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Recursive Space–Time Trellis Codes Using
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Abstract—Differential space–time modulation (DSTM) has been
recently proposed by Hughes, and Hochwald and Sweldens when
the channel information is not known at the receiver, where the
demodulation is in fact the same as the coherent demodulation of
space–time block coding by replacing the channel matrix with the
previously received signal matrix. On the other hand, the DSTM
also needs a recursive memory of a matrix block at the encoder and
therefore provides a trellis structure when the channel information
is known at the receiver, which is the interest of this paper. This re-
cursive structure of the DSTM has been adopted lately by Schlegel
and Grant in joint with a conventional binary code and joint it-
erative decoding/demodulation with a superior performance. The
number of states of the trellis from the recursive structure depends
on both the memory size, which is fixed in this case, and the unitary
space–time code (USTC). When a USTC for the DSTM forms a
group, the number of states is the same as the size of the USTC, oth-
erwise the number of the states is the size of the semi-group gener-
ated by the USTC from all the multiplications of the matrices in the
USTC. It is well known in the conventional convolutional coding
(CC) or the trellis coded modulation (TCM), the free (Hamming
or Euclidean) distance (or the performance) increases when the
number of states increases by adding more memory with a prop-
erly designed CC or TCM. In this paper, we systematically study
and design the USTC/DSTM for the recursive space–time trellis
modulation and show that the diversity product increases when the
number of states increases, which is not because of the memory
size but because of the different USTC designs that generate dif-
ferent sizes of semi-groups. We propose a new USTC design cri-
terion to ensure that the trellis structure improves the diversity
product over the USTC as a block code. Based on the new criterion,
we propose a new class of USTC design for an arbitrary number of
transmit antennas that has an analytical diversity product formula
for two transmit antennas. We then follow Schlegel and Grant’s ap-
proach for joint encoding and iterative decoding of a binary coded
DSTM (turbo space–time coding) and numerically show that our
new USTC designs for the recursive space–time trellis modulation
outperforms the group USTC used by Schlegel and Grant.
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I. INTRODUCTION

I T is well understood that multiple antennas can be used
to effectively combat the fading in wireless links by ex-

ploiting the spatial diversity [1]. Telatar [2] and Foschini and
Gans [3] have shown that the capacity of a multi-antenna system
grows linearly in terms of the minimum between the numbers
of transmit and receive antennas. Similar to single antenna sys-
tems, to approach the capacity, coding and modulation called
space–time coding/modulation is one of the key steps. Most of
the current research on the space–time code designs follows two
major directions. One is to achieve the diversity-multiplexing
tradeoff proposed by Zheng and Tse [7], such as nonvanishing
determinant codes and perfect codes [19]–[30]. The other is
based on the rank and diversity product criteria proposed in
Guey et al. [4] and Tarokh et al. [5], where not only the full
rank is achieved but also the large diversity product, if not the
largest, is pursued, see for example, [11]–[19], [27], [28]. In this
paper, we are also interested in pursuing large diversity product
space–time codes. Some early related references can be found
in, for example, [8].

Based on code structures, space–time codes can be catego-
rized into two groups: space–time block codes (STBCs) and
space–time trellis codes (STTCs) [9] and some other early ref-
erences can be also found in [8]. While an STBC is more sim-
ilar to modulation (called uncoded) than to the conventional
block coding, such as RS codes, in single antenna systems, an
STTC is similar to the single antenna trellis codes by adding
memory to the encoding. Recently, an interesting and different
space–time trellis code was proposed by Schlegel and Grant in
[8] by adopting the differential space–time modulation (DSTM)
proposed in [11], [12] where the memory is due to the differen-
tial encoding and the trellis decoding rather than block decoding
in [11], [12] is due to the assumption of the known channel at
the receiver. One of the most interesting characteristics of this
space–time trellis coding is that the encoding is recursive and
can be well combined as an inner code with an outer binary
code to form iterative decoding and achieve a similar perfor-
mance as a typical turbo code does over an AWGN channel,
which has been shown in [8] with a superior performance. This
serially concatenated structure can be regarded as a natural gen-
eralization of turbo DPSK [31] used in single antenna systems.
Different from the conventional trellis codes, the states of the
trellis of DSTM are from the different results of the multipli-
cations of the matrices in a unitary space–time code (USTC),
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where the memory size is fixed to the matrix size in USTC. Dif-
ferent USTC produce different state numbers and also different
trellises. In [8], the group codes of size proposed in [12],
[13] were used. When the USTC forms a group, the number
of the states of the trellis code is the same as the number of
the codewords of an USTC, which is 8 in [8]. A more general
group USTC and subsets of group constructions were proposed
in [14]. However, the group structure of a USTC has its limi-
tation on the diversity product property. By relaxing the group
structure, other designs of USTC were proposed in [15]–[17].
When a USTC is not a group, the number of states of DSTM
is determined by the number of all possible different product
matrices of multiplications of any code matrices in the USTC,
where the set of all such product matrices forms a semi-group
that is called the semi-group generated by the USTC. The size of
the semi-group generated from a nongroup USTC is larger than
the size of the USTC itself, i.e., the number of states of DSTM
using a nongroup USTC is increased over the one of a group
USTC of the same size as the nongroup USTC. Since a non-
group USTC may have a better diversity product than a group
USTC, increasing the number of states in the above sense may
produce a better trellis code of a DSTM, which is similar to the
conventional TCM schemes. What we should emphasize here is
that the increase of a state number is not related to the memory
size but due to the increase of a number of different product
matrices of matrices in a USTC, which is, however, essentially
different from single antenna TCM schemes and the STTC men-
tioned before in [5], [32]–[38].

In this paper, we systematically study USTC designs for re-
cursive space–time modulation from differential encoding. We
first show that, for the space time trellis codes proposed in [8],
their diversity products cannot be greater than that of the cor-
responding unitary codes [12] because there exist error events
with length , i.e., two typical paths diverge from one state
and reemerge to one state after two trellis transitions. If there
is no error event with length , a space time trellis code
from the differential encoding may have larger diversity product
over the corresponding space–time block code. Based on this
observation, we propose a new design criterion for a USTC for
the recursive space time trellis code (RSTTC) from differential
encoding. Considering the input symbols carrying -bit infor-
mation, , then the size of input symbols is .
Let be the information symbols
and be the semigroup generated by , i.e., all
product matrices of any combinations (repeats are allowed) of

. Obviously, the differential encoding with
can be represented as a trellis diagram whose state set is and
input symbols are . If when-
ever , we can show
that the error event lengths of the trellis code are greater than

, which makes it possible for the STTC to produce larger di-
versity product than itself. If we treat a space–time mod-
ulation as an uncoded modulation (without memory), then
this new space time trellis construction is a coded modulation
(with memory) similar to the conventional TCM. Note that due
to the data rate reduction of a binary convolutional code in a
TCM, the expansion of a signal constellation is used to main-
tain the same bandwidth efficiency as an uncoded modulation.

However, here the expansion of a signal constellation (since the
size of is always greater than that of a nongroup ) is for the
increase of the number of states and therefore possibly the in-
crease of error event lengths, which corresponds to the increase
of the memory size in a conventional TCM. Interestingly, the
new criterion is unique for the design of a USTC for multiple
antennas in the sense that it can not be applied to a single an-
tenna system because in a single antenna system ,

, is always a scalar and therefore it is always
true that , for any . Thus, it is im-
possible to design a trellis code with error event lengths greater
than through differential encoding for a classical single an-
tenna system. Under our newly proposed design criterion, we
propose a class of USTC for RSTTC from differential encoding
for any size of constellation and arbitrary number of transmit
antennas. The closed form diversity product analysis for a two
transmit antenna system is also presented. For , the
diversity products of the RSTTC are , while that of
the optimal and best-known uncoded block codes are ,
and , respectively. The new class RSTTC not only shows
how to design the recursive space time trellis codes using dif-
ferential encoding but also confirms our findings on the design
criterion to achieve larger diversity products.

Related works on iterative decoding to achieve “turbo gain”
include [39]–[42]. In [39], the outputs of a turbo encoder are di-
rectly mapped to QPSK symbols and transmitted over multiple
antennas. At the decoder, the loop for soft information exchange
is within the turbo decoders. Further improvement is achieved
in [41], where soft information exchange is implemented be-
tween a space–time modulation and an inner turbo decoder. In
this sense, the space–time coding functions as both the modu-
lator and the inner encoder for the serial concatenated system.
While there is no trellis structure available to extract soft in-
formation with Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm
[43], the authors derive the soft information from sphere de-
coding. The larger the loop of the iterative process takes, the
better the advantage of received space–time signals is taken, and
therefore the better performance it may result in. Similar work
can be found in [42] where the designs of interleaver and pre-
coder are discussed to improve the performance of the concate-
nated MIMO systems in terms of outage probability. In [40],
a simple space–time interleaved coding scheme with iterative
decoding of good performance is proposed. While these works
focus on space–time block codes (with size where is
the number of transmit antennas) as inner codes and large di-
versity product may not be guaranteed, in this paper, we dis-
cuss space–time trellis codes as inner codes with large diversity
product. One advantage of STTCs is that the BCJR algorithm
can be applied to obtain the soft information through the trellis
structure. The motivation for the study of recursive STTC is that,
to better exploit turbo gain, an inner encoder needs to be recur-
sive, which is shown in [44]. In [45], [46], the effectiveness of
recursive structures for iterative decoding in MIMO systems is
also demonstrated.

This paper is organized as follows. In Section II, we describe
the problem of interest and the motivation of the study in de-
tails. In Section II, we also present a new USTC design crite-
rion. In Section III, we provide a new class of USTC for RSTTC
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from differential encoding. The analysis of the diversity product
for this class of RSTTC is also presented in this section. In
Section IV, we present some simulation results. Finally, some
concluding remarks are provided in Section V.

II. PROBLEM DESCRIPTION AND NEW DESIGN CRITERION

In this section, we present some necessary preliminaries
about the space–time trellis modulation, the motivation,
and a new design criterion for the construction of recursive
space–time trellis code from differential encoding.

A. Background

Consider a system with transmit and receive antennas over
a Rayleigh-fading channel. Let be the fading coefficient of
the channel between the th transmit and the th receive antenna.
As in [5], it is modeled as an independent complex Gaussian
variable with zero mean and variance per dimension. The
transmitted signal matrix for a frame of length can be repre-
sented as

(1)

where , , is the codeword matrix transmitted at the
th trellis transition and denotes the transpose of a matrix. At

the receiver, we have

(2)

where is the signal-to-noise ratio (SNR) at each receive an-
tenna, is the received signal, is the channel coef-
ficient matrix, and is the complex Gaussian noise with zero
mean and unit variance. Let us first consider the error event of

and , i.e., if is transmitted but the decoder makes an erro-
neous decision and chooses

(3)

as the most likely transmitted signal. It has been shown in
[5] that the determinant of determines the
space–time code performance in terms of pairwise error prob-
ability , where denotes the Hermitian transpose.
This determinant criterion facilitates the evaluation of a given
space–time code and also provides a design criterion: For a
space–time block code of size
of square matrices, since the minimum of ,

, taken over all pairs of distinct codewords
dominates the performance, the design objective is to maxi-
mize this minimum value (called diversity product or distance
product or coding advantage) [11]

(4)

For a space–time trellis code, we need to consider the minimum
of the determinants of all the error events, which is defined as

(5)

where and are a pair of distinct codewords of an arbitrary
length on the trellis, i.e., they diverge from a common state
and re-merge at a common state after steps. In a TCM scheme

of single antenna systems, the Euclidean distance of an error
event is the sum of all distances of all branches of the error
event. This distance additivity does not hold anymore for ma-
trix determinants for space–time trellis codes: let us rewrite the
difference matrix as

(6)

then, in general

(7)

The above nonadditivity makes it more difficult to analyze the
diversity product properties for a space–time trellis code. Al-
though the additivity does not hold for matrix determinants, we
have the following semiadditivity [47]:

(8)

Both the Euclidean distance additivity and the matrix determi-
nant semi-additivity suggest that, to increase error event lengths

leads to increase Euclidean distance and diversity product
and therefore improve the performance. In conventional TCM
schemes, to increase error event lengths one needs to either in-
crease the number of states, i.e., memory size, or decrease the
coding rate, i.e., decrease the number of branches from each
state, and it is usually independent of a symbol mapping. There-
fore, for a fixed rate, the only way to increase error event lengths
is to increase memory size as we also explained in Introduction.
This is essentially different for space–time coding for multiple
antenna systems as we shall see in more details in the next sub-
section, where it is possible to increase the number of states and
therefore error event lengths by choosing different space–time
block/matrix modulations when differential coding is used as
we explained in Introduction. Since differential coding is recur-
sive, it can be naturally combined in a turbo type coding as an
inner code as proposed in [8].

B. Problem Description of Designing RSTTC From DSTM

As a generalization of DPSK in single antenna systems, dif-
ferential space–time modulation (DSTM) has been recently pro-
posed in [11], [12] by using unitary space–time codes (USTC)
for multiple antenna systems when the channel information is
not known at the receiver. Let be a
USTC of size where . Binary information bits are
mapped to unitary matrices in and the transmitter transmits

at the time slot and is from the following differen-
tial encoding:

(9)

and , where . At the receiver, at the time slot

(10)
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where . From the above equation, the
channel information is not necessary for decoding the in-
formation matrix at the receiver if the previous received
signal matrix is used as an approximation of the channel

, which is basically the same as the coherent detection
of the space–time block code . However, when the

channel information is known at the receiver as what is com-
monly studied in space–time coding as coherent detection in the
above differentially encoded system , the
information matrix sequence can be decoded from the
trellis built upon the recursive structure of the differential en-
coding as recently proposed in [8]. Since the inner space–time
coding is recursive, by combining it with an outer binary code,
an iterative decoding is proposed in [8] where a superior perfor-
mance is achieved. In [8], USTC with group structure, i.e., any
product matrix of any number of matrices of any powers of ma-
trices in code is still in code , are used. The group structure
guarantees that the number of states of the trellis from the differ-
ential encoding is the same as the size of USTC . This group
structure property has both advantage and disadvantage. The ad-
vantage is that it prevents from that the number of states of the
trellis being too large. The disadvantage is that, since the number
of states is fixed for a fixed size of USTC (or a fixed diversity
product or performance of ), it is not possible to increase their
error event lengths, i.e., limits the performance. In fact, since
the number of states is the same as the size of a group code ,
in the trellis of the differential coding, each state reaches each
state and therefore, the minimum error event length is always
and furthermore, for any state and any two branches leaving the
state there exists an error event of length and containing the
two branches and thus, the diversity product of the trellis code
is the same as the one of that is limited by the size , which
is shown in more details below. Let us see the example studied
in [8] where the group code of size in [12], [13] was used

(11)

and, correspondingly, , , and
, where . Let

(12)

Then, is a group and the trellis of the differential coding is
shown in Fig. 1.

Theorem 1: The diversity product of a recursive space–time
trellis code from the differential encoding with a group
space–time block modulation is the same as the diversity
product of itself.

Proof: When is a group, the number of states of the trellis
of the differential coding is the same as the size of . Thus, each
state from the trellis reaches each state. Let and be any
two distinct code matrices in . Consider an arbitrary state and
the two branches leaving due to the transitions of
and , respectively, as shown in Fig. 2. Since ,
the next states are different, i.e., , but both of them

Fig. 1. Trellis representation for (12).

can reach another state simultaneously after
another transition. Thus, the two paths can be represented as

(13)

(14)

and they form an error event of length 2 that is also the minimum
error event length. Since

(15)

(16)

and substituting (15), (16) into (5), we have

(17)

which is the diversity product of the group code .

From the above proof, one can see that the main reason why
the diversity product of the trellis code is limited to the one
of the block code/modulation is due to the fact that for any
pair of branches and in there exist and that
satisfy (16). This can also be illustrated in Fig. 1, where we can
see that any pair of states are connected to any state after one
transition. Also, one can see that the reason why the minimum
error event length is is again due to (16). This motivates us to
use a new design criterion on USTC for recursive trellis codes
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Fig. 2. An error event of length � �� � ��.

from differential coding in the next subsection by eliminating
(16).

C. A New Design Criterion for RSTTC From DSTM

From (8) in the preceding subsection, one can see that, to in-
crease the diversity product of a space–time trellis code, it is
important to increase error event lengths, and to increase error
event lengths, it is necessary to use a space–time block code/
modulation that does not satisfy (16) for any two distinct
code matrices in . As we see from Theorem 1, clearly, to do
so, can not be a group. A code is called a group code
if for any integers and any

. A code is called a semigroup code if
for any nonnegative integers

and any . One can see that Theorem 1 also
holds for a semi-group code since none of the inverse matrices of

in is involved in the trellis code and the difference between
semi-group and group is whether it is closed for the matrix in-
version. Therefore, to increase error event lengths to be above

, a code can not be a semigroup code. In order to study re-
cursive space–time trellis codes (RSTTC) from differential en-
coding and a general USTM, let us first see some notations and
properties.

Let be the semigroup generated by
, i.e., it consists of all products of nonnegative

powers of with possible repeats. The following
proposition is obvious.

Proposition 1: Let be a unitary
space–time block code and be its generated
semigroup. If the size of is finite, then the
recursive trellis code from the differential encoding and the
USTC has and only has its states in
and each branch of the trellis code carries an information
symbol .

The recursive trellis code from differential encoding and a
USTC is called the trellis representation
of and denoted by , if
has finite size.

Theorem 2: Let be the trellis representa-
tion of . If whenever

, , then, any error event length
of trellis representation is greater than .

Proof: From (13) and (14) we can see that for
any pair and any state

, if , then it is impossible to find
and in such that

because and
. This means that it takes at least trellis

transitions for and to reemerge after diverging from any
state.

Based on the result in Theorem 2, we propose the
following new design criterion for designing a USTC

of size for a recursive space–time
trellis code from differential encoding and the USTC:

i) The semigroup generated by
has finite size; ;

ii) , whenever ,
.

From ii), one can see that for all
. This means that all elements in do not commute. Criterion

ii) also implies that the number of states of the trellis, i.e., the
size , is at least that is certainly much
higher than the one, , of a semigroup code. Since in single
antenna systems, all symbols are scalars and therefore they
commute, i.e., for any and , and therefore, the
noncommutativity ii) does not hold. This tells us that, in single
antenna case, the number of states of a recursive trellis code
from DPSK may not be increased by choosing different modu-
lation constellations. In other words, the above design criterion
has the essential difference between single and multiple antenna
systems.

As a remark. it is not hard to see that, to further increase the
minimum error event length from to , the above criterion
can be easily generalized to

when for . In this case, the
number of states is, however, at least and may be too large
to deal with.

The major difference between the above systematic scheme
and the scheme in [8] is that the states in our scheme are gener-
ated by a nongroup USTC while the states in the latter are from
a group USTC itself and a group USTC limits the number of
states and its diversity product that may affect the inner code
performance. From our designs and simulations shown in next
sections, we shall see that by relaxing the group requirement of
a USTC and using the above new design criterion, our newly
designed RSTTC with higher diversity product by avoiding the
error events of length may have improved performance over
the existing ones from group codes in [8].

Before concluding this section, we emphasize that the two
conditions for the design of RSTTCs provide a way to increase
the diversity product through the increase of error event
length. However, the increase of error event length itself can not
guarantee the increase of the diversity product . As shown
in (5) the diversity product depends on both the codewords
and the length associated with an error event. An error event
with larger length may not lead to a larger diversity product.
Therefore, to construct a USTC which satisfies the above
criteria with larger diversity product is the major challenge for
this design.
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III. A CLASS OF RECURSIVE SPACE-TIME TRELLIS CODES

In this section, we first propose a class of USTC for two
transmit antennas and then generalize it to any number of an-
tennas.

A. Design for Two Transmit Antennas, i.e.,

We first present a design and then its diversity product calcu-
lation.

1) Design: Consider the input symbols carrying -bit infor-
mation. Then, the size of the input symbols is .
Let . For any given two integers

, we define unitary matrix as follows:

(18)

and then we construct the following constellations for the
-bit input signals:

(19)

where , and they are chosen as

(20)

(21)

We next show that the above class does satisfy the crite-
rion i)-ii). To do so, let us first define diagonal unitary
matrix for any integers :

(22)

which is in fact a form of a product matrix of two matrices in
.

Theorem 3: Let be the semi-group
generated by . Then

(23)

and is also a group and the size of is .
Proof: See Appendix I.

From the result in Theorem 3, the size of is finite and there-
fore, has a trellis representation with finite states .
We next check Criterion ii).

Theorem 4: For any and , where
is defined in (19), if , then .

Proof: It is easy to check and
. Suppose that

for some . Then

(24)

(25)

From (21), we have

(26)

(27)

Solving for and we have

and (28)

Combining with (20), we have , which con-
tradicts with the assumption . This contradiction
completes the proof.

From Theorems 2 and 4, we immediately have the following
property.

Corollary 1: Let be the trellis representation (or the
recursive trellis code) of , where is defined in (19), then
any error event length of is greater than .

An additional property of is as follows.

Proposition 2: If , then
and .
Proof: From (20) and (21), , and

, thus we have . Similarly,
we have .

Proposition 2 will be used for the following diversity product
analysis for this class of recursive space–time trellis codes.

2) Diversity Product Formula: In this subsection, we cal-
culate the diversity product of the above class of differential
space–time trellis codes . We first calculate the determi-
nant of difference matrix for any error event. We then determine
the minimum among all the error events, which is also the di-
versity product of the trellis codes .

Consider an error event with length , the two paths
and , which start from the same state and reemerge after
trellis transition, are given by

(29)

(30)

where

(31)

(32)

(33)

(34)

(35)

Note that (31) and (32) are just the encoding procedure of the
differential space–time trellis codes, and (33) to (35) are the re-
quirements for the two paths that diverge from one state and
re-converge to another state after transitions. We have the fol-
lowing proposition for the determinant of the difference matrix
between and .

Proposition 3: Let and be the two paths for an error event
of length , where and are defined by (29) and (30), then

(36)
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where and are defined as follows:

if

if

(37)
and

if

if

(38)
where .

Proof: See Appendix II.

From Proposition 3, we can observe that the determinant of
difference matrix for any error event does not depend on the
initial state. Since the identity matrix , we only need to
examine the error events originated from the state . This prop-
erty will greatly simplify the derivation of the diversity product.

Although for a general space–time trellis code, there is no
all-zero path that can be exploited for the calculation of diversity
product as in a conventional linear binary code, for the trellis
code defined in the previous subsection, there does exist
an all-zero path corresponding to any error event in the sense of
equal-determinants of the difference matrices as follows.

Proposition 4: For any error event of two paths and with
length , where the information symbols carried by and are:

(39)

(40)

where , then, there exists an error
event of two paths and such that

(41)

where and are given by

(42)

(43)

Proof: See Appendix III.

From Propositions 3 and 4, we have the following theorem
for the diversity product of the trellis code .

Theorem 5: Let be the trellis representation of .
Then, the diversity product of the trellis code is given
by

if

if .
(44)

Proof: See Appendix IV.

B. Design for General Number of Antennas, i.e.,

The RSTTC for can be easily generalized to an arbi-
trary number of transmit antenna system such that it satisfies
the criterion i)–ii) and therefore has error event length greater
than .

Consider the constellation size , . For any
integers , we define a off-diagonal matrix

...
. . .

...
...

(45)
Then, we have the following construction for codewords:

(46)

where arbitrarily, and

(47)

(48)

For any integers , we define a diagonal
matrix

...
...

. . .
...

(49)
The same as Theorem 4, it can be easily shown that for
any and , if , then

. Similar to Theorem 3, for the semi-group
generated by , we

have

(50)

where . Thus, the number of states satisfies
. Note that here we present a family of RSTTC from

DSTM for a transmit antenna system that satisfies the newly
proposed criterion i)–ii). In (46), ,

, can be any integers in . It is interesting to note that the
diversity product of this construction is always greater than 0,
when is odd and all for
for all in (46). In fact, when is odd, it is
not hard to check that for
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TABLE I
DIVERSITY PRODUCT � FOR TWO TRANSMIT ANTENNAS

in (48). Thus, the USTC in (46) has full diversity,
i.e., its diversity product . As we have shown before,
in this case the diversity product . When is
even, one only needs to consider and take elements
from to form that has nonzero diversity product and
thus, its corresponding RSTTC diversity product is nonzero
too. Note that while this design may provide nonzero diversity
product and error event length great than , it does not mean
that better diversity product can be always achieved. How to
optimally determine the values of with respect to
the diversity product (besides a possible computer searching) is
open.

IV. SOME DESIGN EXAMPLES AND SIMULATION RESULTS

Let us first consider the case of . From the design in
Section III, we have

. From Theorem 3, the size of state set
of the trellis is and the 32 states are

for
for
for
for
for
for
for
for .

(51)

Although the diversity product of the space–time block code/
modulation is by itself, the diversity product of the recur-
sive space–time trellis code is from Theorem 5, which
is better than the optimal diversity product, , of uni-
tary differential space–time block codes of size [15].

In Table I we list the diversity products and the numbers of
states for constellation sizes and , respec-
tively. They are also compared with some of the existing re-
sults on space–time block codes. Note that the designs shown
in Table I are for systems with two transmit antennas. It can be
seen from Table I that for the RSTTC have equal
or better diversity products than those of the known uncoded

Fig. 3. Simulation results for � � � with two transmit and one receive an-
tennas.

cyclic codes, quaternion codes, orthogonal designs and para-
metric codes, where, however, the number of states of RSTTC
increases with . When is large, the diversity products of
the RSTTC in the design are not as good as other block codes.
Other designs with better diversity products are certainly inter-
esting for future investigations.

We next show some simulation results on symbol error rates
(SER) vs. SNR. In our simulations, two transmit antennas are
used and the channel is assumed fast Rayleigh fading as in [8]
and the channel is known at the receiver. Two sets of simulations
are presented: one is on RSTTC shown in Figs. 3 and 4 as trellis
codes without involving with the turbo principle; the other is
on the joint binary error correction coding and RSTTC with the
turbo principle, i.e., joint iterative decoding shown in Fig. 5. In
Figs. 3 and 4, one receive antenna is used while in Fig. 5, two
receive antennas are used in order to be consistent with [8].

In Figs. 3 and 4, the RSTTC with our new unitary space–time
block code designs shown in Table I of and are com-
pared with the optimal and some of existing space–time block
codes of size and with bandwidth efficiencies
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Fig. 4. Simulation results for� � � with two transmit and one receive an-
tennas.

Fig. 5. Simulation results for the serial concatenated systems with two transmit
and two receive antennas and 30 iterations.

1 bit/s/Hz and 1.5 bits/s/Hz, respectively. They are also com-
pared with the RSTTC with the group space–time block codes
in [12], [13]. From these two figures, one can clearly see the im-
provement.

In Fig. 5, we compare the RSTTC using our newly proposed
unitary space–time block code with the one using the existing
group code when the joint turbo encoding and decoding are used
as in [8]. Comparing with the result presented in [8], the scheme
is the same but only the inner recursive space–time code with
the unitary group space–time block code of size is replaced
by our newly proposed nongroup code of the same size. The
outer binary coder is the parity-check code and the bit
interleaver length is . The number of iterations is . The
number of receive antennas is . It is clear to see that at the BER
of , the performance of the new scheme is about 0.2 dB
better.

V. CONCLUSION

In this paper, we proposed a new design criterion and method
for unitary space–time block codes used in the recursive space

time trellis codes (RSTTC) from differential modulation. With
the new design criterion, it is possible to design an RSTTC with
different number of states for a fixed bandwidth efficiency. The
increase of the number of states is purely due to the unitary
space–time block codes and no more memory is needed, which
is essentially different from the conventional TCM schemes in
single antenna systems. With our newly proposed design crite-
rion, we presented a family of unitary space–time block codes
of any size for any transmit antennas. A closed form diver-
sity product analysis was also presented when the number of
transmit antennas is two. For and , the product di-
versities of the new RSTTC are , while that of the ex-
isting optimal and best-known unitary space–time block codes
in the literature are and , respectively. The
RSTTC with our new unitary space–time block code was com-
pared with the one with the group code presented by Schlegel
and Grant in [8] when the turbo principle is used. Finally, we
believe that this paper only initiates the study on the design is-
sues of unitary space–time block codes for RSTTC from dif-
ferential modulation. Many interesting problems remain to be
further investigated, such as the problem of the optimal designs
of a unitary space–time block code for the RSTTC for a fixed
bandwidth efficiency and a fixed number of states. In a recent
study [46], unitary space–time codes used in the differential en-
coding to generate trellis have been generalized and relaxed.

APPENDIX I
PROOF OF THEOREM 3

Because

and , where ,
the right-hand side of (23) is a group. Hence,

. Thus, to prove the
theorem, it is enough to show the opposite inclusion. To do so,
we want to show that it is enough to prove . In fact,
we have

If , since is a semigroup, we have
. Furthermore, for any

, we have

Therefore
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To prove , it is enough to consider the following
two cases: and since when ,

or divides .
Assume that . Let , .

Then

Assume that . Let ,
. Then

Note is given by (19). Therefore, we have .

APPENDIX II
PROOF OF PROPOSITION 3

Consider an error event of two paths and with length
and both of them leaving state , where the information symbols
carried by and are

(52)

(53)

where . From (31) and (32) it is easy
to show by induction as in (54) at the bottom of the page,
and in (55), also shown at the bottom of the page, where

. Since , we have

(56)

where and are given by (37) and (38). By summing up all
the indices and noting and , we have proved
Proposition 3.

APPENDIX III
PROOF OF PROPOSITION 4

We first show that and are a pair of paths in an error
event, and we then show (41).

From Proposition 2, we have ,
, which means that is a valid path, i.e., codeword

sequence, on the trellis. Let and

. To show the first part, we need to
show

if

if .
(57)

From Proposition 3, we only need to consider paths starting
from the identity matrix . Thus, we have . Note
that , from (31) and (42), we have

if
if

(58)

where .
If , from (43) and (54), we have

(59)

Since , from (54) and (55), we have

(60)

or

(61)

which implies that .
Similarly we can show , and ,

which completes the proof of the first part.
Let

(62)

then, we have (63) shown at the top of the following page, and
(64), also at the top of the following page, where

. Comparing (63)–(64) with (37)–(38) we have
and , which completes the proof of (41).

if

if
(54)

if

if
(55)
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if

if
(63)

if

if
(64)

APPENDIX IV
PROOF OF THEOREM 5

We prove this theorem in two steps. First, we show (44) for
, and then we show (44) for .

From Propositions 3 and 4, it can be concluded that to de-
termine the diversity product of trellis we only need to
examine all-zero error events and with length . The infor-
mation sequences carried by and are

(65)

(66)

where , , ,
for , and . Comparing (65)–(66) with
(42)–(43) and using (63)–(64), we have
with

if

if
(67)

and with

if

if
(68)

and

(69)

(70)

Also we have the following lemmas.

Lemma 1: For the pair and defined in (67) and (68),
, we have

and (71)

Proof: We just give the proof for when
is even and the others are similar. When , we have

Lemma 2: For the pair and defined in (67) and
(68), we have

and

(72)

Proof: Comparing (66) with (53) and using (55) and
, we have

if is odd

if is even.

(73)
Since

if is odd
if is even

we have

if is odd and

if is even. Comparing with (67) and (68) we have
and . From Lemma 1, we have
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and

which completes the proof.

From Lemma 2, we have

(74)

Thus, we can rewrite (70) as

(75)

Lemma 3: For any pair and , , defined in
(67)–(68), if , then ; if

then .
Proof: From (54) and (55), we can easily check that if

and , then , which contradicts with
for .

Lemma 4: For and defined in (67)–(68), we have
and .

Proof: If , then , which contradicts
with . Similarly, if , then

and , which contradicts with .

Lemma 5: For an error event of two paths and with length
, Let

Then
if
if .

(76)

Proof: For any integer and , we will
use the following inequalities frequently:

i.e., if is even (77)

if is odd (78)

When , from (75) we have

(79)

(80)

When , is chosen from . Because
, then . By , we

have . Thus

in (76)

When , is chosen from
. Because ,

or .
1) If , by and is

or , then is odd. So

in (76).

2) If , then , again by
we have or . If , by

, we get , then , which
contradicts with . Therefore

and

in (76).

3) If , it is the same as the case .
When , by (77) and (78), we have

in (76).

Lemma 5 presents the minimum determinant of error events
with length 3. Next we show that in (76) is also the
minimum value for all the error events with length , i.e.,

for . We first show the following
inequalities.
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Lemma 6: For with , we have the following:
1)

;
2)

;
3)

;
4)

.
Proof: We just give the proof for the first inequality and

the others can be shown similarly as given in the equation at the
bottom of the page.

From Lemma 4, we have and
. Then, to prove Theorem 5, we have

the following four cases.
Case 1) and are both odd.
In this case, from (75), we have

in (76).

Case 2) and are both even.
In this case, there are four subcases as follows.

a) and
Then, (75) is

in (76).

b) and

Since by the assumptions is even and ,
this case is not possible for or . Thus,
we only need to consider

in (76).

where the last inequality is from Lemma 6.
c) and

This case is the same as b).
d) and

Similar to a), we only need to consider . Thus,
from (77)–(78)

in (76).

Case 3) is odd and is even.
This case has the following two subcases.

a)
Similar to b) in Case 2), we only need to consider

. Thus, from (77)–(78)

in (76).

for
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b)
When , we have , ,
then and , it is easy to see

in (76).

When , since is odd, we have .
i) If then

and or 3. Thus, from (77)–(78),

in (76).

ii) If , from (77)–(78)
we have

in (76).

When , since is odd, there are two
subcases:

i) If
Then, . If

, then from
Lemma 3. Thus,

in (76)

where the last inequality is from Lemma 6.

If , from (77)–(78)
we have

in (76).

ii) If
In this case, we have or

and
. There are two subcases as follows.

If there exists for some with
, , then

in (76)

where the last inequality is from Lemma 6.
If for , ,
from Lemma 3 we have for

. We first show that in this case
. If , from

, ,
and , we
have and is even, which
contradicts with that is odd.
When , from or ,

, and
, we have

or . From Lemmas 1
and 2, we have

and
, then

. Thus
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in (76)

where the last inequality is from Lemma 6.
Case 4) is even and is odd.
This case is the same as Case 3).
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