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Abstract—In this correspondence, a new and systematic design of
cyclotomic lattices with full diversity is proposed by using some algebraic
number theory. This design provides infinitely many full diversity
cyclotomic lattices for a given lattice size. Based on the packing theory
and the concrete form of the design, optimal cyclotomic lattices are
presented by minimizing the mean transmission signal power for a
given minimum (diversity) product (or equivalently maximizing the
minimum product for a given mean transmission signal power). The
newly proposed cyclotomic lattices can be applied to both space–time
code designs for multi-antenna systems and linear precode design for
signal space diversity in single antenna systems over fast Rayleigh fading
channels. Although there are some cyclotomic lattices/space–time codes
existing in the literature, most of them are not optimal.

Index Terms—Algebraic number theory, cyclotomic fields, cyclotomic
lattices, Galois theory, space–time block codes.

I. INTRODUCTION

Space–time block code designs have recently attracted consider-
able attentions, see, for example, [5]–[37]. There have been several
kinds of space–time block code designs, for example, orthogonal
space–time block code designs [12]–[23], unitary space–time code
designs [24]–[29], algebraic space–time code designs [35]–[39], and
lattice based diagonal space–time code designs using algebraic number
theory [1]–[5]. Among these space–time code designs, some of them
are linear, such as orthogonal space–time block codes [12]–[23] and
lattice based diagonal space–time block codes using algebraic tools
[1]–[5], where the linearity is in terms of the information symbols and
provides certain fast decoding algorithms, such as the sphere decoding,
see, for example, [30]–[34]. Orthogonal space–time block codes sat-
isfy not only the linearity but also the orthogonality and therefore
possesses an even faster maximum-likelihood (ML) decoding [12],
[13]. However, their rates are limited [18]. This correspondence lies
in the direction of systematic cyclotomic lattices and therefore linear
lattice-based diagonal space–time block code designs using algebraic
number theory studied in [1]–[5], which are not unitary and different
from unitary diagonal space–time block codes proposed in [24]–[26],
and also different from the diagonal codes proposed in [8].

Diagonal space–time block codes using algebraic number theory
proposed in [5] are motivated from the designs of full diversity multidi-
mensional signal constellations for resisting both Rayleigh fading and
Gaussian additive noise proposed in [1]–[3]. These codes are built upon
lattices [yyy

1
; . . . ; yyy

L
]T = G[xxx1; . . . ; xxxL ]T , where Lt is the number

of transmit antennas, T stands for the transpose, xxxi represent com-
plex-valued information symbols and G is a generating matrix and yyy
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are placed as diagonal elements in a diagonal space–time code. To resist
both fading and additive noise, both good diversity product and good
Euclidean distance of the codewords [yyy

1
; . . . ; yyy

L
]T are required, and

G is a unitary matrix in [2], [4]. In [2], some constructions of unitary
G over [�4] and [�3] are provided. In [4], a systematic unitary cyclo-
tomic lattice code (G is unitary matrix) design scheme over a general
number rings is proposed by using Fourier transform with Diophantine
approximation theory. And the optimal unitary cyclotomic lattices are
also provided in [4]. The unitariness of the generating matrix G in [2],
[4] is used to maintain the Euclidean distance and the mean power of
the transmission signals the same as that of the information symbols. To
resist fading as commonly used in space–time coding, good diversity
product is usually imposed, and some algebraic constructions ofG over
[�4] = [j] with j =

p
�1 (the entries ofG are integrals over [�4])

are proposed in [3] for information symbolsxxxi in [�4], i.e., quadrature
amplitude modulation (QAM) on the square lattice, such as quaternary
phase-shift keing (QPSK) and square 16-QAM. The case when gener-
ating matrix G is real and takes the forms of Hadamard transform is
studied in [3], [5]. In [7], a different space–time code design of full di-
versity is proposed by also using cyclotomic field extensions without
much analysis of the diversity product property and it is essentially
equivalent to a kind of diagonal space–time code designs. In [9], a di-
agonal Bell Labs layered space–time (D-BLAST) lattice code structure
is proposed. In each layer of the D-BLAST lattice code, components
of a more general high dimensional lattice is used, where, however, no
new lattice designs is proposed while the unitary cyclotomic lattices in
[2] are adopted in the D-BLAST lattice codes.

There are three issues that may affect the code performance in
the above lattice based diagonal space–time code design, namely,
i) where the information symbols xxxi belong to; ii) where the elements
of the generating matrix G belong to; and iii) whether the generating
matrix G is unitary. In this correspondence, we focus on the criterion
of maximizing the diversity product and consider these three issues
together in a general way: information symbols xxxi may not necessarily
be in [�4], elements of generating matrix G may not necessarily
be integrals of [�4], and generating matrix G may not necessarily
be unitary. Information symbols xxxi and elements of generating
matrix G are from general cyclotomic field extensions. We call such
diagonal space–time block codes cyclotomic space–time codes. We
propose a systematic construction of full diversity cyclotomic lattices
and apply them to design space–time codes of full diversity for a
general number of transmit antennas, and for a fixed number of
transmit antennas, there are infinitely many cyclotomic space–time
codes/lattices. Furthermore, we obtain and list the optimal ones among
these cyclotomic space–time codes/lattices, where the optimality is
in the sense that, for a fixed mean transmission signal power, its
diversity product is maximized, or for a fixed diversity product, its
mean transmission signal power is minimized. It turns out that most
of the optimal cyclotomic space–time codes can not be obtained
by using information symbols xxxi in [�4], or by using generating
matrix G with elements being integrals over [�4], or by using
unitary generating matrices G. With our newly proposed optimal
cyclotomic space–time codes, we present some new design examples
of optimal cyclotomic space–time codes that have the best known
diversity products of diagonal space–time codes. What we want to
emphasize here is that the full diversity cyclotomic lattices we propose
in this correspondence are mathematically concrete and systematic
and therefore provide us the convenience to study the optimality.
This is different from the existing lattice-based code designs in the
literature where general algebraic numbers are used and it is hard to
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systematically formulate all general algebraic numbers and therefore
difficult to study the optimality unless it is specified to a particular
cyclotomic ring/field, such as [j], and unitary generating matrices.
Another remark is that the cyclotomic lattices we propose in this
correspondence can also be applied to linear precode designs for
achieving signal space diversity for single antenna systems over fast
Rayleigh fading channels as studied in [1]–[3].

This correspondence is organized as follows. In Section II, we
describe the problem in more details and introduce the necessary
notations and concepts about lattices. In Section III, we introduce a
systematic design of full diversity cyclotomic lattices and diagonal
space–time codes. Due to the nonunitariness of a generating matrixG,
in Section IV, we first study the relationships between the generating
matrix and its corresponding lattice, the signal mean power, and
the diversity product, and then convert the criterion on maximizing
diversity product to a criterion on generating matrices when the
diversity product is fixed. And finally, in Section IV, we present the
optimal cyclotomic lattices. In Section V, some optimal cyclotomic
space–time code designs are given based on the proposed optimal
cyclotomic lattices studied in Section IV. In Section VI, we show
some numerical simulation results.

The following notations are used throughout this correspondence:
capital English letters, such as, K and G, represent matrices and bold
small English letters, such as xxx and yyy, represent complex symbols (or
numbers or points) on two dimensional real lattices, small English let-
ters, such as x, y and z, represent real symbols (or numbers or points)
and

Lt number of transmit antennas;
natural numbers;
ring of integers;
field of rational numbers;
field of real numbers;
field of complex numbers;

�(n) Euler totient function of positive integer n;
�m = exp j 2�

m
;

[�m] ring generated by and �m;
K and G real and complex generatingmatrices for real

and complex lattices, respectively;
�n(K) n dimensional real lattice of real generating

matrix K;
�n(G) n dimensional complex lattice of complex

generating matrix G;
(�m) number field generated by the rational field

and �m;
�� = �2(K� ) two dimensional real lattice with generating

matrix K� =
1 cos 2�

m

0 sin 2�
m

;

[ : ] the extension degree of field over field .

II. COMPLEX LATTICES AND PROBLEM DESCRIPTION

As mentioned in the INTRODUCTION, we are interested in diagonal
space–time block codes formed as follows. Let Lt be the number of
transmit antennas. Let xxxi, 1 � i � Lt, be information symbols taking
from a certain constellation. Let G be an Lt � Lt matrix and

[yyy1; . . . ; yyyL ]T = G[xxx1; . . . ; xxxL ]T : (1)

The diagonal space–time code 
 consists of Lt � Lt matrices of
the form diag(yyy1; . . . ; yyyL ). We are interested in such a diagonal

space–time code 
 that i) it has the full rank property, i.e., any differ-
ence matrix of any two distinct matrices in 
 has full rank; and ii) its
following diversity product is as large as possible:

� = min
diag(yyy ;...;yyy ) 6=diag(eee ;...;eee )2


L

i=1

jyyyi � eeeij
2 (2)

where the transmission signal mean power of yyyi is fixed. The main goal
of this correspondence is to properly determine an information signal
constellation ofxxxi and a generatingmatrixG for a diagonal space–time
code 
 with the above properties. To do so, we first introduce some
concepts and properties on real and complex lattices.

A. Real and Complex Lattices

In this section, we first define real and complex lattices, and see some
existing examples, and then formulate the problems we are interested,
and finally present some properties of complex lattices that are used
in the later sections for cyclotomic space–time code designs. We first
define a real lattice.

Definition 1: An n-dimensional real lattice �n(K) is a subset in
n

�n(K) =

x1
...
xn

= K

z1
...
zn

zi 2 for 1 � i � n

where is the ring of all integers andK is an n�n real matrix of full
rank and called the generating matrix of the real lattice �n(K) and
det(�n(K)) j det(K)j.

Clearly, �n(K) is a subgroup of n with component-wise addition.
When n = 2, every point [x1; x2]T in a two dimensional real lattice
�2(K) belongs to 2 and therefore can be thought of as a complex
number xxx = x1+ jx2 in the complex plane . In this correspondence,
we do not distinguish a two dimensional real point [x1; x2]T 2 2

and a complex number or point xxx = x1 + jx2 2 otherwise it is
specified. To distinguish it from general two dimensional real lattices,
for �m = exp j 2�

m
we use �� to denote the two dimensional real

lattice with the generating matrix

K� =
1 cos 2�

m

0 sin 2�
m

=
1 Re(�m)

0 Im(�m)
(3)

where Re and Im stand for the real and imaginary parts of a com-
plex number, respectively. Thus, �� = �2(K� ). This two dimen-
sional real lattice is the base for signal constellations of cyclotomic
space–time codes studied later. It is easy to check that

�� � [�m]; �� = [�4] = [j]; and

�� =�� = [�3] = [�6] (4)

and �� is the square lattice.
A complex lattice defined below is a lattice based on a two dimen-

sional real lattice.

Definition 2: An n-dimensional complex lattice �n(G) over a two-
dimensional (2-D) real lattice �2(K) is a subset of n:

�n(G)=

yyy1
...
yyyn

=G

xxx1
...
xxxn

xxxi 2 �2(K); for 1� i�n (5)
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where G is an n� n complex matrix of full rank and called the gener-
ating matrix of the complex lattice �n(G). The above complex lattice
is called a full diversity lattice if it satisfies

n

i=1

jyyyij > 0

for any nonzero vector [xxx1; . . . ; xxxn]T 6= [0; . . . ; 0]T in (�2(K))n.

In Definition 2, points xxxi from a 2-D real lattice have been treated
as complex numbers explained previously and therefore yyyi are also
complex numbers. On the other hand, if we treat all complex elements
in matrix G and xxxi and yyyi as points in the two dimensional real space
and 2-D real lattices, respectively, the above n-dimensional complex
lattice can be also represented as a 2n-dimensional real lattice as we
shall see in more details later in Section II-C.

B. Problems of Interest

We can see that, to form a space–time code as stated in the beginning
of this section, we select a set of points in a complex lattice. From the
definition of complex lattices, a complex lattice �n(G) over �2(K)
is determined by a generating matrix G and a base 2-dimensional real
lattice �2(K).

The question we are interested here is how can we generally choose
the generating matrices G and K to achieve: i) full diversity complex
lattices and space–time codes and ii) the optimal diversity products in
the family, in a systematic way. In the later sections, we propose to form
space–time codes from complex lattices with generating matrices G
and K over general cyclotomic field extensions. To do so, let us study
some properties on the relationship between n dimensional complex
lattices and 2n-dimensional real lattices. The reason for studying the
relationship is because we need to estimate the mean power of complex
lattice points [yyy

1
; . . . ; yyyn]

T used as space–time codewords, which can
be done if we convert it to an 2n dimensional real lattice and use some
existing results on real lattices, such as the packing densities [45] as we
will see later.

C. Some Useful Properties of Real and Complex Lattices

Let us first see a relationship between an n-dimensional complex
lattice and a 2n-dimensional real lattice. Let G be an n � n complex
matrix

G =

g1;1 g1;2 � � � g1;n

g2;1 g2;2 � � � g2;n
...

...
. . .

...
gn;1 gn;2 � � � gn;n

(6)

with j det(G)j > 0, and fxxx1; xxx2; . . . ; xxxng be n points on a 2-D real
lattice �2(K) with generating matrix K . Let

yyy
1

...
yyyn

= G

xxx1
...
xxxn

: (7)

Then, [yyy
1
; . . . ; yyyn]

T is a point on the n dimensional complex lattice
�n(G) over �2(K).

We now rewrite yyyi with its real part yR and imaginary part yI , as
yyyi = yR + jyI , and entries gi;l of G as gi;l = gR + jgI . Then,
(7) can be rewritten as

yR

yI
...

yR

yI

=G

xR

xI
...

xR

xI

=G

K

K
. . .

K
2n�2n

z1;1

z1;2
...

zn;1

zn;2

(8)

where zi;1, zi;2 2 with

xi;1

xi;2
= K

zi;1

zi;2
(9)

and G is a 2n � 2n real matrix, which is from the real and imaginary
parts of G as follows:

G

gR �gI � � � gR �gI
gI gR � � � gI gR
...

...
. . .

...
...

gR �gI � � � aR �gI
gI gR � � � aI gR

: (10)

Let GK G � diag(K; . . . ; K). Following Definition 1, in order to
show that GK is a real generating matrix of an 2n-dimensional real
lattice, we only need to show it has full rank, i.e., j det(GK)j > 0. Since
K is the real generating matrix of 2-D real lattice�2(K), j det(K)j >
0. Thus, we only need to show that j det(G)j > 0, which is given by the
following proposition. Therefore, the n dimensional complex lattice
�n(G) over �2(K) is represented as an 2n-dimensional real lattice
�2n(GK).

Proposition 1: Let G be an n � n complex matrix defined in (6)
and G be the 2n � 2n real matrix defined in (10). Then, j det(G)j =
j det(G)j2.

Proof: For i = 1; . . . ; n, by adding the product of the 2ith row of
G with j =

p�1 to the (2i�1)th row of G in (10), matrix G becomes

G1 =

g1;1 jg1;1 � � � g1;n jg1;n

gI gR � � � gI gR
...

...
. . .

...
...

gn;1 jgn;1 � � � gn;n jgn;n

gI gR � � � gI gR

: (11)

For i = 1; . . . ; n, by adding the product of the (2i � 1)th column of
G1 to the 2ith column of G1 with �j, matrix G1 becomes

G2 =

g1;1 0 � � � g1;n 0

gI g�1;1 � � � gI g�1;n
...

...
. . .

...
...

gn;1 0 � � � gn;n 0

gI g�n;1 � � � gI g�n;n

(12)
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where g�i;l are the complex conjugates of gi;l. Next, by permuting the
rows and the columns of G2, matrix G2 can be converted to

G3 =

g1;1 g1;2 � � � 0 0

g2;1 g2;2 � � � 0 0
...

...
. . .

...
...

gI gI � � � g�n�1;n�1 g�n�1;n

gI gI � � � g�n;n�1 g�n;n

=
G 0

Im(G) G�
(13)

where Im(G) is the imaginary part of matrix G and G� is the com-
plex conjugate of matrix G. Notice that, the elementary operations we
implemented on G to get G3 have all determinants 1 and therefore,
j det(G)j = j det(G3)j. Since det(G3) = j det(G)j2, we have con-
cluded the proof. Q.E.D.

Proposition 1 tells us that an n dimensional complex lattice �n(G)
over �2(K) can be equivalently represented as a 2n dimensional real
lattice �2n(GK). Furthermore, the determinants of their generating
matrices have the following relationship:

j det(GK)j = j det(G)j2 � j det(K)jn

= j det(G)j2 � j det(�2(K))jn; (14)

which is used later to determine the compactness of a complex lattice
for a fixed minimum product (or diversity product).

III. SYSTEMATIC FULL DIVERSITY CYCLOTOMIC LATTICES

For two positive integers n and m, let N = mn and

Lt =
�(N)

�(m)
(15)

where �(N) and �(m) are the Euler totient functions1 of N and m,
respectively, there are total Lt distinct integers ni, 1 � i � Lt, with
0 = n1 < n2 < � � � < nL � n � 1 such that 1 + nim and N

are co-prime for any 1 � i � Lt (see for example [43, p. 75]). With
these Lt integers, we define (16) shown at the bottom of the page,
where �N = exp j 2�

N
. It is not hard to see that matrix Gm;n has

full rank since it is a Vandermonde matrix and �1+n m

N � �
1+n m

N 6= 0
for 1 � i 6= l � Lt. This means that matrix Gm;n is eligible to be a
generating matrix of a complex lattice as we defined in Section II-A.
We now define cyclotomic lattices.

Definition 3: An Lt dimensional complex lattice �L (Gm;n) over
�� is called a cyclotomic lattice, where Gm;n is defined in (16) and

1The Euler totient function (or Euler function) �(N) of N is the number of
positive numbers that are less than N and co-prime with N . In fact, it can be
expressed as �(N) = � (p )� (p ) � � �� (p ) ifN = p p � � � p for
some distinct primes p . In particular, if p is a prime, �(p ) = p � p , see
for example [44]. It also implies that L is always an integer.

�� is the 2-D real lattice with the generating matrix K� defined in
(3). Its minimum product2 dmin(�L (Gm;n)) is defined by

dmin(�L (Gm;n)) min
[0;...;...;0] 6=[yyy ;...;yyy ] 2� (G )

L

i=1

yyyi :

(17)

From this definition, a lattice point (or vector) [yyy1; . . . ; yyyL ]T on a
cyclotomic lattice can be generated by

[yyy1; . . . ; yyyL ]T = Gm;n[xxx1; . . . ; xxxL ]T (18)

where xxxi 2 �� � [�m]. The generating matrix in (16) can be also
written as

Gm;n = diag �N ; �
1+n m

N ; . . . ; �
1+n m

N Ĝm;n (19)

where

Ĝm;n

1 �N � � � �
L �1
N

1 �
1+n m

N � � � �
(L �1)(1+n m)
N

...
...

. . .
...

1 �
1+n m

N � � � �
(L �1)(1+n m)

N L �L

: (20)

Thus, the complex lattice points yyyi and ŷyyi of �L (Gm;n) and
�L (Ĝm;n), respectively, are related by

[yyy1; yyy2; . . . ; yyyL ]T = �N ŷyy1; �
1+n m

N ŷyy2; . . . ; �
1+n m

N ŷyyL

T

:

(21)
Due to the fact that all elements �iN in (21) have unit norm, the complex
lattice �L (Gm;n) and the complex lattice �L (Ĝm;n) have the same
minimum product, i.e., dmin(�L (Gm;n)) = dmin(�̂L (Gm;n)).
Since the relationship (21) of the lattice points of the two complex
lattices does not depend on the real lattice �� , these two complex
lattices are equivalent in terms of the properties, such as diversity
product and mean signal energy, that we are interested in a space–time
code as we shall study later. Therefore, for the notational convenience,
we useGm;n throughout this correspondence otherwise it is specified.

Note that the entries of the generating matrix Gm;n in (16) are all
integrals over [�m], i.e., roots of monic polynomials3 with coefficients
in [�m].

Another representation for Gm;n in (16) is

Gm;n =

1 1 � � � 1

�nn �2nn � � � �L n
n

...
...

. . .
...

�
n

n �
2n
n � � � �

L n

n L �L

�diag �N ; �
2
N ; . . . ; �

L
N : (22)

2In [5], it is called minimum product diversity. The reason why we use min-
imum product is because we want to distinguish it from the diversity product of
the associated space–time code with this lattice as we shall see later. In [3], it is
called product distance.

3Monic means the coefficient of the highest order term in a polynomial is 1.

Gm;n

�N �2N � � � �
L
N

�
1+n m

N �
2(1+n m)
N � � � �

L (1+n m)
N

...
...

. . .
...

�
1+n m

N �
2(1+n m)

N � � � �
L (1+n m)

N L �L

(16)
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From the above representation and since 0 � ni < n, one can clearly
see that the generating matrix Gm;n in (16) is unitary, i.e., the n-point
DFT matrix, if and only if Lt = n.

To fully understand the structure of cyclotomic lattice (16), we need
some results on algebraic number theory, see for example [40]–[44],
which also provides the motivation for us to define the above cyclo-
tomic lattices and codes. From the algebraic number theory, it is known
that field (�N) is an extension of field (�m) and field (�m) is also
an extension of field of all rational numbers: � (�m) � (�N).
An automorphism � of field (�N) that fixes subfield (�m) is a
one-to-one and ontomapping from (�N) to itself such that�(a+b) =
�(a) + �(b) and �(ab) = �(a)�(b) for any a, b 2 (�N) and
�(a) = a for any a 2 (�m).

Theorem 1: All the Lt automorphisms of field (�N), �i, 1 � i �
Lt, that fix subfield (�m) can be represented by

�i(�N) = �
1+n m
N ; for 1 � i � Lt (23)

where Lt is given in (15), and ni, 1 � i � Lt, are the integers that
satisfy 0 = n1 < n2 < � � � < nL � n � 1 and 1 + nim and N are
co-prime for 1 � i � Lt.

A proof of this theorem is in Appendix A. One can see that the inte-
gers appeared in the representations of the automorphisms in Theorem
1 are precisely the ones used in the construction of the above cyclo-
tomic lattices. From the representations of the automorphisms �i in
(23), the element at the ith row and the lth column in the generating
matrix Gm;n in (16) of the cyclotomic lattices can be represented as
�i �lN . Thus, the generating matrix Gm;n in (16) can be rewritten as

Gm;n =

�1(�N) �1 �2N � � � �1 �
L
N

�2(�N) �2 �2N � � � �2 �LN
...

...
. . .

...
�L (�N) �L �2N � � � �L �LN

(24)

where �i, 1 � i � Lt, are all of the distinct automorphisms of (�N)
that fix (�m).

We next define diagonal cyclotomic space–time codes.

Definition 4: A diagonal cyclotomic space–time code 
 for Lt

transmit antennas is defined by 
 = fdiag(yyy1; . . . ; yyyL )g where yyyi
for 1 � i � Lt are defined as follows:

[yyy1; . . . ; yyyL ]T = Gm;n[xxx1; . . . ; xxxL ]T (25)

whereGm;n is defined in (16), [xxx1; . . . ; xxxL ]T 2 S � ( [�m])
L , and

S is a signal constellation for information symbols.

By using Theorem 1 and some standard routines in algebraic number
theory [1]–[6] and [40]–[44], it is not hard to obtain the following the-
orem. Its detailed proof can also be found in [48].

Theorem 2: A cyclotomic lattice �L (Gm;n) over �� has full di-
versity and a diagonal cyclotomic space–time code has full diversity.

When m = 4, a cyclotomic lattice �L (G4;n) over �� is called
a Gaussian cyclotomic lattice, after the name of Gaussian integers
[j] = [�4]. When m = 3 or m = 6, a cyclotomic lattice

�L (Gm;n) over �� is called an Eisenstein cyclotomic lattice,
after the name of Eisenstein integers [�3] = [�6]. For Gaussian
cyclotomic lattices and Eisenstein cyclotomic lattices, it is stated
in [2] that the minimum products (related to algebraic norms) are 1
and it was proved in [40], [41]. Since this result plays an important
role in the optimal cyclotomic lattice/code designs as we will see in
Sections IV-A and -B, for the completeness, we list it as a proposition.

Proposition 2: The minimum products of Gaussian cyclotomic lat-
tices and Eisenstein cyclotomic lattices are 1.

This result is used in the proof of Theorem 3 in Section IV-A. Al-
though in a cyclotomic space–time code the information signal con-
stellation S can be any subset of the product space ( [�m])

L of the
cyclotomic ring [�m], S is chosen from the product space (�� )L

of the lattice �� � [�m] as we discuss the optimality of the di-
agonal cyclotomic space–time codes in Sections IV–VI. When S is
chosen from (�� )L , all the codeword vectors [yyy1; . . . ; yyyL ]T are on
the cyclotomic lattice �L (Gm;n) over�� as defined in Definition 3.
Notice that �� = [�m] for m = 3; 4; 6 as indicated in (4).

FromDefinition 4 of a cyclotomic space–time code, one can see that,
for a fixedLt in (15), there are infinitely many options of integerm and
thus infinitely many options of cyclotomic number ring [�m] or lattice
�� and also infinitely many options of the generating matrix Gm;n

in (16). Then, a natural question arises: which one is optimal? The op-
timality here is in the sense that, for a fixed signal mean power of yyyi,
the diversity product of a cyclotomic space–time code is maximized
among all different integers m, or equivalently, for a fixed diversity
product, the signal mean power of yyyi is minimized among all different
integers m. To investigate the above optimality, in Section IV-A we
study the optimality of the minimum products of cyclotomic lattices
by considering how this optimality relates to the complex lattice gen-
erating matricesGm;n and the real lattice generating matricesK� in
(3). Based on the theory developed in Section IV-A, we present optimal
cyclotomic lattices in Section IV-B.

IV. OPTIMAL CYCLOTOMIC LATTICES

In this section, we study the optimality of cyclotomic lattices
proposed in the preceding section. We first investigate the optimality
criterion.

A. Criterion for Cyclotomic Lattice Designs

As described in Section III, for a fixed Lt there are infinitely many
cyclotomic lattices �L (Gm;n) over �� of full diversity for various
m and n. In order to study which of them is better, we want to com-
pare their mean signal powers when their diversity products or min-
imum products are the same. Before studying cyclotomic space–time
codes, we study cyclotomic lattices by connecting their corresponding
real lattice packing density and their signal mean power with their gen-
erating matrices.
1) Packing Density, Mean Signal Power, and Generating Ma-

trix: For the compactness of a real lattice, the packing density concept
has been introduced in for example [45] and for more details, we refer
the reader to [45]. Let �n be an n-dimensional real lattice. Its sphere
packing density is defined by

� =
Vn�

n

det(�n)1=2

where Vn is the volume of the n-dimensional ball with radius 1 and � is
the half minimal distance between the lattice points called the packing
radius. Its center density � is defined by

� =
�

Vn
= �

n(det(�n))
�1=2

see [45, pp. 10 and 13]. It is mentioned on [45, p. 13] that the center
density � of a real lattice�n is the number of points of the lattice�n in
every �n number of unit volumes, i.e., in average every �n number of
unit volumes (Vn) of n include �n(det(�n))

�1=2 lattice points on
lattice �n. Therefore, in average there are det(�n)

�1=2 lattice points
of lattice �n in every unit volume of n. This implies that, the less of
the value det(�n) is, the more points of�n are included in the unit ball
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of n. In other words, if wewant to select a setS � �n of lattice points
of a fixed size, i.e., jSj is fixed, such that the mean signal power of the
signal points in S is minimized, then, the less of the value det(�n) is
or equivalently the less of the absolute value of the determinant of its
generating matrix is, the smaller the mean signal power of the signal
points in S is. This is the base for the following criterion of justifying
that one cyclotomic lattice is better than the other cyclotomic lattice
when their minimum products are the same.
2) Cyclotomic Lattice Design Criterion: In this subsection, we first

present the design criterion for a cyclotomic lattice and then present
some properties on the criterion. From the discussions in Section II-C,
any n dimensional complex lattice can be converted to a 2n dimen-
sional real lattice and their corresponding signal powers are exactly the
same. For a cyclotomic lattice �L (Gm;n) over �� , the determinant
of its corresponding 2Lt dimensional real lattice generating matrix GK
is

j det(Gm;n)j
2 � j det(K� )jL : (26)

With the argument of Section IV-A1 and (26) we are ready to present
a criterion to choose a cyclotomic lattice.

Definition 5: Let �L (Gm ;n ) and �L (Gm ;n ) be two Lt di-
mensional cyclotomic lattices over �� and �� , respectively. We
say cyclotomic lattice �L (Gm ;n ) is better than cyclotomic lattice
�L (Gm ;n ), written as �L (Gm ;n ) � �L (Gm ;n ), if

j det(Gm ;n )j � j det(�� )jL =2

� j det(Gm ;n )j � j det(�� )jL =2

when their minimum products are the same, i.e.,

dmin(�L (Gm ;n )) = dmin(�L (Gm ;n )):

One can clearly see that the above definition not only applies to cy-
clotomic lattices but also applies to general complex lattices defined
in Section II. With the above definition, we immediately have the fol-
lowing lemma by normalizing cyclotomic lattices.

Lemma 1: Let �L (Gm ;n ) and �L (Gm ;n ) be two Lt di-
mensional cyclotomic lattices over �� and �� with minimum
products dmin(�L (Gm ;n )) and dmin(�L (Gm ;n )), respectively.
Then, �L (Gm ;n ) is better than �L (Gm ;n ) if

dmin(�L (Gm ;n ))

jdet (�m )jL =2 jdet (Gm ;n )j
�

dmin(�L (Gm ;n ))

jdet (�m )jL =2 jdet (Gm ;n )j
:

Proof: The main idea to prove this lemma is to first normalize
these two cyclotomic lattices such that their minimum products are the
same and then compare the compactness (or average power) of the two
normalized lattices.

The two 2Lt dimensional real lattice generating matrices can be
written as

GK = Gidiag(K� ; . . . ; K� )

where 2Lt-dimensional real matrix Gi corresponds to the Lt-dimen-
sional complex matrix Gm ;n for i = 1 and 2. Their determinants
satisfy

j det(GK )j = j det(Gm ;n )j2j det(�m )jL ; for i = 1; 2:

We now normalize the complex lattices �L (Gm ;n ) by normalizing
their generating matrices Gm ;n as follows:

�Gm ;n = (dmin(�L (Gm ;n )))�1=L Gm ;n ; for i = 1; 2:

Then, the minimum products of the normalized cyclotomic lattices
�L ( �Gm ;n ) are both 1. On the other hand, for i = 1 and 2, the new
determinants satisfy

j det( �GK )j = j det( �Gm ;n )j2j det(�� )jL

=
1

dmin(�L (Gm ;n ))2

� j det(Gm ;n )j2j det(�� )jL :

Thus, if

dmin(�L (Gm ;n ))

j det(�� )jL =2j det(Gm ;n )j
�

dmin(�L (Gm ;n ))

j det(�� )jL =2j det(Gm ;n )j

then we have

j det( �GK )j � j det( �GK )j: (27)

This proves that the normalized cyclotomic lattice �L ( �Gm ;n ) is
better than �L ( �Gm ;n ) in terms of the compactness. Since the nor-
malized lattice �L ( �Gm ;n ) and its original lattice �L (Gm ;n ) only
differ by a scalar, their performances are the same. Thus,�L (Gm ;n )
is better than �L (Gm ;n ). Therefore, Lemma 1 is proved. Q.E.D.

We next present an important property between Eisenstein lattices
and other lattices, which is used in Section IV-B for finding optimal
cyclotomic lattices.

Theorem 3: Let m1 = 3 or 6. Let �L (Gm ;n ) be an Lt � 2 di-
mensional Eisenstein cyclotomic lattice and �L (Gm ;n ) be another
Lt dimensional cyclotomic lattice over �� . If

j det(Gm ;n )j � j det(Gm ;n )j

then lattice �L (Gm ;n ) is better than lattice �L (Gm ;n ).
Proof: Since �� = �� , we only need to prove the case of

m1 = 6.
When m2 = 1 or m2 = 2, matrix Gm ;n can not be used to

generate an Lt-dimensional complex lattice. Therefore, we only need
to consider m2 � 3.

For m2 = 3 or m2 = 6, j det(�� )j = j det(�� )j, and ��

and �� are the Eisenstein lattice. By using Lemma 1, this theorem is
proved.

For m2 = 4, both minimum products of the Gaussian cyclotomic
lattice and the Eisenstein lattice are

dmin(�L (G6;n )) = dmin(�L (G4;n )) = 1

and j det(�� )j < j det(�� )j. From Lemma 1, cyclotomic lattice
�L (G6;n ) is better than cyclotomic lattice �L (G4;n ) when
j det(G6;n )j � j det(G4;n )j. This proves the theorem.

For m2 = 5, because 1 2 �� , we let

[yyy
1
; . . . ; yyyL ]T = Gm ;n [1; 0; . . . ; 0]T

it is easy to check that

L

i=1

yyyi = 1:

Thus, the minimum product dmin(�L (G5;n )) � 1. On the other
hand,

j det(�� )j = sin
2�

5
> sin

2�

6
= j det(�� )j:

From Lemma 1, this theorem is proved.
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We now consider the case whenm2 > 6. It is clear that 1� �m 2
�� . Let

[yyy1; . . . ; yyyL ]T = Gm ;n [1� �m ; 0; . . . ; 0]T :

Then, the minimum product has to satisfy

dmin(�L (Gm ;n )) � jyyy1 � � �yyyL j
= �N�

2
N � � � �LN j1� �m jL

= j1� �m jL = 2L sinL
�

m2
:

Since det �� = sin(2�=m2), the ratio of dmin(�L (Gm ;n ))

and det ��
L =2

can be represented as

dmin(�L (Gm ;n ))

det ��
L =2

� 2L =2 sinL (�=m2)

sinL =2(�=m2) cosL =2(�=m2)

= (2 tan(�=m2))
L =2 < 1; whenm2 �7:

dmin(�L (G6;n ))

jdet (�� )jL =2
=

1
p
3
2

L =2
> 1

>
dmin(�L (Gm ;n ))

det ��
L =2

; whenm2 � 7:

(28)

This proves the theorem by using Lemma 1. Q.E.D.

From Theorem 3, one can see that, to compare a cyclotomic lattice
over �� with �L (G6;n) over �� , or with �L (G3;n) over �� , it
is sufficient to compare the absolute values of their generating matrix
determinants and the two dimensional real lattices�� can be ignored.

B. Optimal Cyclotomic Lattices

For a fixedLt = �(mn)=�(m), from Theorem 1we know that there
exist infinitely many cyclotomic lattices for infinitely many integersm
and n that have full diversity. In this subsection, we present optimal
cyclotomic lattices for various numbersLt of transmit antennas among
these infinitely many cyclotomic lattices.

Lemma 2: For any two integers n = pr1 � � � prl qi1 � � � qik , m =
pe1 � � � pel vt1 � � � vth , then

�(mn)

�(m)
= pr1 � � � prl �(n0)

where p1; . . . ; pl, q1; . . . ; qk, v1; . . . ; vh are distinct primes and n0 =
qi1 � � � qik . Thus, gcd(m;n) is a factor of �(mn)

�(m)
.

This lemma is a direct consequence of the definition and property of
Euler totient function in Footnote 2 and will be used in the proof of the
following theorem in Appendix B. We now present optimal cyclotomic
lattice designs for different numbers of transmit antennas.

Theorem 4: For Lt � 32, the optimal Lt dimensional cyclotomic
lattices �L (Gm;n) over �� with generating matrices Gm;n defined
in (16) are listed in Table I.

The proof of Theorem 4 for Lt = 2 is in Appendix B. The proofs of
the optimality of other dimensional cyclotomic lattices can be similarly
given and can be found in [48]. From Theorem 4 we can see that

i) all the optimal cyclotomic lattices can be achieved by Eisenstein
cyclotomic lattices;

ii) the optimal cyclotomic lattice can not be achieved by Gaussian
lattice except Lt = 2; 8; 16; 32;

TABLE I
OPTIMAL CYCLOTOMIC LATTICES FOR L TRANSMIT ANTENNAS

iii) the Lt = 4 dimensional optimal cyclotomic lattice can not be
achieved by Gaussian lattice;

iv) since as we explained in Section III, the generating matrixGm;n

is unitary if and only if Lt = n, most of the optimal generating
matrices Gm;n are not unitary.

We want to make another remark here. When the number of transmit
antennas is a prime, i.e., Lt = p, if we let m = pm0 and n = p with
gcd(p;m0) = 1, or n = 2p with gcd(2p;m0) = 1, then it is not hard
to show that

Lt =
�(mn)

�(m)
=

p2 � p

p� 1
= p:

Thus, the correspondingGm;n in (16) can be used as a generating ma-
trix to generate full diversity cyclotomic lattices (or space–time codes).
However, which one is optimal remains open.

C. Comparison With Existing Lattices

Now let us compare our proposed optimal cyclotomic lattices with
some existing ones based on our result in Lemma 1.

For the complex lattices �2(MMM2) and �4(MMM4) over �� in [3], [5],
j det(MMM2)j = 1, the minimum product dmin(�2(MMM2)) =

p
5
5
, and

j det(MMM4)j = 1 and the minimum product dmin(�4(MMM4)) = 1
40

.
Thus,

dmin(�2(MMM2))

j det(�� ) det(MMM2)j =
p
5

5

and

dmin(�4(MMM4))

j det(�� )j2j det(MMM4)j =
1

40
:

For the complex lattices �2(G2f) and �4(G4f) over�� in [2], [3],
j det(G2f)j = 2

p
3, the minimum product dmin(�2(G2f)) = 1, and

j det(G4f)j = 64 and the minimum product dmin(�4(G4f)) = 1.
Thus,

dmin(�2(G2f))

j det(�� ) det(G2f)j =
1

2
p
3

and

dmin(�4(G4f))

j det(�� )j2j det(G4f)j =
1

64
:
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For the complex lattices �2(G2) and �4(G4) over �� in [2],
[3], j det(G2)j = 2, the minimum product dmin(�2(G2)) = 1, and
j det(G4)j = 16 and the minimum product dmin(�4(G4)) = 1. Thus,

dmin(�2(G2))

j det(�� ) det(G2)j =
1

2
and

dmin(�4(G4))

j det(�� )j2j det(G4)j =
1

16
:

Notice thatG2 = Ĝ4;2 andG4 = Ĝ4;4 and they are equivalent toG4;2

and G4;4, respectively, which are not optimal.
From Theorem 4, we know that cyclotomic lattice �2(G6;2) over

�� = [�6] and cyclotomic lattice �2(G4;3) over�� = [j] are two
optimal cyclotomic lattices for two transmit antennas, and cyclotomic
lattices �4(G3;5) and �4(G6;5) over �� = �� = [�3] = [�6]
are two optimal cyclotomic lattices for four transmit antennas. Further-
more,

j det(�� )j = j det(�� )j =
p
3

2
j det(G6;2)j = 2

j det(G4;3)j =
p
3

j det(G3;5)j = j det(G6;5)j = 11:1803

and

dmin(�2(G6;2)) = dmin(�2(G4;3)) = dmin(�4(G3;5))

= dmin(�4(G6;5)) = 1:

Thus

dmin(�2(G6;2))

j det(�� ) det(G6;2)j =
dmin(�2(G4;3))

j det(�� ) det(G4;3)j
=

1p
3
>

1

2

and
dmin(�4(G3;5))

j det(�� )j2j det(G3;5)j =
dmin(�4(G6;5))

j det(�� )j2j det(G6;5)j
=

4

3� 11:1803
>

1

16
:

This shows that the optimal cyclotomic lattices we present here are
better than the existing examples in the literature.

V. DIAGONAL CYCLOTOMIC SPACE–TIME CODE DESIGNS

By using the cyclotomic lattices proposed in the last section and the
structures studied in [2] and [5], we can generate some new diagonal
space–time codes and linear precodes for fast fading channels. To de-
sign a rateR cyclotomic space–time code for Lt transmitters is to find
a subset
 of someLt dimensional cyclotomic lattice�L (Gm;n) such
that it can achieve good performance.

A. Design Schemes

To design a cyclotomic space–time code 
 of a certain size j
j,
we first select an optimal Lt dimensional cyclotomic lattice by using
the criterion developed in Section IV. After a cyclotomic lattice
�L (Gm;n) is selected, we select j
j points on the lattice with the
smallest total signal energy. The theory developed in Section III have
ensured that such a space–time code has full diversity and a good diver-
sity product. Let us formulate it in details below. Assume cyclotomic
lattice �L (Gm;n) over �� is selected. Let yyy = [yyy

1
; . . . ; yyyL ]T ,

diag(yyy) = diag(yyy
1
; . . . ; yyyL ), xxx = [xxx1; . . . ; xxxL ]T 2 (�� )L , and

yyy = Gm;nxxx. The goal of designing a cyclotomic code 
 of size j
j
here is to select


1 = diag(yyy
i
) : yyy

i
= Gm;nxxxi; xxxi 6= xxxl 2 (�� )L ;

1 � i 6= l � j
j (29)

such that

j
j

i=1

kyyy
i
k2is minimized: (30)

Since the vectors yyy
i
are on a lattice, the mean of all the codewords may

not be zero, i.e.,

�
1

j
j
j
j

i=1

yyy
i
6= 0

which may waste the transmission signal power. Therefore, we need
to shift the selected space–time code to the origin to form the final
diagonal space–time code


 = fdiag(yyy
i
� �) : 1 � i � j
jg: (31)

There are at least two approaches to solve this problem depending on
how the information symbolsxxx are selected and binary information bits
are mapped to space–time codewords. Notice that xxx = [xxx1; . . . ; xxxL ]T

and each component xxxi can be thought of as either a 2-D real lat-
tice point on �� or equivalently a complex number as explained in
Section II.
Method I: Component-Wise Independent Selection —�� -QAM:
In this case, the space–time code size has to have the form of

j
j = 2RL , where R is the throughput in bits per second per Hz
(bits/s/Hz) and the components xxxi in xxx are independently selected
from 2R-QAM located on the two dimensional lattice �� , such as
the conventional QAM on the square lattice ifm = 4 and QAM on the
equilateral triangular lattice if m = 3 or 6. This method is described
as follows.

Select 2R-QAM signal constellation S on the lattice �� such that
its total energy is minimized

S = fxxxi : xxxi 6= xxxl 2 �(�m); 1 � i 6= l � 2Rg and

min
xxx2S��

kxxxk2:

This method is called �� -QAM for convenience and in case �� =
[�m], it is called [�m]-QAM.
With this method, binary information bits are first mapped to com-

plex symbolsxxxi 2 S , 1 � i � Lt. Then, these symbolsxxxi are encoded
into diagonal space–time codewords as described in (29)–(31) for 
1

and 
.
Method II: Joint Component Selection—�� -Joint: In this case,

since the components xxxi 2 �� of xxx are jointly considered, we should
be able to minimize the codeword vector yyy energy as described in
(29)–(30) by selecting the optimal j
j distinct vectors xxxoi 2 (�� )L

for 1 � i � j
j. Then, let S = fxxxoi : 1 � i � j
jg.
With this method, the encoding can be done as follows. Each

log
2
(j
j) bits of binary information are mapped to a vector, say xxxoi ,

in S . Then, this vector xxxoi is used to generate a diagonal space–time

code diag yyyo
i
� � , where

yyy
o

i
= Gm;nxxx

o
i and � =

1

j
j
j
j

i=1

yyy
o

i
:

B. Some Design Examples of Optimal Cyclotomic Space–Time Codes

Based on the optimal cyclotomic lattices found in the previous sec-
tion, we can design optimal cyclotomic space–time codes as described
in Section V-A. We now present a few examples based on the optimal
cyclotomic lattices for Lt = 2 and Lt = 4 in Section IV and the
two methods, Method I, i.e., the “�� -QAM” method, and Method II,
i.e., the “�� -Joint” method, introduced in Section V-A. The energies
of space–time codewords are normalized in the following way: for Lt
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TABLE II
DIVERSITY PRODUCTS OF DIAGONAL CODES FOR TWO TRANSMIT ANTENNAS

TABLE III
DIVERSITY PRODUCTS OF DIAGONAL CODES FOR FOUR TRANSMIT ANTENNAS

Fig. 1. Codeword error rate comparisons: four transmit antennas, two receive antennas, and 2 bits/s/Hz.

transmit antennas and a space–time code of rate R bits/s/Hz, the total
energy of 2L �R diagonal matrices (or codewords) is normalized into
2L �R. We then compare these codes with the existing ones in [2], [3].
For the cyclotomic latticesG2 andG4 in [3], [5], which correspond to
the nonoptimalG4;2 andG4;4 in the family presented in this correspon-
dence as we explained before, we also use Method I and Method II to
design the optimal cyclotomic space–time codes. The diversity prod-
ucts for these codes are listed in Table II and Table III. One can clearly
see the improvement of the optimal cyclotomic space–time codes pre-
sented in this correspondence over the existing ones in the literature.

VI. SIMULATION RESULTS

In this section, we present some simulation results for four transmit
and two receive antennas. Similar to that in [5], the codeword is nor-

malized such that the mean power of codewords at all transmit antennas
is 1. The additive white Gaussian noise at each receive antenna has a
variance �2 = 1=SNR = Lr=(2SNR) per real dimension, where Lr
is the number of receive antennas and SNR is the signal to noise ratio
at each receive antenna. The channel is assumed quasistatic Rayleigh
fading. Two kinds of diagonal cyclotomic space–time codes are com-
pared: the nonoptimal one but the best in the existing literature, i.e.,
G4 in [3], [5], and the optimal one, i.e., G6;5 found in Section IV and
listed in Table II. The simulation results of codeword error probability
for three different bit ratesR,R = 2, 3, and 4, are shown in Figs. 1–3,
respectively, where “-QAM” and “-Joint” correspond to the two dif-
ferent diagonal cyclotomic space–time code design methods, Method I
andMethod II, respectively, in Section V. For rateR = 2 case in Fig. 1,
the codeG4-QAM andG4-Joint are the same and so onlyG4-QAM is
shown. The reason why the codeword error probability is provided is
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Fig. 2. Codeword error rate comparisons: four transmit antennas, two receive antennas, and 3 bits/s/Hz.

Fig. 3. Codeword error rate comparisons: four transmit antennas, two receive antennas, and 4 bits/s/Hz.
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that the Gray mapping for Method II, i.e., “-Joint” is not available. In
these figures, the DAST codes in [5], [3] are also compared. One can
clearly see the performance improvement of the optimal cyclotomic
codes over the nonoptimal ones in the literature, which has illustrated
the theoretical results obtained in Section V-B.

VII. CONCLUSION

In this correspondence, a systematic and full diversity cyclotomic
lattice design has been proposed. The newly proposed full diversity cy-
clotomic lattices have a concrete form and infinitely many members for
a fixed lattice dimension. Due to the concrete form of the cyclotomic
lattice generating matrices, we have presented the optimal cyclotomic
lattices based on the packing density theory, where the optimality is in
the sense of minimizing the mean transmission signal power for a fixed
minimum (diversity) product or equivalently maximizing the minimum
product for a fixed mean transmission signal power. It is found that (i)
the square lattice [j] based designs are not optimal in most cases and
(ii) the optimal generating matrices are not unitary in most cases. The
cyclotomic lattices have immediate applications in the designs of diag-
onal space–time block codes for multiple antennas and linear precodes
for achieving signal space diversity for single antenna systems over fast
Rayleigh-fading channels. Although the most optimal cyclotomic lat-
tice generating matrices are not unitary, it is found in [47] that their
capacity losses are not significant.

Diagonal codes have applications not only as space–time codes
themselves but also in quasi-orthogonal space–time code designs
as recently observed in [20], where it is shown that, for a fixed
quasiorthogonal design, the diversity product of a quasi-orthogonal
space–time code equivalently depends on the diversity product of a
diagonal space–time code. Although the optimality on the cyclotomic
lattices has been studied for various numbers of transmit antennas,
it is still open for several numbers of transmit antennas, such as
Lt = 5. As explained in Section II, an Lt-dimensional complex
lattice can be converted to a 2Lt-dimensional real lattice. In contrast, a
2Lt-dimensional real vector on an 2Lt-dimensional real lattice can be
used to form an Lt dimensional complex vector by grouping each two
consecutive real components into a complex number and the signal
energy does not change in the conversion. In other words, any 2Lt-di-
mensional real lattice can also be used to design a complex-valued
diagonal space–time code. The difference is that these Lt dimensional
complex vectors may not necessarily form a complex lattice and in
case they form a complex lattice, then it is equivalent to a complex
lattice studied in Section II. Therefore, the complex lattice design is
a special case of the above real lattice design. We believe that the
ultimate goal of the lattice-based diagonal space–time code design is
to design optimal 2Lt � 2Lt real generating matrix K such that the
Lt dimensional complex lattice formed from the 2Lt dimensional real
lattice by grouping two real dimensions into one complex dimension
has the maximal minimum product when the mean signal power is
fixed. As a final remark, optimal cyclotomic lattices for more general
number, Lt, of transmit antennas and some optimal full rate diversity
cyclotomic spare-time codes have been recently obtained in [46], [47].

APPENDIX A
PROOF OF THEOREM 1

Before we prove Theorem 1, we need some results on algebraic
number fields.

Let be a field and [x] denote the polynomial ring over , i.e., all
polynomials with coefficients in . Let f(x) 2 [x]. A splitting field
of f(x) is a field extension of such that polynomial f(x) splits in
, i.e., f(x) can be factorized into order 1 polynomials of coefficients

in , but it does not split in any proper subfield of . For more details
about a split field, see, for example, [42]. is called the splitting field
of f(x) over .

Let � be two fields and assume that is a splitting field of a
polynomial over . Galois groupGal( = ) denotes the quotient group
of in , i.e., = , and consists of all the automorphisms of that
fix .

We now cite three results (Propositions) from algebraic number
fields, which are used to prove Theorem 1.

Proposition 3: ([42, p. 36]) If is the splitting field of a polynomial
f(x) 2 [x] over , then jGal( = )j = [ : ], i.e., the extension
degree of over .

Proposition 4: ([43, p. 75]) If is the splitting field of xn � 1

over , then [ : ] = �(n) and Gal( = ) = fni : 1 � ni �
n� 1 and gcd(ni; n) = 1g. Moreover, if ! is a primitive nth root of
unity in , then Gal( = ) = f�i : gcd(i; n) = 1; 1 � i � n� 1g,
where �i is determined by �i(!) = !i.

An example of in Proposition 4 is = (�n). In Proposition 4,
gcd stands for the greatest common advisor and gcd(a; b) = 1 means
a and b are co-prime.

Proposition 5: ([42, p. 37]) Let � � be three fields and
be the splitting field of some polynomial f(x) 2 [x] over and
be the splitting field of another polynomial g(x) 2 [x] over . Then,
Gal( = ) is a normal subgroup ofGal( = ), and the quotient group
Gal( = )=Gal( = ) �= Gal( = ).

We are now ready to prove Theorem 1. To use Proposition 5, let =

, = (�m), = (�mn), f(x) = xm�1, and g(x) = xmn�1.
Then, it is easy to check that (�m) is the splitting field of f(x) =

xm � 1 over and (�mn) is the splitting field of g(x) = xmn � 1

over . From Proposition 3, we have

jGal( (�mn)= )j = [ (�mn) : ] = �(mn)

and

jGal( (�m)= )j = [ (�m) : ] = �(m):

Using the results in Proposition 4 and Proposition 5, we have

Gal( (�mn)= ) = f�i : gcd(i;mn) = 1; 1 � i � mn� 1g
Gal( (�m)= ) = f�i : gcd(i;m) = 1; 1 � i � m� 1g

and Gal( (�mn)= (�m)) is the coset of Gal( (�m)= ) in
Gal( (�mn)= ). Therefore,

Gal( (�mn)= (�m))

= f�1+mn : gcd(1 +mni;mn) = 1; 0 � ni � n� 1g
which can be seen from the fact that �1+n m is in the coset of �1 2
Gal( (�m)= ) in Gal( (�mn)= ). This means that there are Lt =
�(mn)
�(m)

automorphisms �i of (�mn) that fix (�m), and all of them

have the property �i(�N ) = �1+n m

N , where N = mn. Q.E.D.

APPENDIX B
OPTIMAL CYCLOTOMIC LATTICES FOR TWO TRANSMIT ANTENNAS

For two transmit antennas, we have the following Theorem 5.

Theorem 5: For two transmit antennas, �2(G3;4) over �� ,
�2(G6;2) over �� , and �2(G4;3) over �� are the optimal cyclo-
tomic lattices with

dmin(�2(G3;4))

j det(�� ) det(G3;4)j =
dmin(�2(G6;2))

j det(�� ) det(G6;2)j

=
dmin(�2(G4;3))

j det(�� ) det(G4;3)j =
p
3

3
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where

G3;4 =G6;2 =
�12 �212
��12 �212

G4;3 =
�12 �212
�12�3 �212�

2
3

:

Proof: From (3)

�� =
1 cos(2�=3)

0 sin(2�=3)

�� =
1 cos(�=3)

0 sin(�=3)

and

�� =
1 0

0 1
:

It is easy to check

j det(G3;4)jjdet(�� )j = j det(G6;2)jjdet(�� )j
= j det(G4;3)jjdet(�� )j =

p
3:

From Proposition 2, we know

dmin(�2(G3;4)) = dmin(�2(G6;2)) = dmin(�2(G4;3)) = 1:

Thus,

dmin(�2(G3;4))

j det(�� ) det(G3;4)j =
dmin(�2(G6;2))

j det(�� ) det(G6;2)j
=

dmin(�2(G4;3))

j det(�� ) det(G4;3)j =
p
3

3
:

This implies that �2(G3;4) over �� , �2(G6;2) over �� , and
�2(G4;3) over �� are the same according to the criterion in Sec-
tion IV-B. We next prove that they are optimal among cyclotomic
lattices �2(Gm;n) for any integersm and n with �(mn)

�(n)
= 2.

Since Lt = 2, there are two integers n1 and n2 in the generating
matrix Gm;n in (16). Since n1 = 0, to determineGm;n, we only need
to determine the integer n2 with 0 < n2 < n such that 1 + n2m and
mn are co-prime.

Let m and n be integers and N = mn such that �(N)
�(m)

= 2. There
are two different cases: gcd(m;n) = 1 and gcd(m;n) > 1.
Case 1: gcd(m;n) = 1
In this case, m and n are co-prime and �(N) = �(mn) =

�(m)�(n). Thus, we have �(N)
�(m)

= �(n) = 2. Therefore, there are
only three subcases for values n: n = 3, n = 4, or n = 6.
Subcase 1.1. gcd(m;n) = 1, n = 4
In this subcase,m is an odd number. In order to find the form of the

generating matrix Gm;n in (16), we need to find the integer n2 in the
range from 1 to n � 1 = 3 such that 1 + n2m and 4m are co-prime.
Since m is odd, n2 has to be even and therefore, n2 has to be 2, i.e.,
n2 = 2. This implies that the generating matrix Gm;4 in (16) is

Gm;4 =
�N �2N

�1+2mN �
2(1+2m)
N

=
1 1

�24 �44

�N 0

0 �2N
:

It is not hard to see that j det(Gm;4)j = 2. By using the result in
Theorem 3, we know that �2(G3;4) over�� is the optimal cyclotomic
lattice in this class.
Subcase 1.2. gcd(m;n) = 1, n = 3
In this subcase, m can not be divided by 3 and the integer n2 in

Gm;n has only two possibilities of n2 = 1 or n2 = 2. Sincem can not

be divided by 3, m has only two different forms, m = 3m0 + 1 and
m = 3m0 + 2 for integers m0.

i) Consider the case when m = 3m0 + 1. If n2 = 2, then 1 +
n2m = 1+2m = 3+3m0 that is not co-primewithmn = 3m.
This proves that n2 = 1 when m = 3m0 + 1.

ii) Consider the case whenm = 3m0 + 2. If n2 = 1, 1 + n2m =
1 +m = 3m0 + 3 that is not co-prime with mn = 3m. This
proves that n2 = 2 when m = 3m0 + 2.

Go back to the generating matrix Gm;3

Gm;3 =
�N �2N

�1+n m

N �
2(1+n m)
N

=
1 1

�n3 �2n3

�N 0

0 �2N
:

Since m � 3 and gcd(m; 3) = 1, we have m � 4. we next prove
that �2(G4;3) over�� is the optimal among the cyclotomic lattices in
class �2(Gm;3) over �� for m � 4.

Since 1 and �m belong to �� � [�m], points xxx = 1 � �m and
�xxx are on lattice �� � [�m]. Thus

yyy1
yyy2

=
�N �2N

�1+n m

N �
2(1+n m)
N

xxx

�xxx
is a point on the cyclotomic lattice �2(Gm;3) over�� . Therefore, the
minimum product dmin(�2(Gm;3)) satisfies

dmin(�2(Gm;3)) � jxxxj2 j(1� �3m) (1� �n3 �3m)j :
Let

f(m) =
jxxxj2 j(1� �3m) (1� �n3 �3m)j

j det(�� )j :

Since jxxxj = 2 sin(�=m) and j det(�m)j = sin(2�=m), we have

f(m) = 2 tan(�=m) j(1� �3m) (1� �n3 �3m)j :
By the discussions in i) and ii), we have the equation shown at the
bottom of the page. It is easy to check that

dmin(�2(Gm;3))

j det(�� )j � f(m) � f(5) < 0:9 < 1

=
dmin(�2(G4;3))

j det(�� )j for m � 5:

From Theorem 3, the optimality of cyclotomic lattice �2(G4;3) over
�� also holds in this case.
Subcase 1.3. gcd(m;n) = 1, n = 6
This subcase is similar to Subcase 1.1 when n = 4.
Case 2: gcd(m;n) > 1
From Lemma 2, we know

2 =
�(N)

�(m)
=

�(mn)

�(m)
� gcd(m;n) > 1:

Thus, we have gcd(m;n) = 2. We next want to show n = 2. In fact,
if n = 2n0 for n0 > 1 and n0 is even, then n = 2rn0

0 with r � 2 and
n0

0 � 1. From Lemma 2, it is not hard to see

�(mn)

�(m)
� 4:

f(m) =
2 tan(�=m) j(1� �3m) (1� �3�3m)j ; ifm = 3m0 + 1,m0 � 1

2 tan(�=m) (1� �3m) 1� �23�3m ; ifm = 3m0 + 2,m0 � 1.
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If n=2n0 for n0>1 and n0 is odd, then n0�3 and gcd(m;n0)=1
due to gcd(m;n)=2. From Lemma 2, it is not hard to see

�(mn)

�(m)
= 2�(n0) > 2

which is because �(n0) > 1 when n0 > 2. This contradicts with the
assumption of Lt = 2 and therefore proves n = 2.

Since gcd(m; 2) = 2, m has to be even. Since n = 2, the two
integers n1 and n2 in Gm;2 in (16) have to be n1 = 0 and n2 = 1.
Thus

Gm;2 =
�N �2N

�1+mN �
2(1+m)
N

=
1 1

1 �1

�N 0

0 �2N
:

In this case, j det(Gm;2)j = 2 for any even m. By Theorem 3, we
know that the best cyclotomic lattice in this class is �2(G6;2) over
�� = [�6]. Furthermore, since j det(�� )j > j det(�� )j, lattice
�2(G6;2) over �� is strictly better than �2(G4;2) over �� that is the
same as G2 in [2], [3]. Q.E.D.
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