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The first real/complex orthogonal space-time block code was proposed by Alamouti [1] for
two transmit antennas. It was then generalized to real/complex orthogonal space-time block

codes for more than two transmit antennas by Tarokh, Jafarkhani and Calderbank [3]. There
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are two important properties of real/complex orthogonal space-time block codes: (i) they
have fast maximum-likelihood (ML) decoding, namely symbol-by-symbol decoding; (ii) they
have the full diversity. These two properties make real/complex orthogonal space-time block
codes attractive in space-time code designs. By utilizing the Hurwitz-Radon theory [16, 17,
18, 22, 25], Tarokh, Jafarkhani and Calderbank [3] provided a systematic method to construct
real orthogonal space-time block codes of size p x n and rate 1 for £ PAM symbols, where n
is the number of transmit antennas, p is the time delay (or block size), and R = k/p =1 is
the code rate. They also provided a construction of rate 1/2 complex orthogonal space-time
block codes for PSK and QAM symbols using real orthogonal space-time block codes of rate
1. In order to maintain the fast ML decoding and the full diversity of a space-time block
code, the orthonormality in the sense that the norms of all column vectors are the same
can be relaxed to a general orthogonality where the norms of column vectors may not be
necessarily the same [3]. A complex orthogonal space-time block code with the generalized
orthonormality is called a generalized complex orthogonal space-time block code. In [2, 3],
it has been shown that the rate R < 1 for both real and complex orthogonal space-time
block codes for any number of transmit antennas. While the maximal rate 1, i.e., R = 1,
is reachable for real orthogonal space-time block codes as we mentioned above from the
Hurwitz-Radon’s constructive theory, it has been recently shown in [8] that £ < p — 1 when
n > 2,i.e., R < 1and R =1 is not reachable for (generalized) complex orthogonal space-time
block codes no matter what a time delay p is unless the number of transmit antennas is 2,
i.e., the Alamouti’s scheme. Notice that, if condition p = n is required, i.e., square codes or
square complex orthogonal designs, then R < 1 when n > 2 directly follows from the results
on amicable designs [17, 20, 21, 22, 3, 5, 6, 7] that have small rates when n > 8. While both
square and non-square real orthogonal designs (or compositions of quadratic forms) are well
understood, not much is known for non-square complex orthogonal designs (or Hermitian
compositions of quadratic forms [25]), [3, 25, 26].

In this paper, we derive some upper bounds on the rates R of (generalized) complex

orthogonal space-time block codes (or complex orthogonal designs). We emphasize that the



sizes of (generalized) complex orthogonal space-time block codes (or complex orthogonal
designs) here are general and they may not be square, i.e., p may not be equal to n. We
show that, when the number of transmit antennas is more than 2, i.e., n > 2, the rates of

complex orthogonal space-time block codes are upper bounded by 3/4, i.e.,

3
R< -
_4’

and the rates of generalized complex orthogonal space-time block codes are upper bounded
by 4/5, i.e.,

R <

[SAR N

Note that rate 3/4 complex orthogonal space-time block codes for 3 and 4 transmit antennas
have appeared in [3, 4, 5, 6]. Therefore, the above upper bound tells us that these complex
orthogonal space-time block codes have already reached the optimal rate. Also note that the
above upper bound 3/4 on the rates is not new for square complex orthogonal designs. In fact,
it has been shown and reviewed from amicable designs in [17, 20, 21, 22, 3, 5, 6, 7]. However,
this upper bound is new for non-square complex orthogonal designs. In the meantime, it
is known that to generate orthogonal space-time codes, a square orthogonal design is not
necessary [3].

In a conventional (generalized) complex orthogonal design, its variables may take any
values in the complex plane. However, as we shall see later, to generate a space-time code, the
variables only take values in some finite subsets, called alphabet sets, on the complex plane.
The question then becomes whether it is helpful to produce more (generalized) complex
orthogonal designs of high rates when their variables are restricted to some alphabet sets.
This question has been partially studied lately in [12, 13, 15, 14]. For square real orthogonal
designs, when their variables are restricted to finite or infinite subsets of the real line (or
field), they are called restricted orthogonal designs in [12] and pseudo orthogonal designs in
[13]. It is shown in [12, 13] that there does not exist new square real orthogonal designs even
when their variables are restricted to subsets of the real line, if the number of the elements
of the alphabet set is greater than 2. For square complex orthogonal designs, it is known

that (also as mentioned previously) the maximal rate of 4 x 4 complex orthogonal designs is
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3/4 when all the variables can take any values on the complex plane. However, examples of
rate 1 complex orthogonal designs of size 4 x 4 have been shown in [15] when their variables
take some alphabet sets on the complex plane, where in the examples all the alphabet sets
are PAM and a rotation of PAM, i.e., all points in an alphabet set are collinear. In this
paper, we also consider this problem. We obtain a condition on the alphabet sets such that
a (generalized) complex orthogonal design with variables over these alphabet sets is also a
conventional (generalized) complex orthogonal design and therefore the above upper bounds
on its rate also hold. We show that commonly used QAM signal constellations of size above
4 do satisfy this condition and therefore, a (generalized) complex orthogonal design with
their variables over QAM constellations of size above 4 is also a conventional (generalized)
complex orthogonal design. For convenience, in what follows we adopt the name “restricted
(generalized) complex orthogonal design” as used in [12] for real orthogonal designs, when
their variables are restricted to some alphabet sets.

This paper is organized as follows. In Section 2, we provide some preparations and new
properties on (generalized) complex orthogonal designs. In Section 3, we prove several upper
bounds. In Section 4, we study restricted (generalized) complex orthogonal designs. Some
necessary lemmas (including a new form shown in Lemma 6 of singular value decompositions

of a family of special matrices) and their proofs are put in Appendix.

2 Some Preliminaries and New Properties on Complex
Orthogonal Designs

In this section, we present some properties of a (generalized) complex orthogonal design used
in a (generalized) complex orthogonal space-time block code. In what follows, C denotes the
field of all complex numbers and R denotes the field of all real numbers. For convenience,
symbol 0 means scalar 0 or all 0 matrices of possibly different sizes and I means the identity
matrices of possibly different sizes unless specified otherwise. For two matrices A and B of
same number of rows, (A B) denotes the concatenation matrix of A and B, i.e., (A B) is

a new matrix with the columns of A as its first part columns and the columns of B as its



second part columns.
A complex orthogonal design G(xy1,xs,--- ,xx) of size p X n is a p X n matrix satisfying

the following conditions:
e the entries of G(x1, 23, ,xx) are complex linear combinations of z1, x5, -+, x; and
their complex conjugates z7, x5, - - - , T};

e the orthonormality (G(z1,z2, -, 7)) ¥ G(x1, T2, -, xx) = (|w1 2+ |22|? + - - -+ |2 |*)

H

holds for any complex values z;, ¢ = 1,2,---,k, where ” stands for the complex

conjugate transpose and [ is the n X n identity matrix.

The orthonormality in the above definition can be generalized to the orthogonality as
follows for preserving the full-diversity and the fast ML decoding [3].
A generalized complex orthogonal design G(z1,xo,--- ,xy) of size p X n is a p X n matrix

satisfying the following conditions:

e the entries of G(x1, 29, - ,xx) are complex linear combinations of x1, zs, -+ ,x; and

their complex conjugates z7, x5, - - , x};

o the orthogonality (G(z1, s, ,2x))"G (21,2, -+ ,2x) = (|21|2Dy + |22?Da 4 --- +
|zx |2 Dy) holds for any complex values z;, 1 = 1,2,--- .k, where D;, 1 =1,2,--- , k, are
n X n diagonal positive definite constant matrices, i.e., their diagonal elements are all

positive constants.

Let A denote a signal constellation alphabet set and C = {G(x1, z2,-- - ,xx) : x; € A}. Then,
C is called a complex (or generalized) orthogonal space-time block code. For this block code,
every p time slots carries k information symbols, z1, %2, ,zr. The rate of this complex
orthogonal space-time (or generalize complex orthogonal space-time) block code is defined
as k/p and denoted by R, i.e., R = k/p. Without any confusion in understanding, in what
follows we use complex orthogonal space-time (or generalize orthogonal complex space-time)
block code C and (generalized) complex orthogonal design G(z1, x9, - - - , ) interchangeably.

For a real orthogonal design, x; are real-valued in the above definition and the coefficients

in the linear combinations of z; of components of G(x1, z3,--- ,xy) are all real. It is known
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that there exist real orthogonal designs with R = 1 for any number, n, of transmit antennas,
see [18, 22, 25, 3]. We refer the reader to [1, 3] for the properties of the fast ML decoding
and the full diversity of a complex orthogonal space-time (or generalized complex orthogonal
space-time) block code, where the full diversity means that any difference matrix of two dif-
ferent complex orthogonal space-time (or generalized complex orthogonal space-time) block
codewords (or code matrices) has full rank. The main goal of this paper is to show: (i) if
G = G(x1,9,- -+ ,x1) of size p X n is a complex orthogonal design and n > 3, then its rate
R=1Fk/p <3/4; (ii) if G = G(z1, 29, - - ,xx) of size p X n is a generalized complex orthogonal
design and n > 3, then its rate R = k/p < 4/5. To do so, let us have some preparations.
Let G = G(z1,x9, -+ ,xx) be a matrix of size p x n, where its entries are the complex
linear combinations of zi, s, -- -,z and their complex conjugates z7,3,--- ,z;. Then, G

can be expressed in terms of its column vectors as follows:
G = (Aix + Bix™ Aox + Box™ -+ Apx+ B,x"), (1)

where A;, B;, 1 = 1,--- ,n, are p X k constant complex matrices, x = (z1,---, )", and *
stands for the transpose, and * stands for the complex conjugate.
For the n x n diagonal matrices D; given in the above definition of a generalized complex

orthogonal design, we denote D; = diag(d},ds,--- ,d.). For each j, j = 1,---,n, all the

(4, j)-entries dj- of matrices D;, i = 1,--- , k, form a new k x k diagonal matrix F; as follows:
A .
E; = diag(d},d>, -+, d}). (2)

Clearly, when all D; are positive definite, all F; are positive definite. Using these matrices,
we can transfer the orthogonal condition on G into the conditions on the matrices A;, B,

1<4,5<n.
Proposition 1 Matriz G in (1) is a generalized complex orthogonal design, i.e.,
G"G = |z1?Dy + [25|° Dy + - - - + |24 |* Dy,

for some n x n diagonal positive definite constant matrices D;, 1 < i < k, if and only if there

ezist diagonal positive definite matrices F;, 1 = 1,2,--- ,n, such that its associated matrices



A; and By, i =1,--- n, in (1) satisfy the following conditions:
AT A; + BBy = 6;;E;, AI'B;j+ BjA; =0, BIA; + A\B} =0, (3)
or equivalently,
A B \"( A B _s (B O (1)
B} A; Br Ay ) Y\ 0 E;)’

foralli,j =1,---,n, where 6;; =1 when ¢ = j and d;; = 0 when i # j.
In particular, G is a complezx orthogonal design if and only if (3) or (4) holds for E; =1

for1 <i<n.

Proof: By the orthogonality of a generalized complex orthogonal design in terms of its

column vectors, we have
(Ax + Bix*)#(A;x + Bx*) = x6;; E;x,
ie.,
xT AP Ajx + xT AP Bx* + x"'Bff Ajx + x'BY B;x* = x"6;; E;x,
where E; are from D; as in (2) and therefore they are positive definite. Note that
x'B' Bjx* = (x'B]' B;x*)' = x" B! B/x,
the above equation can be rewritten as
x"(A'A; + BIB; — 0 E)x +x" A Bjx* + x'Bf! Ajx = 0, for any x € C*.

By Lemma 1 in Appendix, we obtain Aj’A; + BB} = 6;E;, A]'B; + (A{'B;)' = 0 and
BFfA; + (BffA)) = 0.

The sufficiency part is easy to verify. q.e.d.

As a remark, Lemma 1 in Appendix was first obtained in [8]. For the completeness, its
proof is given in Appendix. Another remark is that equation A¥B; + (AX B;)! = 0 holds
is equivalent to matrix A7 B; is skew-symmetry’, which are used interchangeably in what

follows.

LA matrix S = (s;;) is called skew-symmetric if s;; = —s;;. For a k x k skew-symmetric matrix S = (s;;),
we always have x!Sx = 0 for any k x 1 vector x € C*.
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We next investigate some properties of a generalized complex orthogonal design G under
a unitary transformation. Let U be a unitary matrix and G(x) be a generalized complex
orthogonal design, then G(Ux) may not be a generalized complex orthogonal design due to
the fact that U¥ E;U may not be diagonal, i.e., unitary transform on variables z; does not
preserve a generalized complex orthogonal design. On the other hand, if G(x) is a complex
orthogonal design, then G(Ux) is also a complex orthogonal design due to E; = I and
UHE;U = I, i.e., unitary transform on variables x; preserves a complex orthogonal design.

In order to implement unitary transformations on variables of a generalized complex
orthogonal design to simplify its corresponding matrices, we introduce the following concept

of Hurwitz families, which is preserved by a unitary transformation as we can see below.

Definition 1 A set of p x 2k matrices {(A; B), (A Bs),---, (A, By)} is called a Hurwitz

family if there exist n positive definite matrices F;, 1 =1,2,--- ,n, such that
Al'Aj+ BB} = 6;E;, 1<1i,j<n, (5)
and
Al'Bj+ BiA; =0, BffA;+ AiBf =0, 1<i#j<n. (6)

In the above definition of a Hurwitz family, the diagonality of the matrices E; is not
required. Clearly, by Proposition 1, the matrices {(A; By), (A2 Ba),---, (4, By,)} of a gen-

eralized complex orthogonal design G(x) form a Hurwitz family, and
(AU BiU"), (AU BoU*), -+ , (AU BoU*)}

of G(Ux) for a unitary transform U also form a Hurwitz family.

Note that in (6), we have the restriction 7 # j due to the fact that it can not be deduced for
1 = j when FEj; is not the identity matrix when a unitary transform is applied to a generalized
complex orthogonal design as we shall see after the proof of Lemma 7 in Appendix. Thus, the
condition for a Hurwitz family is weaker than the one for a generalized complex orthogonal
design. Also note that the above definition coincides with the one in [22] when B; = 0, 4;

are real and E; = I, i.e., the real case.



For a Hurwitz family {(A; B),(As Bs),---,(A, B,)}, by using some proper unitary
transformations, we can diagonalize the first matrix (A; Bj) as follows, which plays a key

role in the proof of our main theorem in next section.
Proposition 2 Let
G = (A1x + Bix* Ayx + Box™ -+ - Apx + Bpx™)
be a generalized complex orthogonal design. Then, there exists a Hurwitz family
{(A1 By),(4; Bo),---, (A, By)} (7)
with the same parameters, p,n, k, as G and
AA 4+ BB =1, AB + B A =0, BYA, + AB =0, (8)

and furthermore, A, and B, have the following forms

D, 0 Osws O

1 0 Ik:—s > 3 O(k—s)xs 0

Al - 0 0 ) Bl - Du 0 ) (9)
0 0 0 0

where k —s > 2k —p, Dy = diag(A1, Mg, - -+, As), D, = diag(pa, pio, - -+, ps) and N2+ p? =1,
I>MN>1/2>p;>0,4,j=1,2,---,5, k+5s =k, and k 2 rank((A B)) > k. In
particular, if G is a complex orthogonal design, then there exists a complex orthogonal design

G with the same parameters, p,n,k, as G such that its corresponding matrices A; and By

have the forms in (9).

The proof of this proposition is put in Appendix.

In the proof of the main theorem in next section, we need the following rank inequalities.

1. (Sylvester’s inequality) Let A be a k X p matrix and B be a p X n matrix. Then
rank(A) + rank(B) — p < rank(AB).

2. Let A be a k x p matrix and B be a p X n matrix. Then

rank(AB) < min{rank(A), rank(B)}.



3. Let A, B be two n X m matrices and E be an m x m positive definite matrix. If
A"A+ BEB = E, then
rank(A) + rank(B) > m.

The above rank inequalities 1 and 2 are fundamental and can be found in linear algebra

books, e.g., see [24]. Rank inequality 3 can be obtained from

rank(A) + rank(B) = rank(A"” A) + rank(B” B) > rank(A” A + B B) = m.

3 Upper Bounds of Rates for Three or More Antennas

In this section, we present several upper bounds of the rates for both complex orthogonal

designs and generalized complex orthogonal designs.

Theorem 1 Let G = G(x1,%9, -, k) be a generalized complex orthogonal design of size

p x n. If n > 3, then, its rate is upper bounded by 4/5, i.e.,

R="<

(SN TN

. (10)

D |

If G is a complex orthogonal design and n > 3, then its rate is upper bounded by 3/4, i.e.,

R =

>~ w

. (11)

= |

<

Proof: We first want to prove the first part of this theorem. Let G = (A;x+ Bix* Ayx+

Box* -+ Apx+ B,x*). By Proposition 2, we can assume that A; and B; have the following

forms:
D, 0 Ogxs 0
_ 0 Ik—s _ O(k—s)xs 0
Adi=1 g » B = D, 0|’
0 0 0 0

where Dy = diag(Ay, -+, As), D, = diag(ps, -+, ps), Ix—s is the identity matrix of size k — s,
and 1 > A\, > p; > 0,4,5 = 1,---,s, and {(A41 By),(As By), -+, (An Byn)} is a Hurwitz
family with A% A, + Bi!B; = I.
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Divide p x k matrices A; and B; into block matrices as follows:

A Ap Bii By

_ | A Au ~_ | Bis Bu
A= Ais Aig |7 bi= Bis Bis |’

Air Asg Biz Bis

where A;; and B;; are s X s matrices, A;3 and B;3 are (k — s) X s matrices, A;5 and B;s are
s X s matrices, A;; and B;; are (p — k — s) X s matrices, A;» and B;y are s X (k — s) matrices,
Ay and By are (k — s) x (k — s) matrices, A;s and Bjg are s X (k — s) matrices, and A;g and
Bis are (p — k — s) x (k — s) matrices.

Since A¥ A; + B!B; =0 for 1 > 1, we have

An Ap 0 0

(DA 0 00) Az Ay +(Bf1 B!, Bk B;?7) 001 _,
0 Iy, 00 Ais A B!, B!, Bl B D, 0
Air Aig 0 0

This matrix equation implies

Aip=0,414=0, i=2,--- ,n.

From the skew-symmetry of Bf A;, we obtain A;s =0 for i =2,--- ,n.
Define {(As Bs), (A3 Bs),- -, (A, Bn)} as follows:
0 By
0 B;y
0 Bis |’
AZS BiS

ie., A; and B are the second columns of the block matrices in A4; and B;, respectively.
Since A A; + BIB} = 6;;E; for i,j > 2, we have

A 0 Bj, B}

( Ag Ag Ag A% ) Aj3 0 + < B;1 B;‘?» B;'S B§7 ) st B;L
0 0 0 Az’8 Aj5 0 B;Q B§4 B;fs B]t-8 B, Bj
Ajr Ajs B} Bj

= 0;; Ei,

where F; are positive definite. By noting that the second row and the second column in the

above products, we obtain

AR A; + BB = 6,F;, 4,5 > 2, (12)



where E; are the (k — s) x (k — s) matrix taken from the last £ — s rows and the last
k — s columns of E;, and therefore, E; are also positive definite. By similarly showing other
conditions, {(As Bs),- -, (A, B,)} is also a Hurwitz family of size (k — s) X p matrices.

By the rank inequality 3 in the end of Section 2, (12) implies

A

rank(A;s) + rank(B;) > k—s, i =2,---,n. (13)

Since n > 3, there exist a pair ¢ and j with ¢ #% j > 2. When ¢ # 7 > 2, we have

A~

Al'A; + BtBf = 0, that is, ALA;s + B!Bf =0, which implies
rank(B;) + rank(B;) — p < rank (B;E:) =rank (A Ai) <p—k—s, (14)

where the first inequality is due to Sylvester’s inequality and the row size of B; and éj is p,
and the last inequality is because A;s and Ajg are all of size (p — k — s) x (k — s) and the
rank inequality 2 in the end of Section 2. Hence, from (14) and (13), rank(A;3) <p—Fk—s

and rank(A;z) < p—k — s, we have

p—k—s > rank(B;) 4 rank(B;) —p

v

k — s —rank(A;s) + k — s —rank(A;s) — p

AV

k—s—(p—k—s)+k—s—(p—k—s)—p=4k — 3p,
which implies
dp — bk > s > 0.

Therefore, the first half of the theorem is proved.
We next want to show the second half of the theorem and assume that G is a complex
orthogonal design. All the above derivations still hold for G and are adopted in the following

proof. Since G is a complex orthogonal design, by Proposition 2,

{(A2 By), (A3 B3),- -+, (An Bn)}

satisfies (3) in Proposition 1 with E; = I. Therefore, it is not hard to see that

~ A ~ A

{(4; By), (A3 Bs),--- , (A, B,)}

12



also satisfies (3) in Proposition 1 with E; = I.
Consider matrix Asg in Ay, which has size (p — k — s) x (k — s). There exist a (p — k —

s) X (p — k — s) unitary matrix U and a (k — s) x (k — s) unitary matrix R such that

0 0
UA%R_(Dﬂ 0)’

where Dg = diag(f, B2, - - - , Br), 7 is the rank of the matrix Ags and §; > 0,1 =1,2,---,r,

are the positive square roots of the eigenvalues of AygALL. Clearly,

r<p—k-—s. (15)
Using these unitary matrices U and R, we rewrite the matrix pairs { (A Bs), -, (4, Bn)}
as follows.
I 0 . . . . . . .
Let P = 0o U ) where [ is the identity matrix of size k+s. Then P is a p X p unitary

matrix and {(PA;R PByR*),---,(PA,R PB,R*)} also satisfies (3) in Proposition 1 with
E; = I. Furthermore, {PAQR, PByR*, PA;R, PB3R*} can be written as follows

0 0 By; B 0 0 By, Bs
0 0 Byy By 0 0 By, By
0 0 [, Bss B |,| 0 0 |[,| By By : (16)
0 0 Bygi Bogs Asgi 4382 Big1  Bago
Ds 0 Bygs  Bags Asss  Asss BSSS Bsss

where the sizes of Bjy, Bis, Bjg are s X, (k—s) x r, s X, respectively, the sizes of Bjy, Bis, Big
are s X (k—s—1), (k—s)x (k—s—r),sx (k—s—r), respectively, the sizes of Byg1, Assy, Bas:
are (p — k — s — 1) x r, the sizes of Bygs, Asgs, Bsgs are r X r, the sizes of Bagy, Aggy, Bsgy are
(p—k—s—r1)x (k—s—r), and the sizes of Bogs, Asgs, Bsgs are 7 x (k — s — 7).

We next want to show that Bygy = 0 and Bsgy = 0. From (3) in Proposition 1, the matrix

(PAyR)" (PB,R*) is skew-symmetry, i.e.,

Bi22 ?22
0000 Dg Bat Ba
0000 O By B
Bi281 Bi282
B283 3284

is skew-symmetry, which implies DgBygy = 0, therefore, By, = 0 because Dj is invertible.

Similarly, the matrix (PA,R)" (PB;R*) is also skew-symmetry, which implies Bsgs = 0.

13



Again by (3) in Proposition 1, we have

(PAR)"(PA3R) + (PB3R*){(PB,R*)* = 0,

i.e.,
0 0 By, B,
0 0 ~ ~ ~ ~ ~ B; B:
0000 Dﬂ 0 0 + 1?52 @54 @?t,ﬁ 1?581 B:tss3 B?f B?f
00 0O0 O B§2 B§4 B§6 B§82 0 26 26

1‘1381 %382 E
Azgz  Asgs Bl 0

From the second row and the second column, the above equation implies
BiB; =0, (17)

where B; = (B., B!, Bl Bl,)! for i = 2,3. By Sylvester’s inequality, and noting that the

size of matrices By and B is (p —7) x (k — s —r), (17) implies
rank(B,) + rank(B;) < p — 7. (18)

We next want to determine the ranks of B, and B;.

Because (PA;R)¥(PAyR) + (PByR*) (PByR*)* = I, we have

0 O Bs, @52
0 0 = Bt Bt R 5 B;, Bj
( 0000 Dg ) 0 0 ( 5%2 5%4 5%6 @%81 B§83 ) sz;l Bz:; =7

Therefore, by noting that the second row and the second column, we have BLB; = I, hence,
rank(By) =k — s — 1. (19)

For the rank of Bs, we first use the fact that (PAsR)”(PAsR) + (PBsR*)'(PBsR*)* = I
and we then use the forms of PAsR and PBsR* in (16) and expand the summation. We

then conclude that A%QA{;SQ + A§4A384 + B§B§ = I. Finally, from the rank inequality 3 in

the end of Section 2, we have
rank(B;3) > k —s—1 — 1y, (20)

14



where 7, is the rank of matrix (ALg, Alg,)! that has p—k — s rows from (16). Thus, we also

have
rm<p—k-—s. (21)
Combining formulas (15) and (18)-(21), we have
2k—p<2s+r+r<2s+(p—-k—-s)+(p—k—s)=2p—2k,

ie.,

SIS
IA
NS

This proves Theorem 1. q.e.d.
From the above proof, one can see that the difference between the above upper bounds
we obtained on the rates of complex orthogonal designs and generalized orthogonal designs

comes from whether the property
ARB, + BtAr =0 (22)

holds. It holds for the complex orthogonal designs due to the orthonormality but may not
hold for generalized complex orthogonal designs.

As another application of Proposition 2, we have another upper bound for the rates of
a complex orthogonal space-time block code, which sharpens the result in Theorem 1 if an
additional condition is satisfied. Let G = (A;x + Bix* --- A,x + B,x*) be a generalized

complex orthogonal design. Define

1=

~max rank((4; B;)). (23)

1=1,2,~-,n

p

Theorem 2 Let G = (A1x + Bix* Ayx + Box*--- A,x + B,x*) be a generalized complez
orthogonal design. If p = p and n > 2, then the rate of G is upper bounded by n/(2n — 2),

1.€.,
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Proof: If 2k < p, then, the above theorem is proved. So, in what follows, we assume
2k > p. Without loss of generality, we assume rank((A; B;)) = p. By Proposition 2, we

may assume A; and B; have the following forms:

D)\ 0 Os><s 0
A= 0 Ip_s ’ B, = O(k—s)xs 0 )
0 0 D, 0

where s =p — k, Dy =diag (A1, -+, As), D, = diag (u1,- -+, tts), I—s is the identity matrix
of size k —s,and 1 > X\; > p; >0,4,j=1,---,s,and {(A; By),(As Bs),---,(An By)}is a
Hurwitz family.

Divide matrices A; and B; into block matrices as follows:

Ain A Bi1 Bi
A= Ais Au |, Bi=| Bis Bu |,
Ais A Bis B

where the sizes of A;; and B;; are s X s, the sizes of A;3 and B3 are (k — s) x s, and the
sizes of the rest submatrices can be determined accordingly. By the properties of a Hurwitz
family in Definition 1, we have A¥ A; + B!B; = 0 for 7 > 1, that is,
Dy 0 0 [ e B, Bl B. 00
o 10)| M 4|+, B B 0 0 =0
Ai5 Ai6 ©2 24 6 D“ 0
which implies A;p = A,y = 0 for ¢ > 1. Similarly, A, = 0 can been obtained from the

skew-symmetry of AZB.

Define
A 0 A By
Ai=1 0], Bi=| Bu
0 B;g

Then, by the same method used in the proof of Theorem 1, {(As By), - , (4, B,)} is also
a Hurwitz family.
By applying the properties of a Hurwitz family, it is not hard to verify that the (n —

1)(k — s) column vectors of the following matrix

B22 B32 e Bn2
By B3y -+ Bpy
B26 B36 e BnG
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are linearly independent in C?. Therefore, by noticing s = p — k, we have

(n=1k—-s) =@m-1)Fk=(-k)<p,

which establishes the theorem. q.e.d.
It is not hard to check that the rate 3/4 complex orthogonal space-time block codes in
(3, 4, 5, 6] for 3 and 4 transmit antennas do not satisfy the condition in Theorem 2 and

therefore, the upper bound in Theorem 2 does not apply to them.

4 Restricted (Generalized) Complex Orthogonal De-
signs

In the previous sections, we consider the conventional (generalized) complex orthogonal
designs in the sense that all the variables in the designs may take any values on the complex
plane. In this section, we consider restricted (generalized) complex orthogonal designs where
the variables only take values from subsets of the complex plane. To do so, we first introduce
some necessary notations and concepts.

Let A be a subset (finite or infinite) of the complex plane, which is called alphabet set.
The difference set of A, denoted AA, is defined by

AAE {z1 — 2o | for any 21,20 € A}. (24)

Note that for any alphabet set A, we have 0 € AA.
For an alphabet set A, it is called admissible if it contains at least three distinct points
such that they are not collinear, i.e., not lie on a straight line on the complex plane, or more

precisely, there exist z; = p; +jg; € A, j = 1,2, 3, such that

P1—P2 q1—Qq
det 0, 25
(pl—p3 Ql—Q3>7é (25)

where j = v/—1. We next want to see the admissibility condition (25) on the difference set

AA. Tt is clear that condition (25) is equivalent to anyone of the following :

det(pQ_pl (]2—(11)#0’ det(m—pl Q3—Q1>#0' (26)
D2 —P3 Q2 — g3 P3 — P2 Q43 — Q3
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Let 21 = 21 — 29, %2 = 29 — 23,23 = 23 — 21. Then x; € AA, furthermore, condition (25) can

be rewritten as

Re(z;)  Im(z)
det ( —Re(z3) —Im(z3) ) 70, (27)

where Re(z) and Im(z) are the real and image parts of z, respectively. By some simple

calculations, we may find that condition (27) or (25) is equivalent to

T T}
det < o 2t ) £ 0. (28)
Similarly, (26) is equivalent to, respectively,
T ] T3 T3
det < . ) #0, det ( T ot ) # 0. (29)

In summary, an alphabet set A is admissible if and only if there exist at least three points
{1,292, 23} in AA such that condition (28) or anyone of the two in (29) holds. As a remark,
a constellation set M-PSK (M > 2) or M-QAM (M > 2) is admissible.

We next give the definition of a restricted generalized complex orthogonal design. Let
G=(A1z+ Biz" --- A,z + B,z")

be a p X n matrix, where z = (21,2, -+ ,2)" € C*, and A;,B;, i = 1,--+,n, are p X k

complex constant matrices.

Definition 2 Let A, Ay, --- , Ay be k complex point sets. {G; A1, A, --- , Ax} is called a
restricted orthogonal space-time design if for any z = (21,29, -+ , 2zk)" € (A1 X A X - - - X Ay,

the following orthogonality holds:

G"G = (Aiz+Biz" - Apz+ B,z")"(Aiz + Biz* - - - Ayz + Byz¥)

= |21|°Dy + |22|* Do + - - - + |2zk|* Dy, (30)
where D;, 1 =1,2,---  k, are some n X n diagonal positive definite constant matrices.

For a restricted generalized complex orthogonal design, we have the following theorem.
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Theorem 3 Let {G; Ay, As,--- , A} be a restricted generalized complex orthogonal design.

If for each i with 1 < i < k, the following conditions hold for alphabet set A;:
(i) A; is admissible, i.e., A; does not contain only collinear points;
(ii) There exists z = p + qj € A; with pq # 0 such that z # z* and z* € A;;

(tit) There exist z; = p; + ¢;j € Ai, 1 =1,2,3, such that

2 2 2 2
bi—PpP2 41 — 43
det 0, 31

(p?m%ﬁ—ﬁ)% (31)

then G is also a generalized complex orthogonal design.

Proof. By Proposition 1, it is enough to prove that under the conditions of this theorem,

the following matrix equations hold:

Al'A; + B!B; = 6;;E;, 1,j=1,2,--- ,n, (32)

AlB;+ BiA; =0, i,j=1,2,---,n, (33)

where F; are positive definite diagonal matrices, which can be proved by using Lemma 8
similar to the proof of Proposition 1 by using Lemma 1. We omit the details. q.e.d.

This result can be thought of a generalization of the results in [12, 13] in the sense that
the size of an orthogonal design is not necessarily square, i.e., p does not have to be equal to
n, and it is in the complex field instead of the real field, and the orthonormality is generalized
to the orthogonality. One can see that PSK constellations do not satisfy the condition (iii)
in the above theorem. However, it is not difficult to check that, the commonly used QAM
signal constellations of sizes above 4 located on a square lattice satisfy the conditions (i)-(iii)

in the above theorem. Therefore, we have the following corollary.

Corollary 1 A restricted generalized complex orthogonal design with its variables restricted
to QAM constellations of sizes above 4 on square lattices is also a generalized complexr or-

thogonal design and therefore, the upper bounds on its rate in Section 3 hold.
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The fact that PSK constellations do not satisfy the condition (iii) in Theorem 3 shows
that that the admissibility (25) does not imply the condition (iii) in Theorem 3. On the
other hand, by considering points on a straight line (it is neither the x-axis nor the y-axis),
the condition (iii) in Theorem 3 may hold. This shows that the condition (iii) in Theorem 3

does not imply the admissibility (25) in general.

5 Conclusion

In this paper, we have shown that the rates of complex orthogonal space-time block codes
for three or more transmit antennas are upper bounded by 3/4 and the rates of generalized
complex orthogonal space-time codes for three or more transmit antennas are upper bounded
by 4/5. We have presented another sharper upper bound for the rates under a certain
condition. Notice that the maximal rate of real orthogonal space-time codes is 1 for any
number transmit antennas, which is achievable using the Hurwitz-Radon constructive proof.
For complex orthogonal space-time block codes or generalized complex orthogonal space-time
block codes, the maximal rate 1 is reached only for two transmit antennas. For generalized
complex space-time block codes, rate 7/11 and 3/5 generalized complex orthogonal designs
for n = 5 and n = 6 have been constructed in [9], which are 9/55 and 1/5 away from
the upper bound 4/5 we derived for generalized complex orthogonal space-time block codes
in this paper, respectively. For complex orthogonal space-time codes, rate 2/3 complex
orthogonal design for n = 5 has been constructed in [11], which is 1/12 away from the upper
bound 3/4. For a general n, we conjecture that the upper bound 3/4 of the rate of complex

orthogonal designs can be sharpened as
[31+1

ST

[\l

which can be achieved for n = 1,2, 3,4, 5.

As a remark, the upper bound of the rates, R < 3/4 when n > 2, was proved in
[10] for a special family of complex orthogonal space-time block codes from the complex
orthogonal designs G where the entries of G do not consist of any linear processing of x; and
x;,%=1,2,---,k, and can only be 0 or single variables £x; or £x}, ¢ = 1,2,--- ,k, and
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these variables do not repeat in any column of G. The method used in [10] was based more
on a combinatorial argument that is different from what was used in this paper.

In the last part of this paper, we have considered the restricted generalized complex
orthogonal designs by restricting the variables to subsets of the complex plane. We have ob-
tained a condition on the alphabet sets such that a restricted generalized complex orthogonal
design is a generalized complex orthogonal design. The commonly used QAM constellations
of size above 4 on square lattices do satisfy the condition. Thus, the upper bounds on the
rates presented in this paper also apply to restricted generalized complex orthogonal designs
for commonly used QAM signal constellations of sizes above 4. This result can be thought
of as a generalization of the results in [12, 13] from square real orthogonal designs to (not

necessary square) generalized complex orthogonal designs.
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Appendix

The following Lemma 1 is from [8]. For the completeness, its proof in [8] is given below.

Lemma 1 Let A, B and C' be three m X m complex constant matrices. If for any x € C™,
x"? Ax + x" Bx* + x'Cx = 0,

then
A=B+B'=C+C'=0.

21



Proof: Let A = A; + jA,, (B + B')/2 = By + jBy and (C + C*")/2 = C + jCy, where
A;, B;, C; are all m x m real matrices, ¢ = 1, 2. It is obvious that By, By, (', Cy are symmetric

matrices. Rewrite the condition as follows

1
x7 Ax + x" Bx* + x'Cx = x¥ Ax + %(XH(B + B")x*) + E(Xt(C' + C"x)

= XH(A1 +jA2)X + XH(Bl +JB2)X* + Xt(Cl +JCQ)X =0 (34)

for all x € C™.

First consider the case when x = a € R™. From (34), we have
a'(Ay +jAs)a+a' (B + jBy)a+a'(Cy + jCh)a =0,
for all a € R™. Hence, by equating the real and imaginary parts on the two sides,
a'(A; + B, + C1)a=0,
a'(Ay + By + Cy)a = 0.
Then, consider the case when x = ja with a € R™ in (34):
a'(—=A;+ B, + Cy)a=0,
a'(—Ay + By + Cy)a = 0.
From the above four equalities, we have
a'Aja = a'Aya=a'(B; + C))a = a'(B, + Cy)a =0

for all a € R™. Therefore the matrices A;, Ay, By + C1, By + Cy are skew-symmetric. But

By, By and Cy, (5 are symmetric, we obtain
A1 == _Ai,AQ - —Ag,Bl == —Cl, B2 == _02.

Finally, using the relationships obtained above with x = a + jb, where a,b € R™, (34)

becomes

x? Ax + x¥ Bx* + x'Cx = 2a' (2B, — A;)b + 2ja‘(4; — 2B;)b =0,
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which gives
a'(2By — A))b=10, a’(A; —2B;)b=0.
Because a and b are arbitrary, we have A; = 2B; and Ay = 2B,. Since A;, Ay are skew-
symmetric and By, B, are symmetric, we conclude A; = Ay = B; = By = 0. Therefore,
C1 = Cy = 0. This proves the lemma. q.e.d.
In the following, we want to prove Proposition 2. To do so, we need several lemmas.

First we have two direct consequences from Proposition 1.

Lemma 2 Let G = (A1x + Bix* Asx + Box* --- Ay,x + B,x*) be a generalized complez

orthogonal design. Then, for any x,y € C¥,
[Aix + Biy|* + |Bix + Ay |* = x" Exx + y" Ejy,

||2 —

where || - ||?> = (-,-), and {,) denotes the inner product (x,y) = x"y in C*, and E; are from

(3)-
Proof: It is directly from Proposition 1 when j = i. q.e.d.

Lemma 3 Let

G = (A1x + Bix* Aox + Box* - -+ Apx + Bpx*)

be a generalized complex orthogonal design. Then, G can be reduced to a new generalized

complez orthogonal design G with the same parameters p,k,n as in G as follows:
G = (Aiy + Biy" Ay + Boy" -+ Ay + By”)
with AH A, 4+ BtB: = I, that is, Ey = I in (3) for A, and By, where y = (y1 y2---ys)*.

Proof: By Proposition 1, E; is diagonal positive definite. Let U = \/l? and then
U is also diagonal positive definite. Make the transformation x = Uy and let A; = A;U,
B; = B,U and E; = UE,U, then A; and B; satisfy (3) and E; are all diagonal positive
definite. Furthermore, A7 A, + BB = UF,U = I. q.e.d.
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Going back to Proposition 2, one can see that it has a similar form as a classical singular
value decomposition (SVD) for the matrix (A; B;) but the Hurwitz family properties need
to be maintained during the unitary transformations. Thus, the basic idea in the following
to prove Proposition 2 is similar to the SVD by carefully selecting the unitary transforms.

To do so, we have other two lemmas.

Lemma 4 Let A and B be two p x k matrices and satisfy conditions: A#A + B'B* = 1,
and A"B and B" A are skew-symmetric. Let M =maz{||Ax + By|*: ||| + |ly||* = 1}.
Then,

(i) 1 > M > 1/2 and there is a vector u = (u} u}) € C* with ||u|]| = 1 such that
M = ||All1 -+ B'll2||2,'

(i1) If M > 1/2, then, vectors u; and u} in (i) are orthogonal, i.e., (u;,u}) = 0;
(iii) If M =1/2, then, A"A = BHB = 11, and A" B = 0.

Proof: Under the condition of this lemma and using Lemma 2, it is clear that if ||x||* +
ly|I* =1, then
IAx + By|? + |B*x + A"y|]* = 1. (35)

By noting that ||B*x + A*y||? = ||Bx* + Ay*||* and that the unit ball ||x||? + ||ly]|*> =1 in a
finite dimensional space is compact, (i) is not hard to see.
We next want to prove (ii). Let C = (A B) be the p x 2k matrix and consider the

Hermitian matrix C¥C'. Obviously, for any a vector ( § ) € C%*,

o ymete (3 ) = lax+ Byl
Because C7C is a Hermitian matrix, by Rayleigh-Ritz theorem ([24], p.176), M is equal

to the maximum eigenvalue of C#C. Tt is easy to check that for any u as in (7), u is an

eigenvector of M. Therefore, we have C¥ Cu = Mu, that is,
(A" +ul’B")A = Muf, (36)
(A" +ulBTYB = Mul. (37)
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We take the inner products of (36) and (37) with u} and uj, respectively, and sum these
inner products up at both sides of equations (36) and (37). By doing so and noting the

previous footnote 1 on a skew-symmetric matrix, we then obtain
(2M — 1)uf'u} = 0.

Thus, ufuj = 0. Thus, we have proved (ii).
If M =1/2, by (35) we know that the minimum of ||Ax + By||* on the unit ball is 1/2.

Hence, ||Ax + By||> = } for any unit vector (x* y*), which is equivalent to

(3) e (3)-

for any unit vector (x' y'), i.e., C*C = 1. Therefore, (iii) is proved. g.e.d.

Lemma 5 Let V be a subspace of C** with dim(V) = 2s, and ( m ) and ( Zz ) be

Lb D)) 1
two orthonormal vectors in V, where u;,uy € C*. Then, there exist s — 1 unit vectors

Ay ag Ag .
<b2 ),<b3 ),---,(bs ) 'V such that
{ u u; as b; as b3 o a, b }
u, J'\ui J’\ by J’\ a5 /J'\ bg J'\ a3 )’ "\ by )7\ al

forms an orthonormal basis of V.

Proof: First of all, it is easy to check that vectors ( zl ) and < zi ) are orthogonal
2 1

if and only if vive = viv; = 0.

We then use induction on s to prove the proposition. If s = 1, it is trivial. Assume that

s = s1 < k, the proposition is true. Let s = s; + 1. Let

_ u u; as 5 a,, b},
vt ) () (6 ) (i) () (e )

and U; = Vi, the orthogonal complementary space of V; in V. Then, dim(U;) = 25 —2s; =
2.

Take two linear independent vectors ( ;l ) and ( ?2 ) in U;. We want to construct
1 2

vectors ( ;O > and io in U; such that they are orthogonal.
0 0
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If x{y; =0, let xg = x1,y0 = y1; if xbys = 0, let xg = Xa,y0 = yo. If x{y; # 0 and

xbys # 0, we take a constant ¢ as one of the solutions of the following quadratic equation

xty1 + (xby1 + xbys)e + xby, =0

()= ()= ()

) € U; and xlyo = 0. By the argument in the beginning of the proof, vec-

and let

Then, 0 # < X0

Yo

*
tors ( ?0 ) , and ( ig > are orthogonal. Since they are in the orthogonal complementary
0 0

space of Vi, they are orthogonal to all vectors

u u; ay b; as b\ [ as b5,
ug’uj"bQ’a§’b3’a§"bsl’azl'

By normalizing vectors ( ;0 ) and ( 2’(2 ) , and use the induction, we have proved the
0 0
lemma. q.e.d.
The following lemma plays the key role in the proof of Proposition 2 and can be also

thought of as an independent result in linear algebra on special SVD forms of special matrices.

Lemma 6 Let A and B be two p x k matrices and satisfy conditions: APA+B!B* = I, and
A" B and BY A are skew-symmetric. Then, there exist a unitary matriz V of size p X p and

a unitary matriz U of size 2k x 2k such that the p x 2k matriz (A B) can be diagonalized as

follows
D, 0 0 O
oA 0 Ir.s 0 0
vaBU=s2| o D, 0 : (38)
0 0 0 O

pX2k
where k — s > 2k —p, Dy = diag(\1, Ao, -+, As), D, = diag(pa, o, - -+, ps) and N2+ p? =1,
1>XN>41/2>p; >0,4,5 =1,2,---,s, k+s = Kk, and kK = rank(A B) > k, and

furthermore the 2k x 2k unitary matriz U has the following form

(W W
U= W) %)

where W;, 1 = 1,2, are k x k matrices.
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Note that the speciality of the above SVD of matrix (A B) comes from the special form
of U in (39) that may not hold for a SVD of a general matrix.
Proof. First of all, let us prove that x = rank((A B)) > k. The conditions A”A +

B!B* = I, and A” B and B¥ A are skew-symmetric are equivalent to

A B\'( A B

where Iy is the 2k x 2k identity matrix. Thus,

A B
rank((B* e )>:2k,

which implies rank((A B))-+rank((B A)*) > 2k. Since the rank of (A B) is the same as that
of (B A)*, we have k = rank((A B)) > k. As a consequence, we have p > k > k, which
coincides with the result that the rate R < 1 obtained in [2, 3].

We next want to prove the diagonalization form of (A B) in (38) by using the induction
method on k.

At first, we consider the case when k = 1. Since AYB is skew-symmetric, A¥YB =
—(A" B)! but A”B is a scalar number. Thus, A" B = 0, i.e., p x 1 vectors A and B are
orthogonal each other.

If none of A and B is zero, then, ||A|| > 0 and ||B|| > 0. Moreover, by the con-
dition, ||A]|?> + ||B||*> = 1. Without loss of generality, we assume ||A|| > ||B||. Thus,
1> Al > \/1/72 > ||B|| > 0. Let v;, i« = 3,---,p, be p X 1 unit vectors such that

V = (A/||A]| B/||B|| v3 -+ vp) is a p X p unitary matrix. In this case,

A O

0
V(A B) = 0 O ’

0 0

where \; = ||A|| and py = ||B]|, 1 > A\ > +/1/2 > p; > 0 and A2 + p? = 1. In other words,
(38) with U = I is proved.
If one of A and B is zero, without loss of generality, say B = 0, then, ||A|| = 1 because

APA + B'B* =1. Welet vi = A and v;, 4 = 2,---,p, be p x 1 unit vectors such that
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V = (vy vo --- v,)" is a p X p unitary matrix. Then,

10
0 0

which has the form (38) with U = 1.

Since AZA + B'B* = I, A and B can not be both 0. Therefore, (38) is proved for the
case when k£ = 1.

Assume that, for all matrices A and B of column sizes less than k and satisfying the
conditions in the lemma, the decomposition (38) holds. We next want to show that, for
matrices A and B of column size k£ and satisfying the conditions in the lemma, (38) still
holds.

To do so, let B be the unit ball in C?*. Let M = max{||Ax+ By||?: (x' y') € B}. Then,
by Lemma 4 (i), we have 1 < M < 1.

Case 1: M = %

In this case, by Lemma 4 (iii), A”A = B¥B = 1I and A B = 0. We claim p > 2k.
In fact, if p < 2k, then the equation B*x + A*y = 0 has at least a non-trivial solution
for x and y. Let B*xq + A*yo = 0 and ||xo||* + ||yo]|* = 1. Then, by the relation (35),
|Ax + Byyq||* = 1. This implies M = 1, which contradicts with the assumption M = 1/2.

Since A¥A = B¥B = I and A¥B =0, it is possible to select a p x (p — 2k) matrix C
such that V = (\/§A V2B, C)¥ is a unitary matrix. Then,

V2AH V2AR A \2AHB oI 0
V(AB)=| v2BY |(AB)=| v2B#A 2BEB | = 0 %I |,
cH CHA CHiB 0 0

which corresponds to (38) with s = k, Dy = D, = %I, and U = Iy,. Therefore, in this

case, the lemma is proved.
Case 2: M > .
Let (u} u}) € B such that ||[Au; + Buy||?> = M. Since u; and u} are orthogonal from

*

Lemma 4 (ii), vectors ( 31 ) and ( Ei > are orthogonal too. Thus, by Lemma 5, there
2 1
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exist vectors

such that
N u; u; ap; b} a; bj
U * * *
u, uj by aj --- by a;

is a 2k x 2k unitary matrix.
We now divide this case into two subcases to select the unitary matrix V.

Subcase 1: % < M < 1. In this case, let M; = M and

1 1
——(Au; + Buy), vy = ———
varAwmt Bug), Ve = e

It is not hard to see that v; and v, are orthogonal to each other because utu, = 0. Then,

(Auj + Buj).

V] =

there exist p — 2 vectors v, -+, v, such that V; 2 (vi va vz --- v,)f is a p x p unitary

matrix. Therefore,

(4 B:) 2 vi(a B,
) ( Au; 4+ Bu, Auj+ Buj --- Aay+ Bb, Abj + Baj )
Vi
H
== ? (\/MV1 \/1—MV2 Aa2+Bb2 Ab,";—l—Ba,’;)
ﬁ
VM 0 vi'(Aay + Bby) --- v{(Ab} + Baj)
= 0 +1-—M vi(Aay+ Bby) --- vIH(Ab; + Baj)
0 0 T
where T is a (p — 2) x (2k — 2) matrix. Let

zZ, =

vi(Ab} + Baj) vi( Ab* + Bay)

(2k—2)x 1

V{{(Aaz + Bbg) ( Aa2 + Bbg)
: ) Zy =
(2k—2)x1

and consider the unit vector

1 vM
)1/2 O ,
Yl

&= (M—i-z{{zl
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then
2

~ 2 ~ 2 ~ A
| Bing| =@ pitg| = A B
1
- (7M " ZHZ1) [(M+zfz1)2 + ||Tz1||2} > M + 2z,
1

where ||U:&|| = ||&]] = 1, ie., U1€ € B. Since M is the maximal value of ||(4 B)x|| for

x € B, we conclude that z; = 0, that is,
vi'(Aa; + Bb;) =0, v{(Ab}+ Baj)=0, 2<i<k.
Since

V1 — Mv¥(Aa; + Bb;) = (Au} + Bu})¥(Aa; + Bb;)
= ubA” Aa; + u! BY Aa; + ulA” Bb; 4+ v, B” Bb;
= uba; +ulb; —ulB'B*a; — ulA'A*b; — v\ A’'B*a; — u,B'A*b;
= —(Au; + Buy)'(Ab} + Ba})* = vV M (v{ (Ab} + Ba}))",
and v{’(Ab} + Ba}) = 0, we have
v&(Aa; + Bb;) =0, 2<i<k,

and similarly,

In other words, we have zo = 0. Therefore,

o vM 0 0
(Al Bl) = 0 vV 1-M 0
0 0 T

Due to the particular form of Ul, there is a permutation matrix P such that

ul a2 PR ak u; b; e b;;
u2 b2 PR bk u; a; e a;:; .

U,P = (
Let Uy = U P. Then, it has the form in (39). Furthermore,

vM 0 vM 0 0 0
Vi(A B)U; = 0 V1-M 0 | P= 0 0 vV1—-M 0
0 0 T 0 A 0 B,
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where

vs' vs'
' ay, --- a . b5 --- bl
Ai=| : | (4B) , Bi=| : [(AB){ . h
. by --- by . ab --- a}

VP VP

are (p — 2) x (k — 1) matrices.
We next want to show A A, + BiB} = I, and AEB, and Bf A, are skew-symmetric,
i.e., A and B; have the properties as A and B do, while their column sizes are k£ — 1. Note

that

H

)H = I—Vlvf — VoV, ,

(V3 Vp)(V3 SV

and z; = 0, and z; = 0, we have

A A, + B'B:

a a H V3 a a
. e ay . . e ay
- () anrmee | e ()
V
p
b be \ 7 Vs b b
2 k t * . * * 2 k
(o o) @nreap | faem ()
Vv
p
H
_ (gz 5 gz) (AB)H(I_vlvf_VQVg)(AB)<gz B gz)
b2 bk # t . H H\x * * b2 bk
+<a2 ak) (A B)"(I —vyivy —vavy )" (A" BY) a oo ay
H
a . s e a a e o o a
= (bz b’;) (AB)H(AB)<bz bz)
H
as -+ ay 0 I Loax 0 1 as --- a
+<b2 bk) (1 0>(AB)(A B)(I 0)(1)2 bk>

where the third equation is from (41), (42), and (43). Similarly, we have A¥B; + Bt AT =0
and BF A, + A B} =0, that is, A¥ B, and B A, are skew-symmetric.
By using the induction assumption to A; and B of size (p —2) x (k — 1), they have the

decomposition (38) with & replaced by k — 1, i.e., there exist a (p — 2) X (p — 2) unitary
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matrix V2 and a 2(k — 1) x 2(k — 1) unitary matrix U, of the form in (39) such that

D, 0 0 0
Iy

0 1— 0 0
Va(A, B)Uy = g : 45
2(A1 B 0 0 D, 0 (45)
0 0 0 0
where D) = diag(A2, -, As41), D, = diag(po, -+, fs,41), 1 > A > 4/1/2 > p; > 0, and
M+p2=1,2<i,j<s +1. Let
1 0 0 O
1 0 0
U2:<U?3 U??>, Vi={ 01 0], and uy=| 0 B 0 2]
Us, U 00 v, 00 1 0

0 U 0 Uy

where V3 and Us are clearly p X p and 2k x 2k unitary matrices, respectively, and Us also

has the form in (39). Furthermore, by using (44) and some calculations, it is not hard to see

vM 0 0 0 0 0
0 0 0 vi—-M 0 0
0 D 0 0 0 0
ViVi(A BYU\U; = %, 2 . 16
3Vi( YU, Us 1 0 A 0 0 0 (46)
0 0 0 0 D, 0
0 0 0 0 0 0
Let P, be a row permutation that moves the second row of ¥; in (46) to the (k + 1)th row,

then P1V3Vi(A B)U,Us has the form in (38) with s = s; + 1 and 1 > )\, = VM > /1/2
and 1/1/2 > 1 = v/1— M > 0 and the rest are the same as in (45). It is easy to check that
the form of any product of matrices of the form in (39) remains. If we let V = P,V3V; and
U = U,Us, then (38) is achieved for A and B of column size k.

Subcase 2: M = 1. In this case, vy is chosen as above, i.e.,

1
V] = \/—M(Aul + Bllg).
Take vectors vo, - -+, v, such that Vi = (v vo --- v,)¥ is a p X p unitary matrix.

As in Subcase 1 and use the same U; as in Subcase 1, we obtain

V1(AB)01:<\/57 8 2),

where T" has size (p — 1) x (2k —2). Similar to (44) and use the same U; as in Subcase 1, we

have

Vi(A B)U; = ( \/5‘7 Lo B ) (47)
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where

vy vy
vi vi b ... b
a= T an (e s (00

are (p — 1) x (k — 1) matrices. Similar to the proof in Subcase 1, it can also be shown that
AfA + BB} =1, and A¥ B, and B A, are skew-symmetric, i.e., matrices A; and B; have
the same properties as A and B do but of column sizes k — 1.

By using the induction assumption to A; and B; of size (p — 1) x (k — 1), they have
the decomposition (38) with k replaced by k& — 1, i.e., there exist (p — 1) X (p — 1) unitary

matrices V5 and 2(k — 1) x 2(k — 1) unitary matrices U, of the form (39) such that

D, 0 0 O
0 Ip_1—s 0 O
Va(A, B)U, = , 48
(A B = | g 0T (48)
0 0 0 O

where Dy = diag(A1,---, ), D, = diag(pr, -+, ps), 1 > A > /1/2 > p; > 0, and
N4 pu?=1,1<1,7<s. Let

1 0 0 O
_ Usr Uy _ 10 _ 0 Uy 0 Uy
%_(wawj’%‘(ow>’”d%— o0 1 0 |’
0 U; 0 Uy

where V3 and U; are clearly p X p and 2k x 2k unitary matrices, respectively, and Us also

has the form in (39). Furthermore, by using (47) and some calculations, it is not hard to see

1 0 0 0 0 0
0Dy 0 0 0 0

VsViAB)UUs =%, 2 0 0 Loy, 0 0 0 (49)
00 0 0D,O0
00 0 0 0 0

We now want to move the element 1 from the position at the first row and the first column
to the position at the kth row and the kth column, and the element 0 from the position
at the first row and the (k + 1)th column to the position at the kth row and 2kth column.
Let P, be a row permutation that moves the first row of ¥; in (49) to the kth row. Let P,

be the column permutation that moves the first column of ¥; to the kth column and the
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(k 4+ 1)th column to the 2kth column. Clearly, P, has the form in (39). By doing so, it is
not hard to check that P, V3Vi(A B)U,U3P, has the form in (38). If we let V = P;V3V; and
U = U U3P,. Similar to Subcase 1, U has the form (39) and therefore (38) is achieved for A
and B of column size k.

By summarizing the above cases and using the induction, Lemma 6 is proved. q.e.d.

As a consequence of Lemma 6, if the rank of (A B) in Lemma 6 is k, then s = 0 in
(38) and therefore, all the diagonal elements are 1, i.e., all singular values of (A B) are 1.
Another remark is that, when p = k, i.e., A and B are square, then the above proof can
be simplified as follows. When p = k, the matrix ( él* e
matrices in the product in the left hand side of (40) can be exchanged, i.e.,

A B A B\"_,
B* A* B* A* -k

A B
B* A*

) is square. Then, the two

H
In this case, if we take U = ( ) that certainly has the form of (39), then (38) is
proved.
We next want to make a transformation to the variables of a generalized complex orthog-

onal design.

Lemma 7 Let
G = (A1x + Bix" Aox + Box™ -+ - Apx + Bpx")

Wi Wy
W Wr
tary. Make the transformation x = Wiy + Way* and let Ai = VAW, + VB,WS and

be a generalized complex orthogonal design and matriz ( ) and matrix V' be uni-

B; = VAW, + VBWY, then
Af'A;+ BB} = 6;E;, 1<i,j<n,
and
AUB; + BiAy =0, BffA;+ AlB; =0 1<i#j<n, (50)

where E; = WHE;W, + WEEWy are positive definite. In other words, {(A; By),---,

(/Nln Bn)} form a Hurwitz family. In particular, if G is a complex orthogonal design, then its
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transformation G = (/Nllx + le* flzx + ng* - Apx + Byx*) is also a complex orthogonal

design.

Proof: It is enough to notice that

A, B Voo A; B Wy W
(5 2)=(0v) (5 &%) (w wi) ase

As a remark, if E; # I, then A”B; + B!A* may not be 0, which is the reason why
condition 7 # j in (6) in Definition 1 for a Hurwitz family is required. On the other hand,
by reviewing Proposition 1, condition AZ B; + Bt A* = 0 is crucial for a generalized complex
orthogonal design as in (3).

Proof of Proposition 2.

Proposition 2 is a direct consequence of Lemma 3, 6, 7. q.e.d.

When we consider restricted generalized complex orthogonal designs, Lemma 1 can be

sharpened as follows.

Lemma 8 Let Aj, Ay, -+, Ai be k complex alphabet sets. Let A, B, C be three k xk complex

matrices such that, for any z = (21,29, + , 2x)" € (A1 X Ag X - - X Ay)?, the following holds:
z" Az + 2" Bz* + 2'Cz = 0. (51)

(i) If for any 1 < i < k, A; satisfies the condition (i) in Theorem 3, i.e., none of the
alphabet sets contains only collinear points, then matrices A, B + B! and C + C*? are

all diagonal;
(i1) If for any 1 <i < k, A; satisfies the conditions (i), (ii) and (iii) in Theorem 3, then

A=B+B'=C+C"=0; (52)

(111) If for any 1 < i < k, A; satisfies the condition (i) in Theorem 3 with three non-zero

points and 0 € A;, then, (52) holds.

Proof. We first prove (i). Denote A = (aij)kxk, B = (bij)kxk; C = (Cij)kxk- For any

j€{1,2,---,k}, since A; is admissible, there exist three points z{, zg, zg, which are not on a
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straight line of the complex plane. Let 27 = 2 — 23, ) = 2] — 2], 2} = 2§ —21. Then, (28) and
(29) hold for #, ), #}. Furthermore, for any s; € {1,2,3}, if we let z = (21,,22,---, 25 )¢,

8§17 7897 Sk

then by the condition of this lemma, we have
2% Az 4+ 2" Bz* + 2'Cz = 0.

Expanding the above equation, we obtain

k
Z ai;(z 27 + Z bij (2, 4+ Z CijZL, z’ = 0. (53)

1,j=1 3,j=1 5,j=1

Rewritting (53), we have

k k
e+ (o ) G+ (o) o+ ot
j=2 i,j=2
k k
+ bulz,) (2,)" + (Z(blj + bjl)(zﬁ,-)*) (z8)7+ D bij(2h)"(21)"
Jj=2 1,j=2
k
+ cnzsllz;l + (Z(clj +¢j1)z ) zs1 + Z CijZ, zJ =0. (54)
Jj=2 i,j=2

If we fix the indices sq, s3,- -+, s, let s1 = 1,2, 3 and take the difference equations of three

equations from (54) corresponding to s; = 1,2, 3, we have
k
a11(2,) 2y — an1 (2 (Z alyzj ) (20 — 2)" + (Z ajl(zgj)*> (24 — 2)
Jj=2
k -
+ 0n((2)" = ()%)" + (Z(bu + bjl)(zﬁj)*> (2 — 2,)"
=2

+ en((z)’ = (2)%) + (Z(Cu + le)zﬁj) (zu — ) =0, (55)

j=2
where u # v and u,v € {1,2,3}. Therefore,

i (Cle(ZJ )"+ (15 + ¢i1) 7] ) (24 — 25) + Z (aljz + (byj + bja) (2L ) (24 — 20)"

j=2 j=2

= —(an(z) 2y — a11(2) 2 + bu((2)? = (2,)°)" + enl(2)* = ()%) . (56)
By letting (u,v) = (1,2) and (u,v) = (2, 3) in (56) and the definitions of z],z3 and z3, we

have, respectively,

zk: (ajl(zj )+ (c1j +¢j1)z ) T +

N

(a7, + (b + b)) (ah)
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= — (an(21)"21 — an(2) "% + b ((21)* = (%)) + enl(21)” = (22)%) (57)

and

M;r

k
Z (aﬂ + (1 +¢j1)% ) Ty +

j=2 Jj=2

= — (a11(2) 2 — an1(23) 25 + bua((2)” = (23)))" + enn((2)* = (23)%)) - (58)

(a7, + (g +b)(E)") ()

Since x1, (z1)*, r3 and (z3)* are all functions of z} and (z})* for i = 1,2, 3, and the coefficient

(&)

has full rank from (29) from the admissibility of the alphabet set 4; with index i = 1, the

matrix in linear system (57)-(58)

solution of the linear system has the following form

k

S (an(ed)" + (e + e)2h)) = £ b G G D), 69)
j=2

k
Z (aljzgj + (blj + bjl)(zgj)*) = g(zi, Z%, Z?ln (Z%)*a (Z%)*’ (Z%)*), (60)
=2

where f and g are two functions. Equation (59) can be rewritten as

k
a1 (22,)" + (ci2 + e21)2s, + ) (ajl(zij)* + (e + le)zﬁj)
=3

= f(z%’ Z;’ Zé’ (Z%)*a (Z%)*a (Zé)*) (61)

Since the above equation holds for s, = 1,2, 3, we fix s; for j > 3 and let s, =1, s, = 2 and

s9 = 3 and we then take the differences of these equations to obtain

921 (I%)* + (612 + 021)37% = 0, (62)

a9 (l'%)* + (612 + 021)37% = 0, (63)

where, as a remark, ? is index not power. By (29) from the admissibility of the alphabet set
Ay with index ¢ = 2, we obtain ay; = 0 and ¢;2 + ¢1 = 0. Similarly, we can obtain a;; =0
and c¢1; +¢j1 = 0 for j > 3.

By using equation (60), we can similarly derive a;; = 0 and by; + b;; = 0 for j > 2. This

proves (i).
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We next prove (ii). From (i), we only need to prove the diagonal elements of A, B + B*
and C + C* are all zero.

For A;, from condition (ii) in Theorem 3, there are two points z; = p + ¢j with pq # 0
and zo = 2} # 2 such that z1, 20 € A;. Thus, from (56) and a;; = b;; +bj; = ¢;j + ¢ =0

for i # j, by evaluating (56) for z; = z; for i = 1,2, we have
anziz — an(27) 2 + bu((21)” = (4)°)" + en((21)” = (21)%) = 0, (64)

which implies by; = ¢;1. Similarly, by evaluating (56) for z,, = z; for i = 1,2, 3 for the three

points in the condition (iii) in Theorem 3, we have

a11(2u) " 2u — a11(20)" 20 + bll((ZU)2 - (ZU)Z)* + Cll((ZU)2 - (Zv)z) =0, (65)
for u,v =1,2,3 and u # v. By using b1; = ¢11 in the above equation we have

(Iz1]* = [22/*)a11 + Re((21)* = (22)*)bn = 0,

(|21 = |23|*)a11 + Re((21)” — (23)*)bin = 0.

The coefficient matrix is

( 21> = |22 Re((21)” — (22)%) )

_ 92 2 .2 (.2 2
2 .12 9 9 %) p% Py — (¢ — 43)
|21]* = |2s]* Re((z1)" — (23)%)

— @) pi-pi— (¢ — @)
_ (p?—pg % — g ) ( 11 )
pi-ps @i—d¢ J\1 -1

Clearly, when the condition (iii) in Theorem 3 holds, the above coefficient matrix has full
rank and therefore a;; = b;; = 0 and ¢;; = by; = 0. The others a;; = bj; =cj; =0for j > 1
can be similarly proved. This proves (ii).

We now prove (iii). Since 27 = 22 —0 # 0, we let k4 = (27)* /2. From (54) and the result
in (i) we have

Ajj + b”kg, + ij(kg)_l = 0, S = 1, 2, 3.

Therefore,

bjj(li'g)z + ajjkg + ij = 0, S = 1, 2, 3.

38



Thus, kI, s = 1,2, 3, can be regarded as the solutions of the equation b;;z? + a;;z + ¢j; = 0.
This equation is at most quadratic and therefore it has at most two distinct solutions unless
all the coefficients of the equation are zero. If not all the coefficients are zero, then there
exist s1,s2 € {1,2,3} such that kJ = kJ. Without loss of generality, we may assume
sy = 1,5y = 2. Hence, (27)*/a] = (23)*/a), which contradicts with (29). This proves that
all the coefficients in equation b;;z* + aj;z + ¢;; = 0 are 0, i.e., aj; = bj; = ¢;; = 0. This

proves (iii). q.e.d.
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