
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 1, JANUARY 2013 131

An Interference Nulling Based
Channel Independent Precoding for MIMO-OFDM

Systems with Insufficient Cyclic Prefix
Yuansheng Jin and Xiang-Gen Xia, Fellow, IEEE

Abstract—In this paper, a new interference nulling based
channel independent precoding for MIMO-OFDM systems of nt

transmit and nr receive antennas with insufficient cyclic prefix
(CP) is proposed. By employing the notion of interference nulling,
we show that our proposed channel independent precoding
scheme can eliminate the inter-block interference (IBI) caused
by the insufficient CP with higher bandwidth efficiency than
the conventional zero-padded or a sufficient CP added block
transmission system when nr ≤ nt. It is also shown that when
nr > nt, the IBI can be eliminated without the need of any
zero-padding or adding CP or precoding when the OFDM block
length is not too small.

Index Terms—MIMO-OFDM, precoding, interference align-
ment (IA), insufficient cyclic prefix (CP).

I. INTRODUCTION

IN the conventional MIMO-OFDM system, IDFT and CP
insertion at the transmitter together with CP removal and

DFT at the receiver help to convert an inter-symbol interfer-
ence channel into several ISI free subchannels. The CP length
is designed no less than the length of the channel impulse
response (CIR) in order to eliminate the effects of the inter-
block interference (IBI) and inter-carrier interference (ICI). A
considerably long CP is needed if the multipath delay spread
is large, resulting in a substantial loss in both bandwidth
and power efficiencies. In order to improve the transmission
efficiency, MIMO-OFDM systems with insufficient CP have
been studied significantly in the past, see, for example, [1]–
[6], and OFDM/DMT systems with insufficient CP, in, for
example, [7]–[9]. In [4], an ICI and ISI aware beamforming
algorithm is proposed based on the optimal steering vector
design that requires the channel state information at the
transmitter (CSIT). In [7], a precoding is proposed to eliminate
the distortion by processing the information symbols at the
transmitter and it also requires the perfect CSIT. Instead
of adding sufficient redundancies in the time domain, the
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technique proposed in [9] adds redundancies in the frequency
domain by adding unused subcarriers. Some other techniques
have been also proposed in [1]–[3], [5], [6], [8].

In a MIMO-OFDM system with insufficient CP, if the
IBI from the previous OFDM block can be separated and
eliminated, it will be easier to detect the current OFDM block
from the desired signal term and the ICI term both of which
contain the information of the current OFDM symbol. Inter-
ference alignment (IA) [10]–[12] provides a novel concept
to deal with interferences. The basic idea of IA is to use
well-designed “beamforming” vectors at the transmitter such
that the interference vectors are aligned at the receiver in one
subspace which is disjoint from the signal subspace. As a
result, the interference vectors are separated from the desired
signal subspace and are limited in the minimum dimensions
and therefore can be eliminated by the zero-forcing operator
at the receiver. This basically provides an interference nulling
technique.

In this paper, we adopt the notion of interference nulling in a
MIMO-OFDM system and treat the IBI part as an interference
channel. We propose a channel independent precoding scheme
for a MIMO-OFDM system with insufficient CP or even
no CP. We show that our proposed precoding scheme can
eliminate the IBI caused by the insufficient CP with a higher
bandwidth efficiency than the conventional zero-padding or a
sufficient CP adding when the number, nr, of receive antennas
is no more than the number, nt, of transmit antennas, i.e.,
nr ≤ nt. Interestingly, when nt = 1 and nr = 1, i.e., the
single antenna case, in this paper, the IBI incurred from the
insufficient CP can be aligned to a subspace of dimensions no
more than a half of the difference of the ISI channel length
and the insufficient CP length, thus the other half can be used
for sending more information symbols. In this paper, it is also
shown that when nr > nt, the IBI can be eliminated similarly
without any zero-padding or adding CP or precoding when
the OFDM block length is not too small.

The remainder of this paper is organized as follows. The
SISO-OFDM and MIMO-OFDM system models are intro-
duced in Section II. Our IA based precoding scheme is
proposed in Section III. The relationships of the proposed IA
based precoding with the existing block based transmissions
are also discussed in Section III. Simulations results with some
concrete examples are presented in Section IV to illustrate
the theory developed in this paper. Conclusions are given in
Section V.
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Some notations in this paper are defined as follows: Bold-
face upper-case letters denote matrices, boldface lower-case
letters denote vectors. 0m×n denotes a zero matrix with m
rows and n columns. The operators (·)T and (·)H denote
the transpose and Hermitian operations, respectively. x(i) and
[H]i,j denote the ith entry of a vector x and the entry at
the ith row and the jth column of a matrix H, respectively.
rank() stands for the column rank of a matrix and span{}
stands for the linearly spanned space of the column vectors
of a matrix. Lastly, for any m×n matrix A, notation A⊗ Ik
denotes the nk×mk Kronecker product of matrix A and the
identity matrix Ik of size k. det() stands for the determinant
of a square matrix. v is the CP length, L is the CIR order,
and N is the number of subcarriers (or IDFT size).

II. SYSTEM MODEL

To describe the signal model with concise but necessary
notations, let us start with single antenna (single input and
single output (SISO)) OFDM systems.

A. SISO-OFDM Model

Consider a SISO-OFDM system with N subcarriers
over a frequency-selective fading channel. The frequency-
selective multipath channel is represented by a vector h =
[h(0), h(1), · · · , h(L)]T , where L + 1 is the length of the
CIR and L is called the order of the CIR. For conve-
nience, these coefficients h(l) are assumed i.i.d. complex
Gaussian with 0 mean [23], [24]. In this paper, we assume
that N ≥ L. We use rk = [r0k, r

1
k, · · · , rN−1

k ]T to denote
the input signal vector of the kth OFDM block. Let WN

denote the normalized IDFT matrix of size N with entries
[WN ]m,n = (1/

√
N) exp(j2πmn/N). The IDFT operation

is performed at the transmitter and changes the input signal
from frequency domain to time domain. A CP of length v is
appended to each time domain vector. Since CP is generally
insufficient in our study, we have v ≤ L. The transmitted
OFDM block is thus affected by both ICI and IBI components.
After the insufficient CP is removed at the receiver, the time
domain expression of the kth received OFDM block is given,
see, for example [7]:

yk = (H−A)WNrk +BWNrk−1 + nk, (1)

where nk denotes the time domain received noise vector with
the complex Gaussian distribution CN (0, σ2I). The channel
matrix H is a circulant matrix of size N × N , the entry
of which at the mth row and the nth column is defined as
[H]m,n = h((m − n)N ), where (l)N means l modulo N . A
and B denote the N × N ICI and IBI components of the
channel, respectively, defined as, see, for example [4], [9],

A = (2)

[
0(L−v)×(N−L) S 0(L−v)×v

0(N−L+v)×(N−L) 0(N−L+v)×(L−v) 0(N−L+v)×v

]
,

B =

[
0(L−v)×(N−L+v) S

0(N−L+v)×(N−L+v) 0(N−L+v)×(L−v)

]
, (3)

where the (L− v)× (L− v) block matrix S is defined as:

S =

⎡
⎢⎢⎢⎣

h(L) h(L− 1) · · · h(v + 1)
0 h(L) · · · h(v + 2)
...

. . .
. . .

...
0 · · · 0 h(L)

⎤
⎥⎥⎥⎦ . (4)

In the above equations (2) and (3), matrices A and B are
the time domain expressions derived under the assumption of
perfect synchronization and a rectangular pulse shape. If CP
length v is larger than or equal to the CIR order L, A and B
are both the all zero matrices. Therefore, no ICI or IBI exists
in the received signal. For convenience, we denote C = H−A
in (1), which is expressed explicitly in the N×N matrix in (5)
at the bottom of the page. At the receiver, the time domain
signal yk in (1) is transformed into the frequency domain
signal zk by the DFT matrix W−1

N of size N . We then have

zk = W−1
N CWNrk +W−1

N BWNrk−1 + ñk, (6)

where ñk = W−1
N nk, and ñk is also distributed as

CN (0, σ2I).
Since we need to perform a precoding, signal rk is the

precoded output of an N×1 vector xk of tentative information
symbols (some of the components of xk may be intentionally
set to zero) passing through a precoding matrix P of size
N ×N , i.e.,

rk = Pxk. (7)

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(0) 0 · · · 0 · · · 0 h(v) · · · h(1)
...

. . .
. . .

. . .
...

...
. . .

...
...

. . .
. . . 0 h(L) h(v)

...
. . .

. . . 0
. . .

...
...

. . .
. . .

. . . h(L)

h(L)
. . .

. . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 h(L) · · · · · · h(v − 1) · · · h(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)
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We want to emphasize here that unlike the conventional
precoding studies, the above precoding matrix P may not be
full rank as we will see later. Since the IDFT matrix WN

is taken after the precoding matrix P and it is also a unitary
matrix, the design of the precoding matrix P will be simplified
if we consider WNP together. The time domain precoding
matrix is defined as Q

Δ
= WNP. After the design of Q,

the precoding matrix P can be obtained by multiplying with
the inverse W−1

N . So, P and Q are equivalent and, in what
follows, we call both P and Q precoders interchangeably.

From (6), the received frequency domain signal for the kth
OFDM block can be equivalently expressed as:

zk = W−1
N CQxk +W−1

N BQxk−1 + ñk, (8)

When insufficient CP is used, i.e., v < L, the IBI,
W−1

N BQxk−1, as shown in (8) causes that not all the infor-
mation symbols in xk can be solved freely. In Section III, we
will first explore a SISO-OFDM example and then generalize
our result to MIMO-OFDM to see how a precoder can be
designed to help to solve for the variables in xk and find
how many such independent information symbols/variables,
that corresponds to the rank of the precoder Q, can be solved
freely.

B. MIMO-OFDM Model

By considering a MIMO system with nt transmit, nr receive
antennas, and by using the signal model in the SISO-OFDM
system, the model of OFDM with insufficient CP is further
extended to MIMO-OFDM in spatial multiplexing mode.

The overall input to the MIMO-OFDM system is noted by
r̄k = [(r0k)

T , (r1k)
T , · · · , (rN−1

k )T ]T , where rik denotes the
nt×1 vector for the nt transmit antennas at the ith subcarrier,
0 ≤ i ≤ N − 1, in frequency domain. Next, the input
vector r̄k is transformed into time domain signal by nt IDFT
matrices of size N at nt transmit antennas. The overall IDFT
operation over r̄k can be represented by W̄

Δ
= WN ⊗ Int .

At each transmit antenna, a CP of length v is added to the
input signal block and propagates via a multipath channel
hij = [hij(0), hij(1), · · · , hij(L)]

T between the ith receive
antenna and the jth transmit antenna, where we assume that all
the entries of hij are i.i.d. complex Gaussian random variables
with 0 mean and the channel length, L+1, is identical for all

the channels. We now define nr × nt channel matrices H(l),
l = 0, 1, · · · , L, as

H(l) =

⎡
⎢⎣

h11(l) · · · h1nt(l)
...

. . .
...

hnr1(l) · · · hnrnt(l)

⎤
⎥⎦ . (9)

These matrices H(l), l = 0, 1, · · · , L, are the multipath
channel matrices for the time domain vectors rik serially
transmitted at nt transmit antennas. Due to the randomness
of the channel coefficients, all the matrices H(l) are of full
rank almost surely.

At the receiver, the CP is removed and the overall time
domain received block is given, for example [2]:

ȳk = CW̄r̄k +BW̄r̄k−1 + nk, (10)

where nk is the Nnr×1 noise vector with the complex Gaus-
sian distribution CN (0, σ2I), C and B of size Nnr × Nnt

are the overall channel matrix and IBI matrix, respectively,
constructed by stacking submatrices H(l) in (9) and shown in
(11) at the bottom of the pape and (12).

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 H(L) · · · H(v + 1)
...

. . .
. . .

...
...

. . . H(L)
... 0
...

...
0 · · · · · · · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

Before the signal detection, the DFT operation W−1
N ⊗ Inr

is applied to ȳk yielding the received signal in frequency
domain. For this MIMO-OFDM system, the input vector r̄k
is also the precoded output of information symbol vector
x̄k = [(x0

k)
T , (x1

k)
T , · · · , (xN−1

k )T ]T by an Nnt × Nnt

precoding matrix P, where xi
k is the nt×1 information symbol

vector associated with rik:

r̄k = Px̄k (13)

= P[(x0
k)

T , (x1
k)

T , · · · , (xN−1
k )T ]T . (14)

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H(0) 0 · · · 0 · · · 0 H(v) · · · H(1)
...

. . .
. . .

. . .
...

...
. . .

...
...

. . .
. . . 0 H(L) H(v)

...
. . .

. . . 0
. . .

...
...

. . .
. . .

. . . H(L)

H(L)
. . .

. . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 H(L) · · · · · · H(v − 1) · · · H(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)
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Again, for the convenience of designing the precoding matrix,
we consider the design of precoder Q

Δ
= W̄P. The precod-

ing matrix P can then be obtained by multiplying Q with
W̄−1 = W−1

N ⊗ Int . So, both P and Q are called precoders
interchangeably.

Then, we can represent the received frequency domain
signal as

z̄k = (W−1
N ⊗Inr)CQx̄k+(W−1

N ⊗Inr)BQx̄k−1+ñk, (15)

in the kth OFDM block.

III. CHANNEL INDEPENDENT PRECODING

The main idea in the following is to design Q in (15)
properly to align the received IBI in one subspace of as
small dimension as possible which is also disjoint from the
subspace occupied by the current information symbols. This
coincides with the interference alignment concept [10]–[12],
which means overlapping all the interference in one subspace
and leaving the other subspace free from interference for the
desired signal. We initialize the theory in this section by a
simple SISO-OFDM example illustration and then provide our
main results for MIMO-OFDM.

A. SISO-OFDM Precoding Example

Go back to the signal model (8) or equivalently,

yk = CQxk +BQxk−1 + nk. (16)

For the current kth OFDM block, the signal to solve is xk

and BQxk−1 is the IBI. For convenience, assume that the
additive noise nk is negligible. In order to freely solve for xk

from (16), the space Vsignal linearly spanned by the column
vectors of CQ and the space VIBI linearly spanned by the
column vectors of BQ need to be disjoint.

For channel matrix C in (5), since its components h(l) are
i.i.d., the probability of its determinant, as a function of these
random channel coefficients, to be zero is zero. This means
that matrix C is full rank almost surely, i.e., its rank is N
almost surely. Its detailed proof is in Appendix I.

For the IBI matrix B in (3), due to its form in (3) and (4),
its rank (or column rank) is L − v almost surely similarly,
where v is the CP length.

Assume that the rank of the precoder Q is N − d and it is
aligned well enough such that the rank of the IBI matrix BQ
is L− v− d almost surely. For example, this can be achieved
by setting the last d row vectors of matrix Q all zero vectors.
With such a precoder Q, the rank of CQ is N − d almost
surely. In order for the spaces Vsignal and VIBI to be disjoint,
the sum of their ranks has to be not more than the vector size
N , i.e.,

N − d+ L− v − d ≤ N. (17)

With this dimension requirement, due to the randomness of
the coefficients h(l) in matrix C in (5) and matrix B in (3)
and (4), the spaces Vsignal and VIBI are disjoint almost surely
and N−d variables in CQxk (or in xk) can be solved freely.

What the inequality (17) means is that the precoding Q
sacrifices d dimensions and uses these d dimensions to align

the IBI into a space of dimension L− v − d. From (17), one
can solve for d:

d ≥ L− v

2
,

and the smallest d is

d =
L− v

2
, (18)

and in this case, the dimension of the space spanned by the
IBI is also (L − v)/2. Note that v is the CP length and L is
CIR order. In the conventional OFDM system (or unprecoded
OFDM system), additional L− v zeros or redundant symbols
are needed to make the IBI disappear. From the above analysis,
only half of L− v zeros or redundant symbols are needed to
separate the spaces of the signal and the IBI for the signal to
be solved freely.

To see a particular example for the above SISO-OFDM
precoding idea, let us consider the case when N = 64
subcarriers, CIR length L + 1 = 17, i.e., L = 16, and the
insufficient CP length v = 12. The time domain input to the
OFDM system is precoded by a 64× 64 precoding matrix Q.
From (18), d = 2. Consider the following precoder

Q = [e61 e62 e1 · · · e60 0 0], (19)

where ei
Δ
= [

i−1︷ ︸︸ ︷
0, · · · , 0, 1, 0, · · · , 0]T , 1 ≤ i ≤ 64, is a

set of 64 × 1 orthonormal vectors. It is easy to verify that
rank(CQ) = 62, rank(BQ) = 2, and the column vectors of
CQ are linearly independent of the only two nonzero column
vectors [h(0), 0, · · · , 0]T and [h(0), h(1), 0, · · · , 0]T of BQ,
almost surely. In this example, 62 independent information
symbols can be solved freely. With CP length v = 12, in the
conventional OFDM of block size N = 64, 4 more zeros
or redundant symbols in the OFDM block are needed to
completely eliminate the IBI, and thus only 60 independent
information symbols can be included.

The detailed theory and the precoder construction will be
given in the following subsection in a general form for MIMO-
OFDM systems.

B. MIMO-OFDM Channel Independent Precoding

In this subsection, we present a general theory and precoder
construction for MIMO-OFDM systems by generalizing the
idea discussed in the previous subsection.

For MIMO-OFDM systems, we can see from (10), (11)
and (12) that the IBI term from the previous OFDM block
needs to be suppressed and in the meantime the current
OFDM block should be preserved. To do so, the same as the
SISO-OFDM case, the basic idea is to design the precoding
matrix Q such that the IBI can be aligned to an interference
subspace which is disjoint from the signal subspace (spanned
by signal vectors with the independent information symbols in
x̄k) that then can be solved freely as discussed in the preceding
subsection. Furthermore, the dimensions of the interference
subspace should be minimized, while the signal subspace
occupies as many dimensions as possible in the receive signal
space so that as many independent information symbols can
be solved freely (without interference) as possible. For this
purpose, the design criteria can be summarized as
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• span{CQ}⋂ span{BQ} = {0};
• dim(BQ) should be as small as possible;
• dim(CQ) should be as large as possible,
where dim means the dimension of the space linearly spanned
by the column vectors of the matrix, which is the same as the
column rank of the matrix. We next consider the problem in
two different cases for the numbers nt and nr of transmit and
receive antennas, respectively.

C. Precoding When nr ≤ nt

In this case, from Appendix I matrix C is full row rank
almost surely. The IBI matrix B in (12) is a block upper-
triangular matrix and the upper right corner submatrix of B
is Bs:

Bs =

⎡
⎢⎢⎢⎢⎣

H(L) · · · · · · H(v + 1)

0
. . .

...
...

. . .
. . .

...
0 · · · 0 H(L)

⎤
⎥⎥⎥⎥⎦ , (20)

which is of full (row) rank almost surely. Our goal is to
design the precoding to cope with this nr(L− v)×nt(L− v)
submatrix Bs. To do so, the ntN ×ntN precoding matrix Q
is partitioned into submatrices:

Q = [Q1 Q2] =

[
Q11 Q12

Q21 Q22

]
, (21)

where Q21 and Q22 are of the sizes nt(L − v) × n1 and
nt(L− v)×n2, respectively. These two submatrices have the
same number of rows as that of the columns of Bs and they
are designed to suppress the IBI. The size of Q11 is nt(N −
L + v) × n1 and the size of Q12 is nt(N − L + v) × n2.
Submatrices Q11 and Q12 should be designed to achieve more
transmission rate, i.e., to have signal space dimension as large
as possible. Q1 and Q2 are defined as Q1 = [QT

11 QT
21]

T ,
Q2 = [QT

12 QT
22]

T and n1 + n2 = ntN .
Lemma 1: If span{Q22} ⊂ span{Q21}, n1 ≤ nr(L − v),

and Q21 is full column rank, then, we have (almost surely)

rank(BQ) = rank(BsQ21) = n1. (22)

Proof:

BQ =

[
0 Bs

0 0

] [
Q11 Q12

Q21 Q22

]
=

[
BsQ21 BsQ22

0 0

]
.

Let q1
21, · · · ,qn1

21 and q1
22, · · · ,qn2

22 be the column vectors of
Q21 and Q22, respectively. Then, BsQ21 and BsQ22 can be
expressed as

BsQ21 = [Bsq
1
21 Bsq

2
21 · · · Bsq

n1
21 ],

BsQ22 = [Bsq
1
22 Bsq

2
22 · · · Bsq

n2
22 ].

From span(Q22) ⊂ span(Q21), we have

span{Bsq
1
22,Bsq

2
22, · · · ,Bsq

n2
22}

⊂ span{Bsq
1
21,Bsq

2
21, · · · ,Bsq

n1
21}.

Thus, we have proved the first equality in (22). The second
equality in (22) is because matrix Bs in (20) has full row
rank, nr(L− v), almost surely and n1 ≤ nr(L− v).

In the MIMO-OFDM system with nt transmit and nr re-
ceive antennas and N subcarriers, for each OFDM block there
are total nrN linear equations after the CP removal. In order
to be able to linearly solve for all the information symbols,
the number of independent information symbols transmitted
through the nt transmit antennas should be no more than
nrN . In what follows, we always impose this condition to
the system. We next consider the following precodings.

(i) When nt(N − L+ v) < nrN , we design the precoding
matrix Q with the following properties:
1) span{Q22} ⊂ span{Q21};
2) Take

n1
Δ
= �nrN − nt(N − L+ v)

2
�. (23)

Both Q1 and Q21 are full column rank;
3) Submatrix Q12 has nt(N − L + v) linearly independent

column vectors, say the first nt(N−L+v) column vectors
in Q12 are linearly independent, and matrix Q2 has column
rank nt(N − L+ v);

4) Any non-all-zero linear combinations of the first nt(N −
L+v) column vectors of Q2 do not belong to span{Q1}.

To show the feasibility of the above precoder Q design, we
need to show the feasibility of the design of the submatrices
Q21 and Q1 that are full column rank required in 2) and the
feasibility of the design of the submatrix Q12 that can have
nt(N − L + v) linearly independent columns required in 3).
From (23) and nr ≤ nt, we have the following inequality:

n1 = �nrN − nt(N − L+ v)

2
� ≤ �nr(L− v)

2
� ≤ nt(L−v).

(24)
This means that the number of columns of Q21 (also Q1) is
no more than the number of rows of Q21 (also Q1), which
implies that a full column rank Q21 (also Q1) can be designed.
In the meantime, we have

n2 = ntN − n1 ≥ ntN − nt(L− v) = nt(N − L+ v).

This shows that Q12 is a fat matrix. Since its number of
columns, n2, is greater than or equal to its number of rows,
nt(N − L + v), Q12 can always be designed to be full row
rank, which means that the column rank, i.e., the number of
linearly independent columns, can be nt(N − L+ v).

(ii) When nt(N − L+ v) ≥ nrN , the precoding matrix Q
is designed as follows. We design [Q11 Q12] to be full row
rank that is nt(N − L+ v), and set Q21 = Q22 = 0. Thus,

Q =

[
Q11 Q12

0 0

]
. (25)

With the above precoding, we have the following result.
Theorem 1: For the insufficient CP MIMO-OFDM system

with nr ≤ nt, the total number of independent information
symbols can be solved by the zero-forcing operator during
each OFDM block is⎧⎪⎪⎨

⎪⎪⎩
nt(N − L+ v) + �nrN−nt(N−L+v)

2 �,
if nt(N − L+ v) < nrN,

nrN,
if nt(N − L+ v) ≥ nrN.

(26)

Proof: We first consider the case when nt(N −L+ v) <
nrN .
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From the above precoder property 2) we have almost surely
(since matrix C is almost surely full row rank and from (23),
one can see that the number of rows of C, nrN > n1)

rank(CQ1) = n1. (27)

From the precoder property 3) and the number of rows of C,
nrN is greater than nt(N − L + v), we can derive (almost
surely)

rank(CQ2) = nt(N − L+ v). (28)

From the precoder properties 3) and 4), we know that
span{Q1}

⋂
span{Q2} = {0}. As a result,

rank(CQ) = rank(CQ1) + rank(CQ2)

= n1 + nt(N − L+ v). (29)

With the properties 1) and 2) and (24), we have the result (22)
in Lemma 1, i.e.,

rank(BQ) = n1.

Thus,

rank(BQ) + rank(CQ) = 2n1 + nt(N − L+ v)

= 2�nrN − nt(N − L+ v)

2
�+ nt(N − L+ v) ≤ nrN. (30)

From Appendix II, the following equation holds almost surely:

span{CQ}
⋂

span{BQ} = {0}. (31)

With the zero-forcing operator, the number of independent
information symbols that can be solved equals to the dimen-
sion of the desired signal subspace that is the column rank of
CQ, i.e.,

nt(N − L+ v) + �nrN − nt(N − L+ v)

2
�,

in one OFDM block for all nt transmit antennas.
We next consider the case when nt(N − L + v) ≥

nrN . In this case, from the precoder design, we have
rank([Q11 Q12]) ≥ nt(N − L + v) ≥ nrN . Thus,
rank(CQ) = nrN , since C is full row rank almost surely.
Furthermore, BQ = 0, i.e., the IBI is totally eliminated.
Since there are total nrN linear equations, the number of
independent information symbols transmitted through the nt

transmit antennas should be no more than nrN to linearly
solve for all the information symbols.

From (30) in the above proof, one can see that the number
of a part of independent information symbols, n1, can not be
larger, since otherwise the sum of the numbers of columns
in matrices BQ and CQ will be more than the number of
rows, i.e., will exceed the receive signal space dimension. This
implies that n1 = �nrN−nt(N−L+v)

2 � in (23) in 2) is optimal
already. We next present a precoder example for Q.

Example: For the ntN dimensional vector space,
{e1, e2, · · · , entN} is a set of ntN × 1 orthonormal
basis elements where ei = [0, · · · , 0︸ ︷︷ ︸

i−1

, 1, 0, · · · , 0]T is as

before. Let

Q2 = [e1, · · · , ent(N−L+v), e1, · · · , e1]
= [e1, · · · , enα , e1, · · · , e1︸ ︷︷ ︸

ntN−n1−nα

], (32)

Q1 = [ent(N−L+v)+1, · · · , ent(N−L+v)+n1
]

= [enα+1, · · · , enβ
], (33)

nα
Δ
= nt(N − L+ v), nβ

Δ
= nα + n1.

In this example, Q12 contains an identity matrix of size nα,
i.e.,

Q12 = [Inα , ẽ1, · · · , ẽ1], (34)

where ẽ1 = [1, 0, · · · , 0]T is an nα × 1 vector. Thus, the
precoder property 3) is satisfied. The orthogonality among
ei, i = 1, · · · , ntN , ensures the precoder properties 2) and 4).
Lastly, Q22 is a zero matrix now and therefore span{Q22} ⊂
span{Q21}, i.e., the precoder property 1) holds as well.
Interestingly, the submatrix Q21 here is not a zero matrix.
Also note that, the last (ntN − n1 − nα) columns in Q2

in (32) do not have to be all e1 and in fact, they can be
any linear combinations of the first nα vectors e1, · · · , enα

in Q2 as mentioned earlier, for example, all zero vectors,
which does not affect the precoder design properties 1)-4). It
is noticeable that the SISO-OFDM precoder example in (19)
satisfies these four properties and exhibits a special case of
the above precoder design.

Using the precoder defined in (32)-(33), we are able to
specify the final signals to be transmitted at the nt transmit
antennas when xk(n) are independent information symbols as
follows. In this example, nβ is the number of total independent
information symbols to be transmitted through nt transmit
antennas in every data block of length N where there are
total ntN − nβ zeros inserted in the block. Every data block
of length N is preceded by a CP of length v. The overall
transmission block length is N + v.

Firstly, for each time index k, all nβ independent infor-
mation symbols, xk(n), 0 ≤ n ≤ nβ − 1, are padded with
ntN − nβ zeros to yield

x̄k = [xk(0), xk(1), · · · , xk(nβ − 1), 0, · · · , 0]T , (35)

which is then fed to Qx̄k. This is that each of the nt transmit
antennas alternatively takes one symbol from x̄k consecutively
for N times to fill its data block of length N . To see this, for
convenience, let us define

θ
Δ
= �nβ

nt
� and nt1

Δ
= nβ − θnt.

In this manner, for the first nt1 transmit antennas, the jth
antenna, j = 0, · · · , nt1−1, transmits the following data block
of length N :

x̄j
k = (36)

[xk(nt · 0 + j), xk(nt · 1 + j), · · · , xk(nt · θ + j), 0, · · · , 0]T ,
where N − (θ+1) zeros are inserted. For the remaining nt−
nt1 transmit antennas, the jth antenna, j = nt1, · · · , nt − 1,
transmits the following data block of length N :
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x̄j
k = (37)

[xk(nt · 0 + j), xk(nt · 1 + j) · · ·xk(nt(θ − 1) + j), · · · , 0]T ,
where N − θ zeros are inserted. Then, the last v symbols of
x̄j
k for each antenna j are added in the front of the data block

as a CP (usually insufficient in our IA based precoding) for
every kth data block of length N . Finally, the kth transmission
block of total length N + v with CP is transmitted through
all the nt antennas. More detailed examples are given in the
simulations in the next section.

For a general precoder Q, according to Theorem 1, the
number of independent information symbols that can be put in
x̄k in (13) and can be solved with the IBI free is shown in (26),
which can be encoded as follows. To illustrate it, let us first
see the previous example where the precoder Q = [Q1 Q2]
is shown in (32)-(33). In this example, all the n1 columns
in Q1 plus the first nα columns, e1, · · · , enα , in Q2 are
linearly independent. We can consider them altogether denoted
as Qu = [enα+1, · · · , enβ

, e1, · · · , enα ]. This submatrix Qu

corresponds to the first nβ independent information symbols
in x̄k. The last ntN − nβ columns of Q2 are denoted as
Qz = [e1, · · · , e1]. The last ntN − nβ signals in x̄k in (13)
corresponding to this submatrix Qz are aligned in the space
spanned by the IBI and can not be solved freely and thus these
signals are set to zeros in x̄k . As a result, the precoder Q is
structured as

Q = [Qu Qz], (38)

which can be obtained similarly if the design of Q follows
the general design properties 1) – 4) obtained previously. Note
that, as mentioned before, the matrix Qz in (38) can be 0. If
we only take the first K = nβ columns of the precoder Q,
i.e., if we let QntN×K = Qu and the signal x̄k in (13) be
of size K × 1 only consisting of nβ independent information
symbols, then the precoder encoding is equivalent to

QntN×K x̄k. (39)

Notice that, for the transmissions in (36) and (37), the corre-
sponding precoding matrix QntN×K = Qu is in fact a tall
unitary matrix.

Remark: Let us compare the above proposed precoding with
the conventional zero-padded system. For convenience, we
only consider CP free MIMO-OFDM systems, i.e., v = 0
in the above study. In the zero-padded system, among every
block of N symbols, L of them are zeros, i.e., in one block of
N symbols, only min{nrN,nt(N − L)} independent infor-
mation symbols are transmitted for all nt transmit antennas,
where the reason to take the minimum is because there are
only nrN received signals, i.e., only nrN linear equations
and the number of independent information symbols can be
solved linearly can not be above nrN as we explained before.
In comparison, in our channel independent precoded MIMO-
OFDM system,

min

{
nrN,nt(N − L) + �nrN − nt(N − L)

2
�
}

independent information symbols can be transmitted and
linearly solved freely in one OFDM block across all nt

transmit antennas. Clearly, one can see that, when nt ≥
nr > nt(N − L)/N , more independent information symbols
than the conventional zero-padding MIMO system can be
transmitted and solved linearly with free of IBI interference in
our channel independent precoded MIMO-OFDM system. A
similar argument applies to an insufficient CP added MIMO-
OFDM system.

D. IBI Cancellation When nr > nt

In this case, we show that no precoding, or CP or zero-
padding is needed to eliminate the IBI in the following
theorem.

Theorem 2: For the insufficient CP MIMO-OFDM system
with nr > nt, the total number of independent information
symbols can be solved by the zero-forcing operator is ntN ,
where no zero-padding or precoding is needed, when

N ≥ nt

nr − nt
(L − v). (40)

Proof: Since all the channel coefficients are drawn from
an i.i.d. continuous distribution, from Appendix I, the dimen-
sions of channel matrix C and IBI matrix B are (almost
surely)

dim(C) = ntN (41)

dim(B) = nt(L− v), (42)

respectively, while the dimension of the receive signal space
is nrN . When the dimension of the receive signal space is not
smaller than the sum of the dimensions of the channel matrix
C and IBI matrix B, i.e.,

ntN + nt(L− v) ≤ nrN,

which is (40), it is almost surely that the signal space
span{C} is disjoint from the IBI space span{B}. Thus, all
the independent information symbols can be solved by the
zero-forcing operator.

E. Relationships With the Existing Block Based Transmission
Systems

We now discuss the relationships of our above IA based
channel independent precoding scheme with the existing block
based transmission systems, namely zero-padded (ZP) only,
CP-OFDM and single carrier frequency domain equalizer (SC-
FDE). Without loss of generality, for convenience we only
consider the SISO configuration, i.e., nt = nr = 1, for the
discussions below.

Let us first consider the ZP-only transmission system, see,
for example [18], [19], [22], with information symbol block
length M and ZP length L (in order to eliminate the IBI
completely). Note that the ZP idea appears in [15], [16] where
a precoder in the time domain is[

IK
0(N−K)×K

]
, (43)

which becomes the ZP-only scheme when K = M and
N − K = L. Comparing to the IA based precoding scheme
proposed in the preceding sections to completely eliminate the
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IBI, we choose N = M+L, K = M in (39) with nt = 1, and
v = 0, i.e., no CP is used in this case. The precoding matrix
P is designed as the N ×K submatrix of the N × N DFT
matrix, i.e., the (m,n)th entry of this precoding is expressed
as [P]m,n = (1/

√
N)exp(−j2πmn/N). As a result, we have

Qzp = WNP = [IK ,0K×L]
T that is the same as the precoder

(43) proposed in [15], [16].
We next consider the CP-OFDM system, i.e., the conven-

tional OFDM system, with information symbol block length
M , i.e., the IDFT size M , and CP length L (in order to
eliminate the IBI completely). Comparing to the IA based
precoding scheme proposed in the preceding sections to com-
pletely eliminate the IBI, we choose N = K = M and v = L,
i.e., full CP length is used in this case. Then, the precoding
matrix is the identity matrix, i.e., P = IN . In other words, CP-
OFDM can be considered as a special case of the IA based
precoding in this paper.

We finally consider the SC-FDE system, see for example
[13], [14], [20], [21], with information symbol block length
M and CP length L (in order to eliminate the IBI completely).
Comparing to the IA based precoding scheme proposed in the
preceding sections to completely eliminate the IBI, we choose
N = K = M and v = L, i.e., full CP length is used in
this case. The precoding matrix P in this case is, however,
chosen as the N ×N DFT matrix, i.e., P = WH

N . Clearly, in
this case, the precoding cancels the IDFT operation, i.e., the
transmission matrix Q is the identity matrix, and thus leads
to transmit the information symbols directly. Note that when
the CP length v = L, i.e., full (or sufficient) CP is used, our
proposed precoded system with the precoder example (32)-
(33) always becomes the SC-FDE.

From the above discussions, one can see that the three ex-
isting block based transmission systems, ZP-only, CP-OFDM,
and SC-FDE systems, can be all considered as special cases
of our proposed IA based channel independent precoding
scheme in this paper. Interestingly, as we have shown in the
preceding sections, with the IA concept we may choose better
channel independent precoding matrices P (or Q) such that
less number of CP or ZP are needed to completely eliminate
the IBI caused from the ISI of the channel, when the number
of information symbols is fixed. Some concrete examples are
given in the simulations in the next section.

IV. SIMULATIONS

In this section, we present some simulation results to
validate our proposed IA based channel independent precoding
where the precoder in (32)-(33) is used. In the meantime, some
particular and concrete examples of the proposed precoded
transmissions are illustrated as well. In the following figures,
the SNR at the receiver is accounted.

In Fig. 1, we consider the SISO case and depict the
BER performances of our proposed IA based precodings
with different CP lengths and the numbers of independent
information symbols that satisfy Theorem 1, i.e., the IBI can
be completely eliminated. In Fig. 1, IA stands for the IA based
precoding. The simulations in Fig. 1 also include the cases of
CP-OFDM, ZP-only, and SC-FDE systems. The order of the
CIR is L = 16 in this simulation. The block length for CP-
OFDM, ZP-only, SC-FDE is N = 64, i.e., 64 independent
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Fig. 1. BER performances of the IA based precoding, SC-FDE, CP-OFDM,
ZP-only.

information symbols are sent, where full CP or ZP length, 16,
is used. The block length for the proposed IA based precoding
is N = 64 and the CP lengths are v = 16, 12, 8, 0, and the
corresponding numbers of independent information symbols
xk(n) are 64, 62, 60, 56, respectively, according to Theorem
1. To illustrate the structure of transmission block in our IA
based precoding, the transmission block for the v = 12 case
in Fig. 1 is:

[xk(52), · · · , xk(61), 0, 0
︸ ︷︷ ︸

CP of length v=12

, xk(0), xk(1), · · · , xk(61), 0, 0
︸ ︷︷ ︸

data block of length N=64

], (44)

and the transmission block for the v = 0 case in Fig. 1 is:

[xk(0), xk(1), · · · , xk(55),

8 zeros︷ ︸︸ ︷
0, · · · , 0︸ ︷︷ ︸

data block of length N=64

]. (45)

As mentioned previously in Section III-E, our IA based
precoded system, when the full CP, i.e., v = 16, is added,
coincides with SC-FDE as also shown in Fig. 1 with solid
curves marked by 	 and ×, respectively.

For CP-OFDM, ZP-only, SC-FDE, in order to completely
eliminate the IBI, the CP/ZP lengths should be at least all 16
14, 12, 8, when 64, 62, 60, 56 independent information sym-
bols are sent in a data block of length N = 64, respectively,
which are clearly higher than the CP lengths 16, 12, 8, 0,
in our proposed IA based precoding, respectively, for the last
three cases. After saying so, although in all these cases, the IBI
can be completely eliminated, their performances are different.
One can see that the ZP-only scheme performs the best, since
it achieves the full multipath diversity with the MMSE or ZF
receiver [19]. In fact, this case is equivalent to the MISO case
with quasi-static flat fading channels when the delay diversity
code (or Toeplitz code) is used. It is theoretically shown in
[25], [26] that this code achieves the full spatial diversity
(corresponding to the full multipath diversity in the ISI channel
case) with the ZF/MMSE receiver.
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Fig. 2. SISO case: BER performances of IA based precoding of different
CP lengths and different numbers of information symbols.
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Fig. 3. MISO case: BER performances of IA based precoding of different
CP lengths and different numbers of information symbols.

In Fig. 2, we consider the same SISO case as in Fig. 1 with
two cases that do not satisfy the condition obtained in Theorem
1. These two cases are when v = 8 and v = 12 and the
numbers of transmitted independent information symbols in
one block are 62 and 64, respectively. The BER performances
for these two cases are dashed curves in Fig. 2, where one can
see that error floors occur when SNR becomes high because
the IBI can not be completely eliminated. Notice that when
insufficient CP/ZP is added for CP-OFDM, ZP-only or SC-
FDE, error floor will also occur because there is residual IBI.

In Fig. 3, we simulate the IA based precoding scheme
proposed in this paper for the MISO configuration of nt = 2
and nr = 1. We consider both cases of satisfying (solid
curves in Fig. 3) and not-satisfying (dashed curves in Fig. 3)
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Fig. 4. MIMO case: BER performances of IA based precoding of different
CP lengths and different numbers of information symbols.

Theorem 1. For the convenience of having the same number
of transmitted independent information symbols xk(n) in both
cases, we choose the block size N = 32 and the CIR order
L = 19. In each case, two different CP lengths are considered.
We take the v = 2 case as an example to specify the
transmission block:[

0 0 xk(0) xk(2) · · · xk(28) xk(30) 0 · · · 0
0 0 xk(1) xk(3) · · · xk(29) 0 0 · · · 0

]
, (46)

where there are 16 consecutive zeros at the end of each row,
each row represents the transmission block at one transmit
antenna, and the first two zeros are the CP of length v = 2 in
each row.

In Fig. 4, we simulate the IA based precoding scheme
proposed in this paper for a MIMO configuration of four
transmit and two receive antennas, i.e., nt = 4 and nr = 2.
We also consider both cases of satisfying (solid curves in Fig.
4) and not-satisfying (dashed curves in Fig. 4) Theorem 1.
For the convenience of having the same number of transmitted
independent information symbols xk(n) in both cases, we also
choose the block size N = 32 and the CIR order L = 19. In
each case, two different CP lengths are considered. Again, the
v = 2 case is used as an example to specify the transmission
block:⎡
⎢⎣

0 0 xk(0) xk(4) · · · xk(56) xk(60) 0 · · · 0
0 0 xk(1) xk(5) · · · xk(57) xk(61) 0 · · · 0
0 0 xk(2) xk(6) · · · xk(58) 0 0 · · · 0
0 0 xk(3) xk(7) · · · xk(59) 0 0 · · · 0

⎤
⎥⎦ , (47)

where there are 16 consecutive zeros at the end of each row
for the first two rows and 17 consecutive zeros at the end
of each row for the last two rows, and the first two columns
of zeros are the CP of length v = 2. Each row of (47) is
for one transmit antenna. Comparing the results in Fig. 3 and
Fig. 4 for the cases of two transmit and one receive antennas
and four transmit and two receive antennas, respectively, we
can see that the channels are the same (i.e., the CIR orders
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Fig. 5. MIMO case: BER performances of IA based precoding of different
CP lengths and different numbers of information symbols.

L, the CP lengths v, the data block sizes N , and the ratios
between the numbers of transmit and receive antennas are the
same) but the number of independent information symbols
can be solved for the later case almost doubles that of the
former case. Although the bandwidth efficiency gets better for
more antennas for our precodings, as one can see from these
two figures the BER performance degrades, which may be
improved by, for example, employing forward error correction
coding. Another remark is that the total ZP length for each
of the last two transmit antennas in (47) is already 19 that is
the same as the CIR order L here. In other words, for the last
two transmit antennas, the IBIs do not appear. However, since
there are four transmit antennas but only two receive antennas,
the signals may not be solved freely as in the SISO case.

In Fig. 5, we simulate the IA based precoding scheme
proposed in this paper for another MIMO configuration of
nt = 4, nr = 4. Both cases of satisfying (solid curves in Fig.
5) and not-satisfying (dashed curves in Fig. 5) are studied. Two
different CP lengths are considered for each case. We choose
the block size N = 32 and CIR order L = 12. In the v = 6
case, transmission block is specified as (48) at the bottom of
the page, where the first 6 columns are the CP of length v = 6.
One can see that even more independent information symbols
xk(n) can be sent in this configuration.

V. CONCLUSION

In this paper, we proposed a channel independent precoding
for MIMO-OFDM systems with insufficient CP by using the
notion of interference nulling that has been also actively used
in interference alignment lately. We showed that our proposed
precoding is more bandwidth efficient than the conventional
zero-padded or CP added MIMO systems, such as, ZP-only,
CP-OFDM and SC-FDE systems, when the number of receive
antennas is not more than the number of transmit antennas.
When the number of receive antennas is more than the number
of transmit antennas, it was shown that the IBI in an MIMO-
OFDM system can be completely eliminated without any CP
or zero-padding or precoding, when the OFDM block size is
not too small. The key reason behind these is that instead
of making the IBI disappears completely in the conventional
sufficient CP or ZP based block transmission systems, the IA
based channel independent precoding proposed in this paper
aligns the IBI interference subspace disjoint from the signal
subspace and then the zero-forcing operator is applied to
eliminate the IBI while maintain the signal. Although we only
considered CP based block transmission systems in this paper,
the theory developed in this paper can be easily generalized
to ZP based block transmission systems.

APPENDIX I
PROOF OF ALMOST SURELY FULL RANK CHANNEL

MATRIX C

Let us first consider the SISO-OFDM case for channel
matrix C in (5).

By observing the determinant expansion of the channel
matrix C in (5), we notice that there is one term,

(
h(0)

)N
,

in the determinant, which is resulted from multiplying all the
N entries on the main diagonal of matrix C. Furthermore, we
check all other non-zero terms in the determinant expansion
and conclude that all these terms are products of N entries
with h(0) appearing strictly less than N times. As a result,
the expansion of the determinant of channel matrix C can be
expressed as

det(C) = (49)(
h(0)

)N
+ τ1

(
h(0)

)N−1
+ · · ·+ τN−1h(0) + τN ,

where τi, i = 1, · · · , N , is a polynomial of degree i

consisting of h(1), · · · , h(L). Since
(
h(0)

)N
is the non-

zero term in the determinant expansion in (49), det(C) is
h(0)’s polynomial of degree N . In our system model, channel
coefficients h(0), · · · , h(L) are assumed i.i.d. complex Gaus-
sian distributed, therefore the resultant polynomial in (49) is
a continuously distributed random variable and furthermore
det(C) = 0 occurs with zero probability. This means that
channel matrix C is almost surely full rank.

⎡
⎢⎢⎣

xk(104) xk(108) xk(112) 0 0 0 xk(0) · · · xk(112) 0 0 0
xk(105) xk(109) xk(113) 0 0 0 xk(1) · · · xk(113) 0 0 0
xk(106) xk(110) xk(114) 0 0 0 xk(2) · · · xk(114) 0 0 0
xk(107) xk(111) xk(115) 0 0 0 xk(3) · · · xk(115) 0 0 0

⎤
⎥⎥⎦ , (48)
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For the general MIMO-OFDM case with channel matrix
C in (11), every channel coefficient h(i) above is replaced
by a channel coefficient matrix H(i) in (9) of size nr × nt

with i.i.d. components hmn(i). In this case, we permute the
block matrix C row and column wisely such that the permuted
matrix is another block matrix where the (m,n)th subblock is
the SISO-OFDM matrix Cmn in (5) with channel coefficients
hmn(l). As what is just proved, every such a subblock Cmn

has full rank almost surely, i.e., its columns or rows are almost
surely linearly independent. Since all these subblocks Cmn are
independent each other and all complex Gaussian distributed,
the overall block matrix C’s rows or columns are almost surely
linearly independent, i.e., full rank.

APPENDIX II
PROOF OF ALMOST SURELY

span{CQ}⋂ span{BQ} = {0}
We also first consider the SISO-OFDM case, the IBI matrix

B is specified in (3) and (4) and the channel matrix C is
defined in (5). We restate that n1 = �(L− v)/2�, nα = N −
L+ v and nβ = n1 + nα. Consider the design example with
Qz = 0, i.e., Q′ = [enα+1, · · · , enβ

, en1 , · · · , enα ,0, · · · ,0],
proposed in this paper previously.

We next first show that span{CQ′}⋂ span{BQ′} = {0}
holds almost surely for this particular precoder Q′ and then
we show that it is also true for a general precoder Q.

Let bi and ci denote the ith columns of matrices B
and C, respectively. Without loss of generality, assume that

{c1, · · · , cnβ
} is a maximal set of nβ independent columns in

CQ′, and {bnα+1, · · · ,bnβ
} is a maximal set of n1 indepen-

dent columns in BQ′. Then, let B′ = [bnα+1, · · · ,bnβ
] that

is an N×n1 matrix and C′ = [c1, · · · , cnβ
] that is an N×nβ

matrix. We construct an N×(nβ+n1) matrix HQ = [B′ C′].
Notice that when L−v is even, nβ+n1 = N , HQ is a square
matrix. When L − v is odd, nβ + n1 = N − 1. But for this
proof we only need to show that HQ is full column rank, i.e.,
the column rank of HQ is n1 + nβ , almost surely.

The explicit structures of HQ are separately introduced in
the following two equations, since the change of n1 results in
a change in the form of HQ.

(i) When n1 ≥ v, HQ is expressed in (50), and (ii) When
n1 < v, HQ is given in (51).

We only prove that HQ has a full column rank when n1 ≥ v
here. Applying the same argument, the case when n1 < v can
be proved too.

First, we denote the upper-left n1 × n1 submatrix in (50)
as

H1 =

⎡
⎢⎣

h(L) . . . h(L− n1 + 1)
. . .

...
h(L)

⎤
⎥⎦ . (52)

Since det(H1) =
(
h(L)

)n1 , this matrix is almost surely full
rank.

Next, we perform column elementary operations on HQ in
(50). Using the first n1 columns, all the non-zero entries from
the (n1 + 1)th to the last column of the first n1 rows can

HQ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(L) . . . h(L − n1 + 1) h(0)
. . .

...
...

. . .

h(L) h(n1 − 1)
. . .

h(n1) h(0)
...

...
. . .

h(L)
... h(0)

. . .
...

...
h(L) . . . h(L− v − n1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (50)

HQ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(L) . . . h(L− n1 + 1) h(0) h(v) . . . h(L− v − n1 + 1)
. . .

...
...

. . .
...

...

h(L) h(n1 − 1)
. . . h(L)

...

h(n1) h(0)
. . .

...
...

...
. . . h(L)

...
... h(0)

h(L)
...

. . .
. . .

... h(0)
. . .

...
...

h(L) . . . h(v − 1) . . . h(L− v − n1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (51)
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be eliminated without influencing the entries below the n1th
row. Thus, we transform HQ into H′

Q which has the identical
column rank shown in (53) at the bottom of the page.

Take the entries in H′
Q with both row and column indices

belonging to {n1 + 1, · · · , n1 + nβ} to form the Toeplitz
submatrix H2:

H2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h(n1) . . . h(0)
...

. . .
. . .

h(L)
. . . h(0)

. . .
. . .

...
h(L) . . . h(n1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (54)

Define

Ha =

[
H1 0
0 H2

]
. (55)

Ha is just H′
Q when L− v is even or Ha is the (n1 + nβ)×

(n1 + nβ) submatrix in H′
Q by deleting the last row of H′

Q

when L− v is odd.
Now compute the determinant of H2. We similarly expand

the determinant as a polynomial of h(n1),

det(H2) = (56)
(
h(n1)

)nβ + γ1
(
h(n1)

)nβ−1
+ · · ·+ γN−1h(n1) + γN

where γi, i = 1, · · · , nβ is a polynomial of degree i con-
sisting of h(0), · · · , h(n1 − 1), h(n1 + 1), · · · , h(L). Thus,
det(H2) = 0 with zero probability, i.e., H2 is almost surely
full rank and hence Ha is almost surely full rank or H′

Q and
HQ are almost surely full column rank. Therefore, we have
span{CQ′}⋂ span{BQ′} = {0} almost surely.

For a general precoder Q that satisfies all the requirements
in Theorem 1, we can give a structure of such a precoder:

Q =

[
Qu 0
0 0

]
. (57)

where Qu is an nβ × nβ nonzero submatrix. Due to the
special structure of Q′, it can be easily seen that each column
of CQ is a linear combination of the maximal independent
column set {c1, · · · , cnβ

} of CQ′ and each column of BQ
is a linear combination of {bnα+1, · · · ,bnβ

}. This means
span{CQ}⋂ span{BQ} = {0} also holds almost surely.

The general MIMO-OFDM case can be proved similarly by
using the same argument as in Appendix I.
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