0 (mod L), £ks =0 (mod L), and
_ H H lks+1) =0 (mod L).
Xp = Z T (Ve = Vi) (Ve = V) B6) n(zkg = O)(mod(L), Kkg)z L/2 (mod L), and
0<é<t/<L—-1
Uks+1) = L/2 (mod L).
=ML(L-1)~- Z Tr (VZHVZ’ + VéHVé) B7) mky =L/2 (mod L), ke = L/2 (mmod L), and
Osé<tr<L—1 ks +1) =L/2 (mod L).
2 B8) mky = L/2 (mod L), ¢k; = 0 (mod L), and
=ML? - l(ks 4+ 1) = 0 (mod L).
F B9) /tk=0 (mod L), (ks +1) = 0 (;nod L), and
On the other hand, we have Uks — 1) = (mod L).

and/(ks — 1) L/2 (mod L).
with equality if and onIy if the Euchdean distance between any g11y (2m+£)k, =L/2 (mod L), £(ks+1)=L/2 (mod L),

two distinct matrices iV is the same. and/(ks — 1) =0 (mod L).
Thus, we can get B12) ¢ky = L/2 (mod L), £(ks +1) = L/2 (mod L),
1 and{(ks — 1) = L/2 (mod L).

) For compactness, the proof of Lemma 7 will be given at the

L 1 Lt end of the Appendix, following the proof of Theorem 1.
- 2(L—1) 2ML(L-1) ;: Ve For anyp e N, we define two nonnegative integets=(p)
I o lF and# = 7(p) which satisfy
= 2(L—1) p=2"2m+1).
From this, it is clear that It is apparent thatn = m(p) andn = 7(p) with the above
property are uniquely determined py= N. In addition, when
(L, V) = L p = 0, we definern = —1/2 andn = +oc.

2(L —-1) According to the above definition, we know thatp) = 0 if
if and only if the Euclidean distance between any two distingt€ N is odd, and that for any two nonnegative integeesdg
matrices inV is the same and (pq) = a(p) + n(q).

Lz:_l Vi =0e RM*M, The following lemma can be easily verified.
£=0 Lemma8:Letp e N, L =27, k € 7, and
Hence, the proof of Proposition 2 is completed. O Pez N0} ={1,2, ..., L—1}.
APPENDIX C Then, we have
PROOF OFTHEOREM 1 1) n(f)ez,=10,1,...,p—1};

The signal constellatiow(ky, ks, k3) for ki, ko, k3 € 7, 2) ¢k = 0 (mod L) if and only if n(¢) + a(k) > p.
has a positive diversity sum if and only if any two signal matrices
in the constellation are mutually different.

We first give two lemmas upon which our proof of Theorem
1 is established.

According to Lemma 8, we obtain the following three rules
which play an important role in the ensuing proof.
Under the notations and assumptions in Lemma 8, we have

) Rulel) If¢k =0 d L), thenk is even.
Lemma 7: For any fixedm € 71 = {0,1,...,L — 2}, ule1) (mod L) IS ev
te{1,2 ..., L—1—m},andki, ko, k3 € Z,, the equality =~ Rule2) £ -odd = 0 (mod ) and/ - even = 0 (mod L)

Am(kr, Ea, ) = Amye(kr, ko, ks) cannot hold simultaneously.
holds if and only if the following two conditions of A) and B) Rule3) £-odd = L/2(mod L and? - even = L /2 (mod L)

are met. cannot hold simultaneously.

A)  Lki+1)=0 (modL). Now, we can give the proof of Theorem 1. According to

B) Atleast one of the following twelve conditions is satLemma 7, for any fixed,, k2, ks € Z,, the signal constel-
isfied: lation V(k1, k2, k3) has a positive diversity sum if and only

Bl) mks=L/4 (modL), ks =0 (mod L), and if for all m € Zp—1 = {0,1,..., L — 2} and forall ¢ ¢
(ks — 1) =0 (mod L). {1, 2, ..., L—1—m}, eithercondition A) in Lemma 7 is not

B2) mky = L/4 (mod L), ke = L/2 (imod L), and satisfiedor none of the 12 conditions of B1)-B12) in Lemma 7
ks — 1) = L/2 (mod L). are met. Equivalently, for any fixekl, k-, ks € Zy,, the signal

B3) mke =3L/4 (mod L), fky = L/2 (mod L), and constellationV(k1, k2, k3) has a diversity sum of zero if and
ks — 1) = L/2 (mod L). only if there aresomemeZy_1={0, 1, ..., L — 2} andsome

B4) mky;=3L/4 (mod L), fky =0 (mod L), and fe{l, 2, ..., L—1-m} which satisfy condition Apndat least

(ks — 1) = 0 (mod L). one of the 12 conditions of B1)-B12) in Lemma 7.
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If p=1,i.e.,L = 2, thenthe constellatiov(k, k2, k3) has
exactly two matrices one of which is tlzex 2 identity matrix
for £ = 0 and the other one fat = 1 is A; (k1, k2, k3) which
equals the2 x 2 identity matrix if and only if(ky, k2, k3) =
(1, 0, 1) or (kq, ka2, k3) = (1, 1, 0). Thatis, in the casé = 2,
the constellatioW(k;, ko, k3) has a diversity sum of zero if and
only if (k1, k2, k3) = (1, 0, 1) or (ky, k2, k3) = (1, 1, 0).

In the sequel, we set > 2, i.e.,L > 4.

If k1 € 71 is even, then, by virtue of Rule 1), condition A) in
Lemma 7 cannot be satisfied for 4l {1, 2, ..., L—1—m}
wherem is any number belonging td;,_;. Hence, the signal
constellationV(ky, k2, k3) has a positive diversity sum.

Now, we assume that € 7 is odd and make the discussion
in the following four mutually exclusive cases.

1) (k1, k2, k3) = (odd, even even.
According to the previously mentioned Rules 1)-3), we
can see that foall m € 7,y = {0,1,..., L — 2}
and forall £ € {1,2, ..., L — 1 —m}, none of the 12
conditions of B1)-B12) in Lemma 7 is met. Hence, the
constellationV(ky, k2, k3) has goositivediversity sum.

2) (k1, ks, k3) = (odd even odd).
We takem = L/4 and? = L/2 which satisfy condition
A) of £(k1 +1) =0 (mod L) in Lemma 7. In the case of
ks = 0 (mod 4), condition B5) in Lemma 7 is met, while
in the case ok, = 2 (mod 4), condition B8) in Lemma
7 is satisfied. Hence, the constellatitik;, ks, k3) has
a diversity sum okera

3) (K1, k2, k3) = (0odd odd evern).

If L = 4, then, in order to satisfy condition B10)
or B11), there are only two possibilities df = 1
and /£ = 3. Then, the equivalence relations of
(2m + £)ks = 0 (modL) in condition B10) and
(2m + Ok = L/2 (mod L) in condition B11) in
Lemma 7 cannot hold, since odddd = even(mod L)
is impossible. Hence, none of the 12 conditions of
B1)-B12) in Lemma 7 can be met, which implies that
the signal constellatioW(k;, k2, k3) of sizeL = 4 has
a positivediversity sum.

Now, we assume that > 3, i.e.,L > 8.

In the case oft; = 1 (mod,4), if condition B10)
or B11) in Lemma 7 is met, thed = L/4 (mod L)
or £ = 3L/4 (mod L), and consequently, condition A)
of £(k; + 1) = 0 (mod L) in Lemma 7 cannot hold.
On the other hand, if neither conditions B10) nor B11) is
met, then, combining with the above results, we know that
none of the 12 conditions B1)-B12) in Lemma 7 can be
satisfied. Therefore, in the case/af = 1 (mod 4), the
signal constellation’(k;, k2, k3) always has gositive
diversity sum.

In the case of; = 3 (mod4), if k3 = 1 (mod4),
then we can take: = L/8 and/ = L/4 which satisfy
conditions A) and B11) in Lemma 7. ; = 3 (mod, 4),
then we can taken = 3L/8 and? = L /4 which satisfy
conditions A) and B10) in Lemma 7. Hence, in the case
of k1 = 3 (mod 4), the signal constellatior(ky, k2, k3)
always has a diversity sum aéra

Integrating the preceding results in all situations, we see that

We still takem = L/4 and/ = L/2, then condition A) all the cases in which the signal constellatiéfk:, k2, k3) has
of £(k; + 1) = 0 (mod L) in Lemma 7 is met and that in & diversity sum of zero are exactly those stated in Theorem 1.

the case ok, = 1 (mod 4) condition B2) in Lemma 7 is The proof of Theorem 1 is thus completed. .

satisfied while in the case @& = 3 (mod 4) condition

At the end of the Appendix, we briefly present a proof of

B3)inLemma 7 is met. Therefore, the signal constellationemyma 7.

V(ki, k2, k3) has a diversity sum afera

4) (ki1, ko, k3) = (odd odd odd).
According to the preceding Rules 1)
that forall

meZr_,=1{0,1,..., L—2}
and forall
tef{l1,2,...,L—1—m}

We can expand th2 x 2 matrix equation

A k1, ko, k3) = Apge(ky, k2, k3)

—3), itcan be S€§fto the following equivalent system of four equations:

cos((m + O)kabp)e? *sTD0r — cos(mkq6)
sin((m + £)ka6)e? s =D — gin(mk,67)
sin((m + £)ko0p ) F1t*a)00 — gin(mkq67)
cos((m + O)kafp)e? *r=*)01 — cos(mkq6r)

which can be reduced to the three equations of

conditions of B1)-B9) and condition B12) in Lemma 7

cannot be satisfied. Therefore, we can focus on conditions

of B10) and B11) and condition A) in Lemma 7.
If condition B10)or B11) in Lemma 7 is met, then there
should be2/ = L/2 (mod L) which means that

£=L/4 (mod L)
or
£=3L/4 (mod L).

Recall that we have assumed
melr_1 I{O, 1, ..., L—2}
and

¢e{l,2,...,L—1—m)}.

Cj[(k1+1)6L — 1
cos((m + O)kaofp)e? (ks 101 — cos(mkq0p,) (43)

sin((m + £)kofy)e? P =1 = sin(mk»6y,).

In the derivation of the conditions in Lemma 7, the following
two facts are frequently used.

1) We haveos(kfr)=0ifandonlyifk = L/4 (mod L) or

k = 3L/4 (mod L), which corresponds tdn(k6;) = 1
andsin(kfr) = —1, respectively. Equivalently/*?: =
jifandonly if k = L/4 (mod L), and that?**z = —j
if and only if k. = 3L/4 (mod L).

2) We havesin(k6y) = 0 if and only if ¥ = 0 (inod L) or

k = L/2 (mod L), which corresponds teos(k6;,) = 1
andcos(kf) = —1, respectively. Equivalently/*%z =
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1ifand only if £ = 0 (mod L), and that’*?t = —1if Hence,

and only ifk = L/2 (inod L). def

Gap = {j™A |4 € Zigandm =0, 1}
The first equation in (43) is equivalent to condition A) in _[A*, A*B, AB?, AKB® |k € Z5).  (45)
Lemma 7, i.e./(ki + 1) = 0 (mod L). The second and third ' :

equations in (43) can be handled in the following three mutually By (44), it_is easy t_o verify that_the_ S€ls2 given by (45) is a.
exclusive cases. group on which the binary operation is the usual matrix multipli-

cation [20]. Moreover, every element {#s> can be factorized
1) cos(mka26r) = cos((m + €)k261) = 0. " . C
2) sin(mkyfy) = sin((m + £)kafp) = 0. as a product of some matrices ¥ Hence, the conclusion in

3) sin(mka6y) cos(mknfp) # 0. Proposition 3 is true. |
Each of the preceding three cases can be further discussed
separately in the four situations as described in the following.
For case 1), we have thatk, = L/4 (inod L) or mky, =
3L/4 (mod L) and that(m + £)ky = L/4 (mod L) or (m + The equivalence between the condition th4®,)| < 1 and
Oky = 3L/4 (mod L). Therefore, there are exactly four situ{Aa;| < 1 and the condition that
ations in which the second and third equations in (43) can be _ ,
equivalently reduced to conditions B1)-B4) in Lemma 7. For ° bi e [_1/3 B 4\/?/21’ _1/7} - [_1/3 + 4\/?/21’ 1}
example, in the case thaitk, = L/4 (mod L) and(m+£)k, = fori = 1, 2, 3 can be easily checked by some trigonometric
L/4 (mod L) are satisfied, the third equation in (43) is equivaand algebraic manipulation.
lent toe/(*s—1¢ — 1. Therefore, condition B1) in Lemma 7 The unitarity of the matrices ofl; andB; for i = 1, 2, 3
is deduced. follows from their parametric forms of unitary matrices.
For case 2), we have thatkes = 0 (mod L) or mky = Now, we examine the claimed identical relations in terms of
L/2 (mod L) and thatm +£)ko = 0 (mnod L) or (m+¥£)k, = the Frobenius norms. It is easy to verify that
L/2 (1n0F1 L). The_secpnd and third_ equationsin (4_3) in the cor- 14 — Aullr = || B: — Bal|r
responding four situations are equivalent to conditions BS)_BS?\d
in Lemma 7. For example, in the case that; = 0 (mod L) a
and(m + £)k2 = 0 (mod L) are satisfied, the second equation  [[4i — Bi|lr = ||[Ax — Billr,  forl<i<k <3

in (43) is equivalent ta/‘(*s*1% = 1. Therefore, condition woreover, the check of the equalif’ — D||y = /32/7 is of

APPENDIX E
PROOF OFPROPOSITION7

B5) in Lemma 7 is derived. a simple calculation.
For case 3), we have In what follows, we prove that
cos((m + E)kabr) =71 cos(mk2br) 14; = Billr = || 4; — Cllr = || 4; — D|r = v/32/7,
and fori=1, 2, 3.
sin((m + £)k201) =2 sin(mk0r) The proof of||B; — C||r = ||B; — D||r = /32/7 fori =

wherery, 1, € {—1, 1}. Thus, there are also four situations!, 2, 3 can then be obtained in a similar fashion. Therefore, it
in which the equivalent conditions B9) to B12) in Lemma Buffices to give an examination of the following three equalities.
can be deducgd from the second and third equations in (43).1) |4; — D|j2 = 32/7fori = 1, 2, 3.

For example, in the case thét;, ) = (1, 1), the second

. . . d vy In fact, we have
and third equations in (43) are equivalenteté(kst12 — 1,

/s =101 — | ande/(m+OR20r = cimk261 Therefore, con- 14; = DIIF =1Aai — 17 + [N"af A; — 1% + 2[b[?
dition B9) in Lemma 7 is obtained. =2(|AP|ai|* +7r7) +2 — Aa; (1 + AY)
The proof of Lemma 7 is thus completed. O —Aar(1+ A)
=4 —(A4 X
APPENDIX D (A+A7)
PROOF OFPROPOSITION3 =32/7.
Let A = Ay, andB = A7. Then, itis easy to verify thatthe  2) |4; — C||% = 32/7fori =1, 2, 3.
signal constellatio®V = { A, |¢ € Z15} given in Table Il can In fact, we have
be written as , ,
|A; — Cl|% = [Aai — )2 + 26> + [N af Ay — e779)?
Vv ={A* A*B|k € 75}. =2(|APa;? +r7) — Aaje TP (14 AY)

— Nafed?(14A))

SinceA; A5 = (, _;) ¢ V., the constellatiorV itself is not a 4 TPy

group. 9i(g—it _ pi®
By a simple calculation, we have the following relations in —4 M
terms of A and B: 7sin ¢

=32/7.
A*=B*=-1,, B*=jl,, A*=DB%=1, /

AB =BA? BA=A®B. (44) 3) ||A; — Bi||3 = 32/7fori =1, 2, 3.
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By a simple calculation, we have

1 1
A — a; A = - = la; —a*
8 = 0| = | Tk~ 7 | = i
_ sinb;
" 1+ cosé;

and
[bi = 0| + |0 Ai = biA]|?
= 47 (sin® B; + sin’®(3; — 6;))
= 47’i2 [51112 Bi + (sin 3; cos 8; — cos (3; sin 91‘)2]
= 4r7 [1 — cos(23;) cos® 6; — sin(2/3;) sin 6; cos 6;]
= 472[1 — cos 6; cos(263; — 6;)]
= 4r2[1 — cos b; f(6,)]
_ 42 22 + 26 cosd; '
* 19+ 21 cosb;
Then, by noting that\|? = 4/21 and
r? = (19 + 21 cos6;)/[21(1 + cos 6;)]
we can obtain
14 = BillF = |MPlai — af1? + b — 07> + [0 A; — b A][?
ARl A — AT

2\ sin® 6; 5 22 + 26 cos b;
= T
(1+ cosb;)? *'19+21cosb;
8sin? 6, 8(11+ 13cosb;)

- 21(1 + cos 6;)? 21(1 + cos b;)
8(12 + 24 cos §; + 12 cos® §;)
21(1 + cos 6;)?
=32/7

as required. O

APPENDIX F
PROOF OFTHEOREM 2

In the sequel, the proof is established by the contradiction

method.

We assume that there exists a unitary signal constellation

with equality if and only if the two singular values &f — V;,
are equal. Moreover, by Proposition 2, from (46) we have for all
0<i<k<L-1

det(Vi — Vk) - ||Vz — VkHF - L
2 o2v2 V2L -1y
Consequently,
IV = Vall = . (47)
L-1

From the above facts, under the assumption of (46), we can con-
cludethatforald <i< k< L-1
(Vi = Vi) (Vi = W) = 0° L, = 0 <1 0) (48)

1
where 0

2L

L-1

g =

By takingi = 0in (48), we know that the unitary signalg for
all¢=1,2,---, L — 1inthe constellation’ can be written in
the form

V=1I,+0U

whereU is a2 x 2 unitary matrix and the subscripis omitted
for simplicity.

LetU = A+ jB, i.e., A andB are the real and imaginary
parts ofl, respectively. From the two equalitiesBf' V = I,
andUM U = I,, we can deduce the following relations for which
A and B must satisfy:

A+ AT =—0ls,
and

B=B", AAT+BB' =1,

BAT = ABT. (49)

It follows from the preceding two relations thatis a real sym-
metric matrix andA has the form of

o 0 —«o
a=-gn+(0 ) (50

{Vi|£ € 2.} with size L € {6, 7, 8, 9} which has a diversity whereq is a real number. By the relatiohA™ +BBT = I, in

product of

L

(L, V)= WL—1)°

Itis apparent that any unitary signal constellation remains the
unitarity and the same diversity product and sum under the left
or right multiplication by a single same unitary matrix and und

the transpose or the complex conjugate operation.

(46)

(49), we know thaty satisfies
o? L-2 1
0<a?<1-"=-—"—°- <=
SYSITY Ty 2

and that the matrixB satisfies
O'2 2
I — ) IQ.

BBT:BQ:<1—

“herefore, the imaginary part éf, i.e., B, can be represented

in the form of

Since any unitary matrix can be diagonalized by a unitary

similarity transformation [21], without loss of generality, we can
assume that the signal constellatidias the first two matrices

with the form of

1 0 el 0
VOIIQI<O 1)7 Vl:( 0 Cj¢2>

whereg:, ¢ € [0, 27).
According to (42), we haveforall < i < k < L —1

det(Vi — Vi) _ [[Vi = Vallr
2 - 2v2

2
BI\/l—%—O&QQ

where@ is a2 x 2 real symmetric and orthogonal matrix; i.e.,
that@ has three possible forms 6f = I, Q@ = — 15, and the
following 2 x 2 reflection matrix:
sin @
—cos @

2=a0) - (

with 6 € [0, 2r).

(51)

cos @
sin @

(52)
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In particular, for the second matri% in V, which is assumed
to be diagonal, it is seen from the relation

V=0L+oU=IL+0A+ joB

that A and B are both diagonal; i.e., that = 0 andsing = 0
in the representation of and B, namely, (50)—(52). Therefore,
V1 should have the form of
2 0
T2

2
V1:< J)IQ+J0\/1—J—<
4
The L — 2 remaining matrices rather thadfy andV; in V can

1— —
wherery, r2 € {—1, 1}.
be written as
—oQ + i 1—0—2—042Q
0 JoVET Yy

V=L+ocA+joB
(54)

1

0 (53)

0

g

1—

-(-3)n(

where( is a real symmetric and orthogonal matrix with one of

the above-mentioned three forms; i.e., that I, Q = —1I,
and@ = Q(#), given by (52), withd € [0, 2r).

In the case that? < 1 — 02/4,if Q@ = I, or Q@ = —I5, then
the matrix B, given by (51), is anonzeroscalar matrix. From
this and the relatioBAT = ABT in (49), we know thatd is
real symmetric. Hencey = 0 in the representation (50) of.
Therefore, thel — 2 remaining matrices, given by (54), shoul
have three possible forms of

2 2
V= <1—%>+ja\/1—%]lg (55)
o2 o2
and
o? 0 —o«
V_<1_?>IQ+<0'04 0 )
o2 cos @ sin €
i _Y 2
+tioyl 4 « <Sin€ —C059> (57)

with o2 < 1 — o2 /4 andé € [0, 27).

Now, we can claim that in the representation of (53) for thﬁ

second matri¥;, the numbers; andr, cannot be equal tbor
—1 simultaneously. Hence, there should(be, ) = (1, —1)
or (7’1, 7’2) = (—1, 1) in (53)

In fact, sinceL > 6 under the assumptich € {6, 7, 8, 9},
there is at least one of tHe— 2 remaining matrice¥” which has
the form of (57). If(r1, r2) = (1, 1) or (r1, 72) = (=1, —1)
in (53), by letting

def

A= o/1-02%/4

and

def
pn= o

V1—02/4—a?

and noting thaV” is currently in the form of (57), we can com-
pute that

IV =Wl

= 20202+ (\ry +pucos 0)2 4+ (Mg — pcos 8)% +24% sin” 6

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 8, AUGUST 2002

_%_M)
4L
L—-1

= 20202 +2)\% + 242
2
= 20202 + 202 <1 - %) + 202 <1
2 4L(L — 2)
—452(1-2) =
’ < 4 ) (L—1p
which contradicts (47).
Based on the fact that there should (og, 2) = (1, —1)
or (r1, r2) = (=1, 1) in the representation (53) of the second
matrix V1 in V, we can further show that, for thode— 2 re-
maining matriced’ rather tharl{, andV; in V, the matrix@ in
the representation (54) &f cannot take the forms @ = I,
and@ = —I, inthe case that? < 1—02/4;i.e., that thel, — 2
remaining matrice$” can only take the form of (57) rather than
(55) and (56).
In fact, if the matrixV" takes the form of (55) or (56), by
a simple calculation and noting thét,, ) = (1, —1) or
(r1, r2) = (=1, 1) in (53), we can get
2
IV =il =a* (1= %) [t £ 17+ (2 £ 17
2 _
a2 (17 :4L(L 2) 4L
4 (L—1)? L—-1

which is in contradiction to (47). The symbot” in the pre-
ceding expression takes-" and “—" when V" takes the form of

56) or (55), respectively.

Therefore, all the. — 2 remaining matrice¥®” rather tharj
andV; in V should take the form of (57). By some algebraic
manipulation, we can verify that th x 2 reflection matrix
@ = Q(0) in (57) and (52) satisfies

QO)Q(¢) + Q()Q(0) = 2cos(f — ¢) I

for 6,¢ € [0, 2m).

By the invariance property of the diversity product and the
sum of a unitary signal constellation under the operation of com-
plex conjugate and the fact the negative df & 2 reflection
matrix is also a reflection matrix, we need only handle only
one case of eithefry, r2) = (1, —=1) or (r1, 72) = (=1, 1)
in the representation (53) of the second matfixin V. In the
following, we take(r1, 72) = (1, —1) in (53) as an example. In
this case, the signal constellatidh= {V; | ¢ € Z} with size
€ {6, 7, 8, 9} has the following form:

%:Q:C ﬂ

(58)

0 1

o o 1 0
and
o? 0 —oay
W—( —s)fﬁ(m )
/ 02 cos 0, sin 6,
l=7- <sm 0, —cos 95) (59)
with a? < 1—0?/4 = (L —2)/ ( —1)] andé, € [0, 2w)

for¢ € Z:\{0, 1} = {2 3, — 1}. It is noted thatl;
can also be considered with the form of (59) in the case that
@] = 91 = 0.
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Then, by using the equalities (48) and (58), we can obtain fohis implies tha¥, € (x/2, 37/2) for 2 < k < 5. It has been

all <i<k<L-1 shown that, in order to satisfy (61), there shouldthe- ;| >
) o2 ) o2 ) 7/2 provided thatw,; and «;, are nonpositive or nonnegative
(i — o)™ + <1 R Oéz) + <1 ~ 3 0%) simultaneously. Therefore, we can assume that without loss of
generality
o2 ) o2 )
—2 1_Z_ai 1_I_akCOS(9i—9k):1- 6 =0, 7w/2<0<m, w<O3<30/2, T2
That is, 7w < 85 < 3m/2.
o2 ) ) o2 ) Moreover, from (62) we get
11— — —ajop — A1 — — —ajy\/1— — — g 2 1
4 4 4 =2~ <2 for2<k<5  (63)
5 40cos?6, — 8

1 .
xeos(ty —th) =5, forl<i<k<L-1 (60)  Byvirtue of the equalities of (61)~(63) and noting the ranges
of parameter®), for 1 < k < 5, we can derive several new
equations in terms af, for 2 < £ < 5. For example, for the

We can divide the index set of

I=1z,\{o}t={1,2,...,L—1} cases of = 2 andk = 3, it follows from (62) that
into the following two index subsets:
\/2/5— a3 sinfy =/3/8 — o3
Iy ={keZ|ay >0}

and

and
= 2 o3 2
Ty ={k € T|ax < 0} 1/2/5 — a3 sinfls = —4/3/8 — a3.

If the index subsef; contains at least four elements, thed hen, in the case df, &) = (2, 3), the equality (61) can yield

there should be two indexeég # ko € Z; C Z such that . .
0< 6:, — Oy, <7/2. 3/8—0420434—\/3/8—a2\/3/8—a3_1/2.

Then, forio and ko, the left-hand side of (60) is less than offom this, it holds that
equal tol — ¢2/4 = (L — 2)/[2(L — 1)], which is smaller 2 2 _
than half. Henc/e, the (two ingéie(@; and k)j cannot satisfy the 3aj + 3a; + 2a0a3 — 1 = 0. (64)
equality (60). Therefore, there are at most three entrig in  |n a similar manner, we can actually get the following equa-
By a similar argument, we can conclude tlfathas at most tions:
three indexes as well. Note that the indexw@f= 0 belongs to
7,NZ,. ThereforeZ,UZ, = T ={1, 2, ..., L—1} hasatmost 3¢} + 30} + 2a;c — 1 =0, for2<i<k <5 (65)
five indexes. Considering the assumptibre {6, 7, 8, 9}, we
know that we must havé = 6.

Now, we want to prove that the equality (60) cannot hold f
somel <7 < k < L-—1eveninthe case df = 6. Thisis
stated as follows.

If s = a3 = a > 0, then from (64) we can obtain the
0solutiona = ﬁ Furthermore, by solving the equations of
{65) for the cases dfi, k) = (2, 4) and(, k) = (2, 5), we can
get the resultyy = a; = —652 < 0. On the other hand, by

using the above identical relatien, = «; and solving (65) for
Lemma 9: There should not exist five pairs of real numberge casdi, k) = (4, 5), we have another result of, = a; =

(v, 0¢) for £ =1, 2, 3,4,5, where(ay, 61) = (0, 0), suchthat —q = —_L1_ < 0. Thus, a contradiction results.
o2 o2 o2 If «; # a3, by the subtraction operation between two equa-
1— o — i = \/1 e af\/l - % tions of (65) in the cases ¢f, k) = (2, 4) and(i, k) = (3, 4),
. we can gety, = —2 (a2 + a3). Substitutings = 5 for k = 4
x cos(#; — i) = o forl<i< k<5 (61) andrepeatingthe above procedure, we can also obtain
wherel —o?/4 = 2/5and tha0 < o? < 2/5andd, € [0, 2) as = _3 (a2 + as).
for2 < ¢ < 5. 2

Therefore, by the contradiction method, the equality (4@)hus,ay = «5. From this identical relation, by solving (65) for
cannot hold. Hence, the proof of Theorem 2 is completedl the casd, k) = (4, 5), we have

In the sequel, we present a proof of Lemma 9 by the contra- 1
diction method. We assume the existence of a solution to (61). =

According to the preceding discussion, amang a3, ay .
and «; there should be two positives and the other two neg Ibzn,_by soivmg (65) for the cases Of k) = (2, 4) and
tives. Without loss of generality, we assume that t, k) = (3, 4), we get

a; =0, az > 0, as > 0, aq <0, as < 0.

Qo = (g = ——= > 0
By lettings = 1 in (61), we obtain that 6v/2
V5 which contradicts the above assumption # «s. Therefore
- 2 _ __v¥ 4 ’
V/2/5 — ag cos by = 1072’ for2< k<5 (62) e proof of Lemma 9 is completed. O
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APPENDIX G of the six-dimensional unit-radius sphefg;. Therefore, by
PROOF OFTHEOREM 3 virtue of (23) in the casé/d = 2, the upper bound in 2) is
achieved.

The proof is as follows.
1) We consider two special classes2of 2 unitary matrices.
Let the2 x 2 signal constellation consist of finitely many unitar

3) The squared Frobenius norm of the difference matrix in the
yalbove satisfies

matrices all of which are in the form of F =P+ b—df +|a" Ay —c* Ao + b A —d* Ay?
n=(2 ) <o~ cf? + b= d) +]2; — Aof?
or of +2([6] [b— d| + |a] |a — c])[Ar = Ay
V2:<‘i b*> <2(ja— 2+ |b—d?) + |AL — Agf?
b* —a 12 |a— P+ [b—dE|A; — Asl.
wherea, b € C satisfying|a|® + |b|> = 1. Itis easily seen that t,i‘léf(\/ﬁ — 1)/2. Then, we have

a set of finitely many matrices, all of which are in the form of )

Vi/V2 or of V2/V/2, is equivalent to a spherical code on the £ _ 5 42 L B4 9AB < 247 + B2 4 wA? 4+ B
surface of the four-dimensional unit-radius sph@re For the - - K

above two classes of signal constellations, it can be verified that =(2+r)(A? + B?)
the diversity product and the diversity sum of the signal constel-
lations are identical and that their values are both equal to the _ 3+5 (la = c? 46— d? + A1 — Ao]?)
half of the minimum distance of the above equivalent spherical 2 ' 2
code. Therefore, the lower bound in 1) can be obtained. By the fact that a finite set of three-dimensional complex
2) For any two2 x 2 unitary matrices of vector(a, b, A)/+/2 can be reduced to a spherical code on the
a b c d surface of the six-dimensional unit-radius sphegeand (22) in
<—b*A1 a*A1> and <_d*A2 c*A2> the caseVl = 2, the upper bound in 3) is derived.
4) In the proof of Proposition 2 given in Appendix B, we have
where shown that¢; (L, V) < 3 D(2M?2, L). Therefore, by noting
|a|2 + |b|2 _ |C|2 + |d|2 _ |A1| _ |A2| -1 (13) and (22), we have

= — 1 2
their difference matrix has an absolute determinant given by Ew(l) < An(l) = max &(L, V) < 3 D(2M7, L),

. < a—-c b—d ) ‘ The proof of Theorem 3 is thus completed. O
= e
—b* A +d* Ay atAL — Ay
. . . , APPENDIX H
<la—cffa®Ay — " Ao + [b—d] Ay — d" A PROOF OF THEOREM 4
<la—cl(la —c +al [A1 — Az) The proof is as follows.

1) We need a fundamental result in sphere packing. Hamkins

+1b = dl(lp = d] + o] [ AL = Az) and Zeger [10], [11] have essentially proved that,for 2

<la—cf 1o —d +/]a = +[b—d? |AL — Ay

k—1
Ak, d) = AP*F Sk <3) (14 04(1))  (66)

where the inequality k=11, . \d
la*Ap — " Ag| < a— | + |a] AL — Ay where the notatiom,(1) denotes a variable in terms dfap-
_ proaching zero ag — 07, V4 is thek-dimensional content, or
is employed. “volume,” of the k-dimensional unit-radius sphef®, defined
Let in (26), given by
def
Ad:f Vi]a—c]2+b—d? qer T/
B= 18- A TR
and def andS;, the (k — 1)-dimensional content, or “surface area,” of
c=1+V2. Q. given by
Then, we have der k2
AQ € € Sk:kazir 2y
D§A2+AB§A2+2—+§B2:§(A2+BQ) (%)
€
1+2 By applying Proposition 8, it follows from (66) that for each
= (la—c|* +b—dI* + A1 — As]?). k> 2, we have, for large code side
1
Clearly, a finite set of three-dimensional complex vectors _ pack Sk \ "' ;o L
(a, b, A)/+/2 can be reduced to a spherical code on the surface Dk, L) =2 <Ak—1 Vi1 L7+ or(1)).
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By taking £ = 4 in the preceding equality and making use of We can partition each side of the compact hypercubic subset
Property 1) in Theorem 3 and the fact ths§** > 7/(3v/2), [0, 27]*" of parameters fol x M unitary matrices intak
we can see that 1) is true. equal sections frorfi to 27. That is,

2) LetV = (V) be an arbitraryd/ x M unitary matrix.

X
The unitary matrix}’ can be written as the form of )

[0, 27 = | J

k=1

2

[(k—l)K,k%l

K
V =01DQ:

Then, the above hypercubic subset, namiely2x]*", is par-
whereQ;, Q, are real orthogonal matrices aftlis a diagonal titioned into X" equal sections each of which is a hypercube
unitary matrix [17]. Therefore, any elemén,,, in Viisasumof with equal side length dir /K. For largeL, we can take
finitely many complex-number terms whose real and imaginary )
parts are in the form of K = L(L - M J

M?

which satisfiesc™” < L. Then, for any unitary signal constel-
F(p17 P2y« ey PMZ) = H fk(pk)
k=1

lation with sizeL there must be two signal matrices whose pa-
rameters belong to a single same hypercubic section. Then, ac-
cording to Lemma 10, the absolute value of each element of the

— 2 2
where p for k= 1,2,..., M* are theM* parameters ifference matrix between the above two signal matrices should

of the unitary matrix belonging to a compact subset, su
as [0, 27]M° < RM’, and that the functiongy(ps) for
k=1,2,..., M? have three possible forms g p;, cos px,
and the constant function [24]. The following lemma is
needed in our proof.

Lemma 10: Let fi(px) be one of the three functios py,
cos pg, and the constant functiah for p, € [0, 27) and1 <
k < K. Then

K K K
LT fitor) = T i) < D7 1 Falor) = fulen) [1]
k=1 k=1 k=1

i
< Z |ox — ol
k=1
[3]

Proof. By the mean value theorem, it is obvious that the 4
above second inequality holds. [4]
We can prove the above first inequality by using a simple

(2]

induction procedure in terms df € N. That the above first  [5]
inequality holds in the casE = 1 is self-evident. We assume (6]
that the above first inequality holds for sofiec N and wantto
show thatit also holds fak'+1. In fact, noting that . (o )] < 1 [7]
for1 < k < K, we can obtain
. . (8]
K+1 K41
I #ox) = TT o)
k=1 k=1 [9]
K K
< \fxra(pran) T Felon) = Frera(@ren) [T frlon)
k=1 k=1 [10]
K K [11]
+ | frs1(Pry1) H Jilor) — fry1(Prar) H Ju(on)
k=1 k=1 [12]
K K 13
< |fr+1(prs1)— Frs1(Prs)|+ H fk(Pk)—H Jr(ow) [13]
k=1 k=1
K+1 [14]
<O frlow) — frlon)
k=1 [15]
as required. O

of the order

0@2r/K) =0 (L*—) .

Consequently, for large, the Frobenius norm of the above dif-
ference matrix is of the ordeﬁ?(L‘ﬁ). From this, the upper
bound in 2) can be achieved.

The proof of Theorem 4 is thus completed.

O
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