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Computationally Efficient Equalization for

Asynchronous Cooperative Communications with
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Abstract

In cooperative communications, time and frequency synchronization is an important issue needed to be

addressed in practice. Due to the nature of cooperative communications, multiple frequency offsets may occur

and the traditional frequency offset compensations may not apply. For this problem, equalization for the time-

varying channel has been used in the literature, where the equalization matrix inverse needs to be retaken every

symbol. In this paper, we propose computationally efficient minimum mean square error (MMSE) and MMSE

decision feedback equalizers (MMSE-DFE) when multiple frequency offsets are present, where the equalization

matrix inverses do not need to be retaken every symbol. Our proposed equalization methods apply to linear

convolutively coded cooperative systems, where linear convolutive space-time coding is used to achieve the full

cooperative diversity when there are timing errors from the cooperative users or relay nodes, i.e., asynchronous

cooperative communication systems.

Index Terms

Asynchronous cooperative networks, equalization, MMSE, MMSE-DFE, multiple carrier frequency offsets,

space-time codes

I. INTRODUCTION

Cooperative communications have attracted considerable attention lately due to the potential coop-

erative diversity [1] - [4]. The basic idea to achieve the cooperative diversity is similar to achieving

the spatial diversity in multiple antenna systems by utilizing the multiple transmissions and possibly

space-time coding. It is well-understood that a major difference between cooperative and multiple

antenna systems is that the multiple transmissions in cooperative systems may not be either time or

frequency synchronized since the multiple transmissions are from different user or relay node locations

while they are co-located in conventional multiple antenna systems.
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When both time and frequency are synchronized at the relay nodes, the existing space-time coding

for multiple antenna systems can be directly applied to cooperative communication systems adopting

decode-and-forward (DF) protocol to achieve the cooperative diversity1. When there are timing off-

sets from relay nodes, there have been several studies in the literature to achieve the asynchronous

cooperative diversity, see for example [5] - [15]. In [7], a family of space-time trellis codes achieving

full asynchronous cooperative diversity was proposed, which is based on the Hammons-El Gamal’s

nonlinear algebraic space-time codes [19]. This code family was systematically studied and constructed

in [8]. In [15], a linear construction called distributed linear convolutive space-time codes (DLC-STC),

which is also based on [7], has been proposed and shown to achieve the full asynchronous cooperative

diversity not only with the maximum-likelihood (ML) receiver but also with the minimum mean square

error (MMSE) equalizer2 and MMSE decision feedback equalizer (MMSE-DFE). When the channels

from relay nodes to destination node are frequency-selective fading, a distributed high-rate space-

frequency code achieving both full asynchronous cooperative diversity and full multipath diversity

was proposed in [13] by generalizing the idea of the OFDM transmission first proposed in [12] to

achieve the full asynchronous cooperative diversity with Alamouti code.

All the aforementioned schemes are proposed to deal with the time asynchronous issue. On the other

hand, due to the reason that the multiple transmissions from relay nodes are from different locations

with different oscillators, they may have multiple different carrier frequency offsets (CFOs) that can

not be compensated simultaneously at the receiver as in a conventional multiple antenna system. With

multiple CFOs and different propagation delays, the channel becomes time-varying with intersymbol

interference (ISI). To deal with this problem, equalizations have been proposed in the literature, see for

example [16], [17], [18], where the equalization matrix inverses need to be retaken for every symbol

(or OFDM symbol) even in a channel coherent time duration.

In this paper, we consider the equalization issue for cooperative communication systems with mul-

tiple CFOs. We propose computationally efficient MMSE and MMSE-DFE equalizers when multiple

frequency offsets are present, where the equalization matrix inverses do not need to be retaken every

symbol in a channel coherent time duration, which may therefore significantly reduce the computational

1Space-time codes for conventional multiple antenna systems may not be applied directly in amplify-and-forward based cooperative

systems, see [4].
2Space-time codes achieving full spatial diversity with linear receivers have been recently studied in [20], [21], [22].
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complexity for the equalization. Our proposed equalization methods apply to linear convolutively coded

cooperative systems, where the DLC-STC [15] can be used to achieve full asynchronous cooperative

diversity when there are timing errors from cooperative users or relay nodes. Our proposed equalization

methods also apply to frequency-selective fading channels (from relay nodes to destination node).

This paper is organized as follows. In Section II, we present the cooperative communication system

model we use in this paper. At the transmitters (relay nodes), we adopt the notion of a general

DLC-STC. In Section III, we derive linear MMSE equalizer and MMSE-DFE equalizer and propose

recursive methods to equalize the received data with multiple different CFOs. We then study some

properties of the proposed equalizers. In Section IV, we analyze the computational complexities of the

proposed equalization schemes. In Section V, we present some simulation results.

Notations: Superscripts (·)∗, (·)T , (·)H represent conjugate, transpose, and Hermitian, respectively.

E(·) is the mathematical expectation. diag(·) is diagonal matrix with main diagonal (·). | · | and ‖ · ‖

are the modulus of a complex scalar and Euclidean norm of a vector, respectively. We denote the

N ×N identity matrix as IN and the M ×N all-zero matrix as 0M×N . Matlab matrix representations

are used, for example, X(r1 : r2, c1 : c2) denotes the submatrix of X of the rows from r1 to r2 and

the columns from c1 to c2. C is the complex number field. Function Q(·) represents a decision device

that optimally maps soft symbol estimates into hard symbol estimates.

II. SYSTEM MODEL

The cooperative communication system considered in this paper is shown in Fig.1, where there are

R relay nodes between the source node and the destination node. The DF protocol [2] is adopted. In

the first phase, the source broadcasts the information sequence to potential relay nodes. At the relay

node, the received signals are decoded and only the relay nodes that correctly decode the received

signals will become active relay nodes to participate in the cooperative transmissions in the second

phase. In the beginning of the second phase, the eligible relay nodes re-map the decoded information

bits into symbols. Without loss of generality, we assume all R eligible relay nodes use the same signal

constellation Γ, such as QPSK or QAM. Therefore, all the symbol sequences re-mapped at relays

are the same, which can be denoted as s = [s0, s1, · · · , sN−1]. Consider a general distributed linear

convolutive coding scheme for the R relay nodes. At the r-th relay node, the information symbol
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sequence s is linearly transformed into c̄r by an N × (N + L − 1) generating matrix T̄(r), i.e.,

c̄r = sT̄(r), where T̄(r), r = 1, 2, · · · , R, are Toeplitz matrices in the form:

T̄(r) =








t̄
(r)
1 t̄

(r)
2 · · · t̄

(r)
L 0 0 · · · 0

0 t̄
(r)
1 t̄

(r)
2 · · · t̄

(r)
L 0 · · · 0

...
...

. . .
. . .

. . .
. . . · · · ...

0 0 · · · 0 t̄
(r)
1 t̄

(r)
2 · · · t̄

(r)
L








(1)

where elements t̄
(r)
l , r = 1, 2, · · ·R, l = 1, 2, · · · , L, are the generating polynomial coefficients for

the linear convolutive code and can be designed to satisfy, for example, the shift-full-rank property

[8] so as to achieve the full asynchronous cooperative diversity as studied in [15]. We would like

to emphasize here that our following proposed recursive equalizers are independent of the above

generating polynomial coefficients.

For convenience, in what follows we assume that channels from relay nodes to destination node

are flat-fading and time-invariant during the transmission of one block. In fact, as we shall see later

our proposed methods apply to frequency-selective channels as well. Denote the delays of R relay

nodes as τr, r = 1, 2, · · · , R, respectively, and we only consider the case when the delay is a multiple

of symbol duration. Without loss of generality, we assume τ1 = 0 and τ1 < τ2 < · · · < τR. To deal

with the timing errors, at the beginning and/or the end of each block, guard interval is inserted so

that adjacent code blocks will not overlap with each other [7], [9], [10]. Therefore, we have δ > τR,

where δ is the interval padding length. Here we assume δ = τR. Due to the zero padding operations

at the relay nodes and the different delays between relay and destination nodes, the equivalent code

matrix at the destination node can be written as:

C =













c1

c2

...

cR













=













c̄1

τR
︷ ︸︸ ︷

0 0 0 0 0 0 · · · 0
τ2

︷ ︸︸ ︷

0 · · · 0 c̄2

τR−τ2
︷ ︸︸ ︷

0 0 · · · 0
· · · · · · · · · · · · · · · · · ·

τR
︷ ︸︸ ︷

0 0 0 0 0 0 · · · 0 c̄R













(2)

where cr ,
[
01×τr

c̄r 01×(τR−τr)

]
, r = 1, 2, · · · , R. From (1), cr can be rewritten as:

cr = sT(r) (3)

where T(r) is an N × (N + L− 1 + τR) matrix defined as T(r) ,
[
0N×τr

T̄(r) 0N×(τR−τr)

]
. It is a

zero-padded version of T̄(r), which can be called as equivalent generating matrix.
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Denote the channel coefficient and the CFO between the destination and the r-th relay node as hr

and △fr, respectively. Then the received signal at destination node in symbol interval k is:

yk =

R∑

r=1

ej2πkT△frhrcr,k + nk =

R∑

r=1

ej2πkT△frhr

N−1∑

n=0

snt
(r)
n,k + nk (4)

where T is the symbol duration, cr,k is the k-th element of cr and t
(r)
n,k is the (n, k)-th element of

T(r) in (3). The additive noise nk is independent identically distributed (i.i.d.) complex Gaussian with

zero-mean and variance σ2
n.

Reformulating (4) into vector-matrix form yields:

yk = ekh̄s̄k + nk (5)

where ek =
[
ej2πkT△f1, ej2πkT△f2, · · · , ej2πkT△fR

]
is CFO vector, h̄ is a R × (L + τR) matrix as:

h̄ =













h1t̄
(1)
1 h1t̄

(1)
2 · · · h1t̄

(1)
L

τR
︷ ︸︸ ︷

0 0 0 0 0 0 · · · 0
τ2

︷ ︸︸ ︷

0 · · · 0 h2t̄
(2)
1 h2t̄

(2)
2 · · · h2t̄

(2)
L

τR−τ2
︷ ︸︸ ︷

0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

τR
︷ ︸︸ ︷

0 0 0 0 0 0 · · · 0 hRt̄
(R)
1 hRt̄

(R)
2 · · · hRt̄

(R)
L













(6)

and s̄k =
[
sk, sk−1, · · · , sk−(L+τR)+1

]T
.

Let L′ = L + τR. Considering consecutive Nf symbols, we get:

yk = Hksk + nk (7)

where:

Hk = PkH̄ (8)

Pk =







ek 01×R 01×R 01×R

01×R ek−1 01×R 01×R

...
...

. . .
...

01×R 01×R 01×R ek−Nf+1







Nf×Nf R

(9)

H̄ =







h̄ 0R×1 0R×1 0R×1

0R×1 h̄ 0R×1 0R×1
...

...
. . .

...

0R×1 0R×1 0R×1 h̄







Nf R×(Nf +L′−1)

(10)

yk =
[
yk, yk−1, · · · , yk−Nf+1

]T
, sk =

[
sk, sk−1, · · · , sk−(Nf +L′−1)+1

]T
, nk =

[
nk, nk−1, · · · , nk−Nf+1

]T
.
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Eq. (7) is an equivalent received signal model of the distributed MISO system. We can find that the

Nf × (Nf +L′−1) matrix Hk, which can be called the equivalent channel matrix, is composed of two

parts. The first part is the Nf ×NfR matrix Pk that is only associated with CFOs and is time-varying.

The second part is the NfR × (Nf + L′ − 1) matrix H̄, which does not change in the block and is

related to the channel coefficients hr and the equivalent generating matrices T(r), r = 1, 2, · · ·R, of

the DLC-STC. Note that each row of Hk only contains L′ non-zero elements, which means that the

length of the equivalent channel is L′. The received signal at symbol interval k can be considered

as a linear convolution of the transmitted block sk with the equivalent channel. In the following, we

shall develop recursive equalizers for the signal model (7). From this model, one can see that, if the

channels from relay nodes to destination node are not flat fading but frequency-selective fading, a

similar model to (7) can be derived by changing the part in H̄ and all the following studies follow

too. In other words, our proposed equalizers also work for frequency-selective fading channels.

III. RECURSIVE EQUALIZER DESIGNS

In this section, we assume that at the destination node, the channel information is known, including

the delays τi, CFOs △fi, and the channel coefficients hi, i = 1, 2, · · · , R, and we will derive our recur-

sive equalization algorithms for the destination node based on (7). Different from the MMSE/MMSE-

DFE equalizers for time-invariant channels [23], [24], ours are for time-varying channels. However,

the key observation is that the varying of the channel is only due to the CFO matrix Pk in (9), so

the channels in two adjacent symbol intervals have some special relationship that we can fully take

advantage of, in a way that the design result at symbol interval k can be exploited to design the

equalizer at symbol interval k + 1 so that a new matrix inversion is not necessary.

A. MMSE Equalizer

At the receiver, we use an MMSE equalizer to compensate the channel and the CFOs. The finite

length linear MMSE equalizer is a finite impulse response (FIR) filter with order Nf to minimize the

mean square error at symbol interval k as:

fMMSE
k = arg min

fk∈C
Nf×1

E
∣
∣sk−D − fHk yk

∣
∣
2

(11)

where fk is the filter coefficient vector and D is the estimation delay to make the filter a causal system,

which satisfies 0 6 D 6 (Nf + L′ − 2). Here, we let D = (Nf − 1)/2. Assume the symbol sequence
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and the additive noise are wide-sense stationary, mutually uncorrelated and white with variance σ2
s

and σ2
n, respectively. The solution for (11) is well known [23]:

fMMSE
k =

(
HkH

H

k + cINf

)−1
HkiD (12)

where the constant c = σ2
n/σ2

s and iD is an (Nf + L′ − 1)× 1 vector with 1 at the (D + 1)-th element

and all 0’s elsewhere.

As we mentioned before, (12) is a time-varying filter due to the CFO matrix Pk in (9). It seems

that matrix inversion operation should be taken every symbol interval to calculate (12) and then to

detect sk−D by ŝk−D = Q
(
fHk yk

)
. However, we will show below that it is unnecessary due to the

special time-varying property of the CFO matrix Pk.

Denote Rk = HkH
H
k + cINf

. At time interval k and k + 1, Rk and Rk+1 can be partitioned as:

Rk =

[
Ξ rk

rHk rk

]

, Rk+1 =

[
rk+1 rHk+1

rk+1 Ξ

]

(13)

where Ξ is an (Nf − 1)× (Nf − 1) sub-matrix, rk and rk+1 are (Nf − 1)× 1 column vectors. rk and

rk+1 are scalars. Assume that we have obtained R−1
k , which can be partitioned as:

R−1
k =

[
Θ wk

wH
k θk

]

(14)

where Θ = R−1
k (1 : Nf − 1, 1 : Nf − 1), wk = R−1

k (1 : Nf − 1, Nf) and θk = R−1
k (Nf , Nf ). Then

the following holds:

Ξ−1 = Θ − (Θrk) (Θrk)
H

ν−1
k + rHk Θrk

(15)

where νk = 1/rk. To calculate R−1
k+1, we have the following:

R−1
k+1 =

[
νk+1 + ν2

k+1r
H
k+1Ψrk+1 −νk+1r

H
k+1Ψ

−νk+1Ψrk+1 Ψ

]

(16)

where νk+1 = 1/rk+1 and

Ψ = Ξ−1 +
(Ξ−1rk+1) (Ξ−1rk+1)

H

ν−1
k+1 − rHk+1Ξ

−1rk+1

. (17)

The detailed derivation is shown in Appendix I. Hence, at symbol interval k + 1, we can calculate

R−1
k+1 through (16) and (17) using Ξ−1 obtained at symbol interval k by (15). So matrix inversion

is not required anymore except in the initial step in (14). Therefore, the computational complexity is

greatly reduced, which will be shown in Section IV.



8

We summarize the above procedure as follows:

1) At time interval k, assume we have already obtained Rk and R−1
k as (13) and (14);

2) Calculate Ξ−1 as (15) ;

3) At time interval k + 1, calculate rk+1 and rk+1 as (13);

4) Calculate Ψ as (17) using Ξ−1 obtained in Step 2) and rk+1, rk+1 obtained in Step 3);

5) Finally, substitute (17) into (16) to obtain R−1
k+1. And then design fMMSE

k+1 according to (12).

B. MMSE-DFE Equalizer

The linear MMSE equalizer is the optimal linear equalizer in the sense of minimum mean square

error. On the other hand, the decision feedback equalizer (DFE) is a well known nonlinear equalizer

that can outperform the MMSE equalizer. In the following, we will derive finite-length DFE equalizer

based on the minimum mean square error criteria, i.e., MMSE-DFE. We will show that a similar

recursive procedure also exists.

Let Nf and Nb be the lengths of the feedforward and feedback FIR filters, respectively. The design

of DFE based on the MMSE criteria is to design fk and bk to satisfy:

{
fMMSE−DFE
k ,bMMSE−DFE

k

}
= arg min

fk∈C
Nf×1

,bk∈C
Nb×1

E
∣
∣sk−D −

(
fHk yk + bH

k ŝk−D−1

)∣
∣
2

(18)

where fk and bk are the feedforward and feedback filter coefficient vectors, respectively, D is the esti-

mation delay, ŝk−D−1 = [ŝk−D−1, ŝk−D−2, · · · , ŝk−D−Nb
]T is the vector with already detected symbols.

Generally, we assume the symbols in ŝk−D−1 are correctly detected to ignore the error-propagation

problem (a common assumption in DFE design) [24]. Although the selection of delay D will impact

the MMSE performance of the equalizer, we shall assume that D = Nf − 1 in this paper, since it is

always the case for most practical channel and noise scenarios and reasonablly long feedforward filter

[24]. Also, we let Nb = L′ − 1 since the ISI of the equivalent channel only span L′ − 1 symbols. In

Appendix II, we derive the vector-matrix form of the MMSE-DFE equalizer slightly different from that

in [23], [24], [25] since it is more convenient to give the recursive algorithm based on our derivation.

In this case, we get:

fMMSE−DFE
k =

(
HkWHH

k + cINf

)−1
HkiD (19a)

bMMSE−DFE
k = −UHH

k fMMSE−DFE
k (19b)
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where U =
[

0Nb×(Nf +L′−1−Nb) INb

]
, W = INf +L′−1 − UHU and c = σ2

n/σ2
s . Similar to the case

of the MMSE equalizer, both fk and bk are time-varying. At each symbol interval, matrix inversion

should be taken to calculate fk and bk then to detect sk−D by ŝk−D = Q
(
fHk yk + bH

k ŝk−D−1

)
, if the

above algorithm is used directly.

Similar to the previous derivation of the recursive algorithm for the MMSE equalizer, we also

let Rk = HkWHH
k + cINf

. If we define a matrix V =
[

I(Nf +L′−Nb) 0H

Nb×(Nf +L′−Nb)

]H
of size

(Nf +L′)× (Nf +L′−Nb), then it is easy to verify that W = VVH. Hence, Rk can be rewritten as:

Rk = H̄kH̄
H

k + cINf
(20)

where H̄k = HkV. H̄k and Hk+1 can be partitioned as, respectively:

H̄k =

[
B uk

0H αk

]

, H̄k+1 =

[
αk+1 uH

k+1

0 B

]

, (21)

where B is an (Nf − 1)× (Nf − 1) sub-matrix, uk, uk+1 and 0 are (Nf − 1)× 1 column vectors and

αk, αk+1 are scalars. At time interval k, assume we have obtained R−1
k , which can be partitioned as:

R−1
k =

[
Q vk

vH
k βk

]

(22)

where Q is an (Nf −1)× (Nf −1) sub-matrices, vk is (Nf −1)×1 column vector and βk is a scalar.

Then, the following holds:

Q̄−1 = Q +
(Quk) (Quk)

H

b−1 − uH
k Quk

(23)

where Q̄ , BBH + cINf−1 and b , 1 − |αk|2/ (|αk|2 + c). At time interval k + 1, the inverse matrix

of Rk+1 can be calculated by:

R−1
k+1 =

[
µ + µ2ūH

k+1Φūk+1 −µūH
k+1Φ

−µΦūk+1 Φ

]

(24)

where µ , 1/
(
|αk+1|2 + uH

k+1uk+1 + c
)
, ūk+1 , Buk+1 and

Φ = Q̄−1 +

(
Q̄−1ūk+1

) (
Q̄−1ūk+1

)H

µ−1 − ūH
k+1Q̄

−1ūk+1

. (25)

The detailed derivation is shown in Appendix III. Similarly to the MMSE equalizer, the matrix

inversion operation is only required once in the initial step, and the recursion will continue in the

subsequent calculations.

The above procedure can be summarized as follows:
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1) At time interval k, assume we have already obtained R−1
k as (22);

2) Calculate Q̄−1 as (23);

3) At time interval k + 1, calculate Φ as (25) using Q̄−1 obtained in Step 2);

4) Finally, substitute (25) into (24) to obtain R−1
k+1. Then, design fMMSE

k+1 and bMMSE
k+1 according

to (19a) and (19b), respectively.

It is not hard to see that above derivations for the recursive MMSE/MMSE-DFE equalizers apply

to any space-time coded cooperative network and any frequency-selective fading channel as long as

the overall equivalent channel matrix is a convolutive matrix shown as in (7).

C. Some Remarks

In this part, we give some remarks of the above developed equalizers under multiple different CFOs.

Remark 1: Based on recently proposed design criterion [22], it is verified in [15] that without CFOs,

both the MMSE equalizer and the MMSE-DFE equalizer can achieve asynchronous full cooperative

diversity with elaborately designed coefficients t̄
(r)
l , l = 1, · · · , L, in generating matrices T̄(r), r =

1, · · · , R. However, when considering CFOs, we obtain a time-varying MMSE/MMSE-DFE equalizer

due to the time-varying equivalent channel. Generally it is difficult to do the performance analysis to

the time-varying equalizers. In Section V, simulations show that the presence of CFOs will degrade the

equalization performance compared with the case when the system is perfectly frequency-synchronized

and the asynchronous full cooperative diversity may not be achieved when CFOs exist.

Remark 2: Denote two CFOs sets of R relay nodes as FR = {△f1,△f2, · · · ,△fR} and F ′
R =

{△f ′
1,△f ′

2, · · · ,△f ′
R}, respectively. Then, we can find that the performances of the MMSE/MMSE-

DFE equalizer with these two CFOs sets are the same when the two CFOs sets only differ by a

constant shift, i.e., F ′
R = FR −△f , where △f is an arbitrary constant. Since we always can multiply

both sides of (7) with E = diag
(
e−j2πkT△f1Nf×1

)
to cancel a common term ej2πkT△f in Pk before

equalization, where 1Nf×1 is an Nf × 1 column vector with all one elements. In fact, we do not have

to do this since we show in Appendix IV that, the MMSE/MMSE-DFE equalizers have the inherent

property to cancel the common frequency offset △fmin, where △fmin is the minimum CFO in set

FR. It means that, the absolute values of the CFOs are not important, only the relative values matter.

For example, under the CFOs set F3 = {0.3, 0.32, 0.37} the performance of the MMSE/MMSE-DFE
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equalizer is the same as the one with CFOs set F ′
3 = {0, 0.02, 0.07}.

Remark 3: The simulation results in Section V also show that generally there is no deterministic

relationship between the value of CFOs and the equalization performance. In some cases, smaller CFOs

may result in better performance while in other cases it turns out just the opposite. An interesting

phenomenon is that in some cases, more relay nodes may have worse performance when multiple

CFOs are present.

IV. COMPLEXITY ANALYSIS

In Section III, we derived FIR linear MMSE equalizer and MMSE-DFE equalizer for the asyn-

chronous cooperative system with multiple CFOs. They are both serial equalizers, which means that

at each time interval, the equalizer only estimate one symbol. However, recall that the symbols are

transmitted from relay nodes block by block. Moreover, guard intervals are inserted to overcome the

inter-block interference. Therefore, a block equalizer [25], [26] can be used to detect symbols as

well, i.e., the destination node receives the whole block and then estimate all symbols in the block

simultaneously and the matrix inverse is done once for a block. In this section, we first recall the

block MMSE and MMSE-DFE equalizers, and then compare their computational complexities with

our proposed recursive algorithms.

Considering all received symbols in one block, we get the following data model:

y = Hs + n

where y = [y1, y2, · · · , yN+L′−1]
T

, H is the (N + L′ − 1) × N equivalent channel matrix, which

also contains the CFO matrix, channel coefficients and generating matrix, s = [x1, x2, · · · , xN ]T and

n = [n1, n2, · · · , nN+L′−1]
T

.

A. Block MMSE and MMSE-DFE Equalizers

The block MMSE equalizer is to find equalization matrix F to satisfy the MMSE criteria, i.e.,

FMMSE = arg min
F∈CN×(N+L′−1)

E ‖s− Fy‖2

and the solution is [25]:

FMMSE =
(
HHH + cIN

)−1
HH
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where c = σ2
n/σ

2
s . After equalization, we get ŝ = Q(FMMSEy). Similarly, the block MMSE-DFE

equalizer is to design feedforward filter-matrix F and feedback filter-matrix B to satisfy:

{
FMMSE−DFE,BMMSE−DFE

}
= arg min

F∈CN×(N+L′−1),B∈CN×N

‖s − (Fy − Bŝ)‖2 .

In order to feedback decisions in a causal way, we require B to be a zero diagonal upper triangular

matrix. We also assume past decisions are correct, i.e., ŝ = s. Let R̄ = HHH+cIN , and the “Cholesky”

factorization (lower-diagonal-upper) of R̄ be R̄ = LDLH, where L is a monic lower triangular matrix

and D is a diagonal matrix. Then, the block MMSE-DFE can be given by [25]:

BMMSE−DFE = LH − IN

FMMSE−DFE = LH
(
HHH + cIN

)−1
HH = D−1L−1HH.

B. Complexity Analysis

We now calculate the numbers of complex operations (we consider complex multiplication (CM)

and complex division (CD) here) for the recursive algorithms and compare them with that of the block

ones.

As to the recursive MMSE equalizer, assuming we have obtained R−1
k , the computational load to

calculate R−1
k+1 and to get the soft estimation s̃k+1 is listed in Table I. Therefore, to detect the whole

block s with N symbols, total computational complexity is in the order of O(N2
f N). Similarly, for

the recursive MMSE-DFE equalizer, the computational complexity to obtain the feedforward filter is

almost the same with that of the recursive MMSE equalizer, To obtain the feedback filter, another

NbNf CM are needed. Hence, a total of 4(Nf −1)2 +2N2
f +NbNf +4Nf +Nb−3 CM and (Nf −1)2

CD are required to get s̃k+1. To detect the whole block s, the complexity is about O(N2
f N), which is

in the same order as that of the recursive MMSE receiver.

For the block MMSE equalizer, the calculation of R̄ = HHH + cIN and the matrix inverse require

(N + L′ − 1)2N CM and N3 CM, respectively. To get FMMSE and then equalize the block, another

(N + L′ − 1)N + N2 CM are required. Hence the total computational load to detect the block is

(N + L′ − 1)2N +N3 + (N + L′ − 1)N + N2 CM which is in the order of O(N3). Similarly, it is not

hard to obtain the total complexity of block MMSE-DFE to be in the order of O(N3) as well. The

complexities are also summarized in Table I. From the comparison, one can see that when N >> Nf ,

the computational load of recursive equalizers are much lower compared with the block ones.
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V. SIMULATION RESULTS

In this section, we present some simulation results to illustrate the equalization performance of

our proposed linear MMSE and MMSE-DFE equalizers. Assume the carrier frequency is 2.5GHz,

the symbol duration is T = 20µs, and the oscillator’s stability is 10ppm. Hence the CFO can be as

large as 2.5GHz×10ppm= 25kHz and normalized CFO △φ , △fT ∈ [−0.5, 0.5]. The constellation

we used is QPSK and each block contains 80 symbols. The coefficients in generating matrix (1) are

designed according to [15]. For R = 2, the coefficient vector are t(1) =
[
1/
√

2, 1/
√

2
]

and t(2) =
[
1/
√

2,−1/
√

2
]
. For R = 3, they are t(1) =

[
1/
√

3, 1/
√

3, 1/
√

3
]
, t(2) =

[
1/
√

6,−2/
√

6, 1/
√

6
]

and t(3) =
[
1/
√

2, 0, 1/
√

2
]
. Assume that the channel between any relay node and the destination

node is quasi-static Rayleigh flat fading (channel coefficients are complex Gaussian random variables

with zero mean and normalized variance 1/R), the delays from the relays are uniformly distributed

in [0, τmax] and in simulations we set τmax = 3. The lengths of MMSE equalizer and the feedforward

filter of MMSE-DFE equalizer are fixed to 21 and 10, respectively. The bit error rate (BER) vs. bit

signal-noise-ratio (Eb/N0) curves are plotted to demonstrate the performance.

Fig.2 and Fig.3 illustrate the performances of the recursive MMSE/MMSE-DFE equalizers with

different sets of CFOs and different numbers of relay nodes, R = 2 and R = 3, respectively. We can

see that without CFOs, both these two cases can achieve full diversity order even with the timing

error. Although both equalization performances will degrade in the presence of CFOs, the MMSE-

DFE equalizer outperforms the linear MMSE equalizer significantly. It is also shown that the MMSE

equalizer will encounter error floor at moderate SNR (about 20dB) while the MMSE-DFE equalizer

will not. So MMSE-DFE equalizer is more robust when CFOs are present.

Fig.4 shows the property discussed in remark 2 of Section III.C. The performances with CFOs sets

F1
3 = {0.2, 0.27, 0.31}, F2

3 = {−0.2,−0.13,−0.09} and F3
3 = {0, 0.07, 0.11} are the same for MMSE

or MMSE-DFE equalizers.

Fig.5 compares the performance of our proposed serial MMSE-DFE equalizer (SDFE) and the block

MMSE-DFE equalizer (BDFE) in Section IV. Because the length of feedforward FIR filter of our serial

MMSE-DFE is Nf = 10 while that of block equalizer is the block length N = 80, the performance of

our scheme is a bit inferior to the block equalizer (less than 0.3 dB). However, considering the lower
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computational complexity, our recursive serial MMSE-DFE equalizer is a better tradeoff.

Fig.6 gives an example to show that there is no particular relationship between the value of CFOs

and the equalization performance. The MMSE-DFE equalization is considered. The performance

with CFO set {−0.5, 0.37, 0.4} is worse than that with {0.34, 0.37, 0.4} while better than the case

with {−0.35, 0.37, 0.4}. Another observation is that more relay nodes will not necessarily improve

the performance in the presence of CFOs. Assuming at some time there are two relay nodes with

normalized CFOs {0.37, 0.4} and then a third relay node is available. If the normalized CFO of this

relay is −0.5 or 0.34, then it will improve the performance. However, if the CFO is −0.35, the

performance is worse than the two relay case.

VI. CONCLUSION

In this paper, we have investigated the equalization issue for linear convolutively coded cooperative

network with multiple different carrier frequency offsets and possibly different time delays. We have

proposed recursive algorithms for MMSE and MMSE-DFE equalizers where equalization filter matrix

inversions are not needed for every symbol in a channel coherent time duration.

APPENDIX I

DERIVATION OF RECURSIVE ALGORITHM FOR MMSE EQUALIZER

We firstly recall two important formulas, which will be used in our following derivations. The first

one is the inversion formula [27] for a partitioned matrix, which can be expressed as:
[

A11 A12

A21 A22

]−1

=

[

A−1
11 + A−1

11 A12

(
A22 − A21A

−1
11 A12

)−1
A21A

−1
11 −A−1

11 A12

(
A22 − A21A

−1
11 A12

)−1

−
(
A22 − A21A

−1
11 A12

)−1
A21A

−1
11

(
A22 −A21A

−1
11 A12

)−1

]

(26)

=

[ (
A11 −A12A

−1
22 A21

)−1 −A−1
11 A12

(
A22 − A21A

−1
11 A12

)−1

−
(
A22 − A21A

−1
11 A12

)−1
A21A

−1
11

(
A22 −A21A

−1
11 A12

)−1

]

(27)

The second one is the Woodbury fomula, which is given by:

(
A + γuvH

)−1
= A−1 − γ

1 + γvHA−1u
A−1uvHA−1 (28)

where u and v are column vectors with proper dimensions.

It is easy to see Pk in (9) can be partitioned as:

Pk =

[
P̄k 0(Nf−1)×R

01×(Nf−1)R ek−Nf+1

]
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where P̄k = Pk(1 : Nf − 1, 1 : (Nf − 1)R). Correspondingly, H̄ in (10) can be partitioned as:

H̄ =

[
H̄11 0(Nf−1)R×1

H̄21 H̄22

]

where H̄11 = H̄(1 : (Nf − 1)R, 1 : Nf + L′ − 2), H̄21 = H̄((Nf − 1)R + 1 : NfR, 1 : Nf + L′ − 2),

and H̄22 is a R × 1 vector. Hence, Hk in (8) becomes:

Hk =

[
P̄kH̄11 0(Nf−1)×1

hH
k ek

]

where hH
k = ek−Nf+1H̄21 is a 1 × (Nf + L′ − 2) row vector and ek = ek−Nf+1H̄22 is a scalar. Now

we have

Rk = HkH
H

k + cINf
=

[
P̄kH̄11 0(Nf−1)×1

hH
k ek

] [
H̄H

11P̄
H
k hk

01×(Nf−1) e∗k

]

+ cINf

=

[
Ξ rk

rHk rk

]

(29)

where Ξ = P̄kH̄11H̄
H
11P̄

H
k + cINf−1, rk = P̄kH̄11hk and rk = hH

k hk + |ek|2 + c.

If we partition R−1
k as (14), then applying the inversion formula (27) to Rk in (29), we obtain:

Θ =

(

Ξ − rkr
H
k

rk

)−1

or equivalently

Ξ−1 =

(

Θ−1 +
rkr

H
k

rk

)−1

= Θ − (Θrk) (Θrk)
H

ν−1
k + rHk Θrk

(30)

where νk = 1/rk. (30) is obtained by using Woodbury formula (28).

At symbol interval k + 1, substituting k with k + 1 in (9), Pk+1 can be partitioned as:

Pk+1 =

[
ek+1 01×(Nf−1)R

0(Nf−1)×R P̄k

]

where P̄k = Pk+1(2 : Nf , R + 1 : NfR). Note that the left-upper sub-matrix of Pk is the same as the

right-lower sub-matrix of Pk+1. Correspondingly, H̄ in (10) can be re-partitioned as:

H̄ =

[
H̄′

11 H̄′
12

0(Nf−1)R×1 H̄′
22

]

where H̄′
11 = H̄(1 : R, 1), H̄′

22 = H̄(R + 1 : NfR, 2 : Nf + L′ − 1). Note due to the special shift

structure of H̄, we have H̄11 = H̄′
22. Now Hk+1 in (8) becomes:

Hk+1 =

[
ek+1 hH

k+1

0(Nf−1)×1 P̄kH̄
′
22

]
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where ek+1 = ek+1H̄
′
11 is a scalar and hH

k+1 = ek+1H̄
′
12 is a 1 × (Nf + L′ − 2) row vector.

Similar to (29), we have:

Rk+1 =

[
ek+1 hH

k+1

0(Nf−1)×1 P̄kH̄
′
22

] [
e∗k+1 01×(Nf−1)

hk+1 (H̄′
22)

HP̄H
k

]

+ cINf
=

[
rk+1 rHk+1

rk+1 Ξ

]

(31)

where rk+1 = hH
k+1hk+1 + |ek+1|2 + c, rk+1 = P̄kH̄

′
22hk+1 and Ξ = P̄kH̄11H̄

H
11P̄

H
k + cINf−1 =

P̄kH̄
′
22(H̄

′
22)

HP̄H
k + cINf−1 due to H̄11 = H̄′

22.

Applying the inversion formula (26) to Rk+1 in (31), R−1
k+1 can be written as:

R−1
k+1 =

[
νk+1 + ν2

k+1r
H
k+1Ψrk+1 −νk+1r

H
k+1Ψ

−νk+1Ψrk+1 Ψ

]

where νk+1 = 1/rk+1 and

Ψ =
(
Ξ − νk+1rk+1r

H

k+1

)−1
= Ξ−1 +

(Ξ−1rk+1) (Ξ−1rk+1)
H

ν−1
k+1 − rHk+1Ξ

−1rk+1

where the second equation is obtained by using Woodbury formula (28).

APPENDIX II

DERIVATION OF MMSE-DFE EQUALIZER

In this section, we derive the MMSE-DFE equalizer in (19a) and (19b). Our derivation is sightly

different from that in [23], [24] and [25] because it is more convenient to derive the recursive MMSE-

DFE algorithm based on our derivation here. From (18), define an augmented filter coefficients vector

as wk ,
[

fHk bH
k

]H
, and a corresponding augmented input vector as ȳk ,

[
yH

k ŝHk−D−1

]H
. Then,

(18) becomes:

wMMSE−DFE
k = arg min

wk∈C
(Nf +Nb)×1

E
∣
∣sk−D −wH

k ȳk

∣
∣
2
.

This is a standard linear optimum filtering problem [28]. By the orthogonality principle, we have:

(
wMMSE−DFE

k

)H
E

[
ȳkȳ

H

k

]
= E

[
sk−DȳH

k

]
. (32)

We assume the symbol sequence and the additive noise are wide-sense stationary, mutually uncor-

related and white with variance σ2
s and σ2

n. Hence E[sisi] = σ2
s and E[sisj] = 0 for any i 6= j. Under

the correct past decision assumption and D = Nf − 1, substituting (7) into (32), we have:

E
[
sk−DȳH

k

]
= E

[
sk−DyH

k sk−DsHk−D−1

]
= σ2

s

[

(HkiD)H 01×Nb

]
(33)
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and

E
[
ȳkȳ

H

k

]
= E

([
yk

sk−D−1

]
[

yH
k sHk−D−1

]
)

=

[
σ2

sHkHk + σ2
nINf

σ2
sHkU

H

σ2
sUHH

k σ2
sINb

]

(34)

where U =
[

0Nb×(Nf +L′−1−Nb) INb

]
. Then, substituting (33) and (34) into (32), we get:

fHk
(
HkH

H

k + σ2
n/σ

2
sINf

)
+ bH

k UHH

k = (HkiD)H (35)

fHk HkU
H + bH

k = 01×Nb
. (36)

From (35) and (36), It is easy to obtain fMMSE−DFE
k and bMMSE−DFE

k as (19a) and (19b).

APPENDIX III

DERIVATION OF RECURSIVE ALGORITHM FOR MMSE-DFE EQUALIZER

Rewrite Rk in (20) here:

Rk = H̄kH̄
H

k + cINf
(37)

Note that we have Nb = L′ − 1, H̄k = HkV, and V =
[

I(Nf +L′−Nb) 0H

Nb×(Nf +L′−Nb)

]H
. It is easy

to find that H̄k can be partitioned as:

H̄k =

[
B uk

0H αk

]

(38)

where B is a (Nf − 1) × (Nf − 1) sub-matrix and αk is a scalar. Then, substitute (38) into (37), we

have:

R−1
k =

[
BBH + uku

H
k + cINf−1 α∗

kuk

αku
H
k |αk|2 + c

]−1

=

[
Q vk

vH
k βk

]

.

Using inversion fomula (27), we have

Q =

(

BBH + cINf−1 +

(

1 − |αk|2
|αk|2 + c

)

uku
H
k

)−1

.

For convenience, let Q̄ , BBH + cINf−1 and b , 1 − |αk|2/ (|αk|2 + c). Using Woodbury formula

(28) again, we obtain:

Q̄−1 =
(
Q−1 − buku

H
k

)−1
= Q +

(Quk) (Quk)
H

b−1 − uH
k Quk

At time interval k + 1, H̄k+1 can be partitioned as:

H̄k+1 =

[
αk+1 uH

k+1

0 B

]

(39)
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Then, substituting (39) into (37), and using inversion formula (26), we have:

R−1
k+1 =

[
|αk+1|2 + uH

k+1uk+1 + c uH
k+1B

H

Buk+1 BBH + cINf−1

]−1

=

[
µ + µ2ūH

k+1Φūk+1 −µūH
k+1Φ

−µΦūk+1 Φ

]

where µ = 1/(|αk+1|2 + uH
k+1uk+1 + c), ūk+1 = Buk+1 and

Φ =
(
Q̄ − µūk+1ū

H
k+1

)−1
= Q̄−1 +

(
Q̄−1ūk+1

) (
Q̄−1ūk+1

)H

µ−1 − ūH
k+1Q̄

−1ūk+1

where the second equation is again obtained by using Woodbury formula (28).

APPENDIX IV

When CFOs set is F , without loss of generality, we assume △f1 6 △f2 6 · · · 6 △fR, so

△fmin = △f1. From (9), the CFOs matrix Pk can be rewritten as:

Pk = EP̄k

where E = diag
(
ej2πkT△f11Nf×1

)
, 1Nf×1 is a Nf × 1 column vector with all elements are 1’s,

P̄k =







ēk 01×R 01×R 01×R

01×R ēk−1 01×R 01×R

...
...

. . .
...

01×R 01×R 01×R ēk−Nf +1







and ēk =
[
1, ej2πkT (△f2−△f1), ej2πkT (△f3−△f1), · · · , ej2πkT (△fR−△f1)

]
. Note that P̄k is exactly the CFOs

matrix with the CFOs set F ′ = {0,△f2 −△f1,△f3 −△f1, · · · ,△fR −△f1}.

It is easy to see that EEH = EHE = INf
. Substituting Pk into (12), we obtain:

fMMSE
k = E

(
P̄kH̄H̄HP̄H

k + cINf

)−1
P̄kH̄iD

for the MMSE equalizer. Hence, the soft estimation of the MMSE equalizer with CFOs set F is

s̃k =
(
fMMSE
k

)H
yk =

(
P̄kH̄iD

)H (
P̄kH̄H̄HP̄H

k + cINf

)−1 (
P̄kH̄ + nk

)
.

It is easy to find that P̄kH̄ + nk is the received vector and
(
P̄kH̄H̄HP̄H

k + cINf

)−1
P̄kH̄iD is the

MMSE equalizer with CFO sets F ′, respectively. Therefore, the soft estimation of sk is exactly the

same for both F and F ′.

For the MMSE-DFE equalizer, the soft estimation is s̃k−D = fHk yk+bH
k ŝk−D−1, the proof of first part

fHk yk is almost the same with the MMSE case. For the second part, it is easy to see that bMMSE−DFE
k =
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−UH̄HP̄H
k

(
P̄kH̄VVHH̄HP̄H

k + cINf

)−1
P̄kH̄iD for both CFOs sets F and F ′. Besides, ŝk−D−1 is

the same under the assumption of correct past detection. Hence, the soft estimation of sk−D is the

same as well.

Therefore, for both equalizers, the soft estimation is the same. Consequently, after hard decision

ŝ = Q(s̃), the symbol error rate (bit error rate) performances are the same.
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TABLE I

COMPUTATIONAL COMPLEXITY OF THE PROPOSED RECURSIVE MMSE EQUALIZER AND COMPARISON OF COMPUTATIONAL

COMPLEXITIES OF RECURSIVE /BLOCK ALGORITHMS

Recursive algorithm steps Complex multiples Complex divisions Order

Calculate Ξ
−1 in 2) 3(Nf − 1)2/2 + (Nf − 1) (Nf − 1)2/2

Calculate rk+1 and rk+1 in 3) Nf (Nf − L′ + 1)

Calculate Ψ in 4) 3(Nf − 1)2/2 + (Nf − 1) (Nf − 1)2/2

Calculate R
−1
k+1 in 5) (Nf − 1)2 + (Nf − 1)

Calculate f
MMSE
k in 5) N2

f

Estimate sk+1 Nf

Total of Serial MMSE 4(Nf − 1)2 + Nf (Nf − L′ + 1) + N2
f + 4Nf − 3 (Nf − 1)2 O(N2

f N)

Serial MMSE-DFE 4(Nf − 1)2 + 2N2
f + NbNf + 4Nf + Nb − 3 (Nf − 1)2 O(N2

f N)

Block MMSE (N + L′ − 1)2N + N3 + (N + L′ − 1)N + N2 O(N3)

Block MMSE-DFE (N + L′ − 1)2N + N3 + N2 + (N − L′ + 1)N + 2N O(N3)

eligible relay node

phase I

phase II

1
R

2
R

R
R

S D

potential relay node

Fig. 1. Cooperative communication network model.
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Fig. 2. BER performance vs. Eb/N0 for two relay nodes with different CFOs.
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Fig. 3. BER performance vs. Eb/N0 for three relay nodes with different CFOs.
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Fig. 4. The property of the MMSE/MMSE-DFE equalizer: the equalization performance is the same under two CFO sets with a

constant difference.
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Fig. 5. The performance comparison of block MMSE-DFE equalizer and our serial MMSE-DFE equalizer.
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Fig. 6. Comparisons of the BER performance for different number of relay nodes and different CFOs. With different CFOs, the

performance with three relay nodes may be worse than that with two relay nodes.


