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Abstract

In this paper, a truly sub-Nyquist sampling method for frermey estimation of sinusoidal signals in
noise is presented. Basically speaking, sinusoidal ssgaral first sampled at multiple sampling rates lower
than the Nyquist rate, and then a robust Chinese remainderegin (CRT) is proposed to estimate the
frequencies of interest from the aliased frequencies nbthby taking the discrete Fourier transform of
the collected samples in each undersampled waveform. Qehpédath compressed sensing, this method
can be easily implemented from the hardware point of vievis Paper provides a thorough overview of

the existing research results on the robust CRT during tstedlecade, and discusses some related open

problems as well.
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. INTRODUCTION

Frequency estimation of sinusoidal signals from a finite bemof noisy samples is a fundamental
problem in signal processingl[1]2{3]. It has wide applioas in many fields, such as radar, sonar, digital
communications, and image analysis. In the past few decade®erous frequency estimation approaches
have been proposed in the literature, including maximumlillood [4], [5], nonlinear least squarées [6],
Prony’s method[]7], MUSIC and ESPRITI[8].][9], just to nameeavf In these methods, the signal is
usually assumed to be sampled at a rate higher than the Nyaqtgs i.e., the sampling rate is higher
than twice the highest frequency of the signal. Howeverpime applications, e.g., detecting high-speed
moving targets in a synthetic aperture radar (SAR) imageestichating the wide-range carrier frequency
offset in a coherent optical orthogonal frequency divisioultiplexing (CO-OFDM) system, the signal to
be estimated has intrinsically high bandwidth, and theitiathl Nyquist sampling consequently becomes
infeasible due to high power consumption, great cost, anddd bit resolution of a high-rate analog-to-
digital converter (ADC), or in spatial domain in, such as,fFSA herefore, studies on frequency estimation
from sub-Nyquist sampling sequences are interesting aporitant.

Compressed sensing (CS), also known as compressive sgroplgparse sampling, has been proposed
in the recent years [10]=[13], which basically randomly péms signals with a much smaller number
of samples than that of using the Nyquist sampling if they sparse or sparsable in an appropriate
transformation domain. However, the design of random sigyidased hardware is still a great chal-
lenge [14]. Another family of statistical frequency estiina methods based on two truly undersampled
signal sequences has been proposed in [15]-[17], whereuby undersampled it means that regular
samplers with sub-Nyquist sampling rates are used. Moreifggaly, they use two uniform sub-Nyquist
samplers/arrays with sampling periods being coprime tonas¢ the signal autocorrelation sequence at
Nyquist rate, and from the estimated autocorrelation secgi¢he frequencies are estimated. However,
these coprime sampler based methods may require long tisenations of signals in order to achieve
the same autocorrelation sequence estimation performasbefore.

Unlike the above statistical methods, an efficient deteistilmmethod based on the Chinese remainder
theorem (CRT), which we will review in this paper, had beeopmsed in the earlier past to estimate
frequencies of sinusoidal signals from multiple truly ursdenpled waveforms [18]-[21] starting from the
mid 1990s. It takes the discrete Fourier transform (DFT)hef ¢ollected samples in each undersampled
waveform to detect the aliased frequency, and then the émgas are estimated from these aliased

frequencies by using generalized versions of the CRT. Witlhass of generality, let us consider a single
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harmonic signal

x(t) = aexp(j27Nt) + w(t), 1)

where N Hz, the frequency to be estimated, is assumed to be a positeger for simplicity,a is an
unknown complex coefficient, and(¢) is an additive white noise. We now exploit multiple underpéed

versions ofz(t) with several different but much low sampling rates Hz, my Hz, ---, my Hz, i.e.,
xi[n] = aexp(j2rNn/m;) + w;(n/m;) (2)

for 1 < i < L. Then, for each of the undersampled signals[in (2), the nedeai; of N modulo m;

is obtained as the aliased frequency by performingrtheoint DFT, if the signal-to-noise ratio (SNR)
is not too low. It is equivalent to solving a system of simo#aus linear congruences for the signal
frequencyN given the remainders;:

r; = N mod m; 3)

for 1 < i < L, where the sampling rates; are called the moduli and < r; < m;. Once we have
collected these remainders, we can uniquely determineigimalsfrequencyN via the CRT if N is less
than the least common multiple (Icm) of all the modUlil[224]. In this paper, we are more concerned
about the robust problem. When the SNR is too low, the dedleemainders are most likely subject to
error contamination. It is well known that the CRT reconstien formula is highly sensitive to errors
in the remainders in the sense that a small remainder errgrpmaluce a large reconstruction error in
N. In this paper, we first give an overview of a robust CRT [28]}[that can be precisely applied and
provide a robust solution td](3) or the above frequency egton problem when the remainders have
errors. What the robust CRT basically says is that under smmditions on the moduli the reconstruction
error is upper bounded by the remainder error bound. Two rgépations of the robust CRT are then
presented: one is a robust generalized CRT for multiplegar®[32] which aims to estimate more than
one integer (or frequencies of a multi-harmonic signaljrirthe remainder sets (or sets of the detected
aliased frequencies in undersampled waveforms), and tier @ a robust double-remaindering CRT
[33] which aims to estimate a large integer (or the radiabey of a ground moving target in a SAR
image) from the so-called double-remaindering remaindersthe detections after resolving Doppler
ambiguity successively in both time domain and spatial dojndhe robust CRT and its generalizations
have been found to have many potential applications in dibkls, such as phase unwrapping in radar

signal processing [34]-[39] and optical interferomeltr@]f442], wireless sensor networks [43]-[45], and
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computational neurosciende [46], [47].

The rest of this paper is organized as follows. In Sediibmd,briefly introduce the CRT. In Sections
[T V] and [V] the robust CRT and its latest results are diésct in a self-contained manner. In Section
VI] we present the two generalizations of the robust CRT asduds some interesting open problems

for future research. We conclude the paper in Secfioh VII.

Il. CHINESE REMAINDER THEOREM

Before stating the CRT, let us review some basic conceptsatations from number theory.

i. For two or more integersiy, mo, - -- ,my With L > 2, their greatest common divisor (gcd), denoted
by gcdmy,ma, -+ ,mp), is the largest integer that divides each of them, and tleaistlcommon
multiple (Icm), denoted by Iciimy, mo, - -+ ,mp), is the smallest integer that is divisible by each of

them. Two integers are said to be coprime if their gcd.is

ii. Given a positive integermn, two integersa and b are said to be congruent moduin, written
mathematically as = b mod m, if their differencea — b is divisible by m (i.e., (a — b)/m is an
integer), where the numben is called the modulus. If and only # andm are coprime, there is
exactly one solution for: to the linear congruencer = 1 mod m with € {0,1,--- ,m —1}. We
call such a solution the modular multiplicative inverseaahodulom. For example;—5 = 9 mod 7,
and4 is the modular multiplicative inverse @ modulo7, i.e.,2-4 =1 mod 7.

iii. For two integersa and m with m > 0, there exists a unique pair of integetsand » such that
a=km+r and0 < r < m, where the numbek is called the folding number, andis called the
remainder ofa modulom. Thus,a is congruent to its remainder modulom, i.e.,» = a mod m,
and moreover, ifa = b mod m, thena andb have the same remainder modula For example,

9 = 15 mod 6, and the remainders & and 15 modulo6 are both3.
The earliest congruence problem first appeared in the 3rtisgebook entitledSunzi Suanjing

“There are certain things whose number is unknown. If we tdl@m by threes, we have
two left over; by fives, we have three left over; and by sewead)ave two left over. What will

be the number?”
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Letting V denote the number of such things, the congruence probleneatam be interpreted as finding

N such that its remainders moduo5s, 7 are 2, 3, 2, respectively, i.e.,

2=N mod 3
3=N mod>5H (4)
2= N mod 7.

In the year 1247, a Chinese mathematidiin Jiushadirst presented a complete solution to simultaneous
linear congruences, which is later named the CRT, in his akled Shushu Jiuzhandgrhe CRT has
now evolved into a systematic theorem that exists ubigslyoin elementary mathematical textbooks.

We next formally introduce the CRT. LeY be a nonnegative integet;; < mgo < --- < mp, be the

L moduli,
Mélcm(ml,mg,--- ,mL) (5)
be the Icm of all the moduli, ang, ro,--- ,r; be theL remainders ofV, i.e.,
r, =N modm; or N =mn;m;+r; (6)

for 1 <i < L, where0 < r; < m;, andn; are the folding numbers. GiveN and the modulim;, the
remainders; can be uniquely calculated from division. Conversely, gittee modulim; and remainders
r;, IN can be uniquely determined moduld via the CRT as follows.

Theorem 1: [22] (Chinese remainder theorem) Given the modulim; and remainders; in (6), there

is a unique solution forN- modulo M, which is given by

L
i=1

where M; = M/u;, D; is the modular multiplicative inverse dff; moduloy; (i.e., 1 = D;M; mod ;)

if u; # 1, elseD; =0, anduy, pe,--- , pr, are taken to be any pairwise coprime positive integers such
that Hle w; = M and p; dividesm,; for eachl < i < L. In particular, if it is assumed tha¥ is less
than the lcm of all the moduli, i.e( < N < M, then we can uniquely determim€é from (7), which is

in fact the smallest nonnegative integer solution[fo (6).

When the moduli are pairwise coprime, i.e., the gcd of every pf m; andm;, denoted by

di; £ ged'm;, m;) (8)
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is 1, Theorem[dL reduces to the traditional CRT wherein we have= m; for 1 < ¢ < L in the
reconstruction formula{7). Another remark we have to mageehs that to enforce the uniqueness of
the solution in the CRT, we tacitly admit thaf is in the rang€0, M) in the remaining of this paper,
unless specifically stated otherwise.

Example 1:Let us find the solution to the simultaneous linear congrasifd) via the CRT. Since the
moduli in (4) are pairwise coprime, we hayg = 3, uo = 5, u3 = 7. Then, we calculate

1) M =3-5-7=105;

2) My =35, My = 21, M3 = 15;

3) D1 =2,Dy=1,D3 =1;

4) N=(2-2-35+3-1-21+2-1-15) mod 105 = 23 mod 105.
As a result, we gefvV = 23.

Due to the carry-free property of the modular arithmetie, @RT provides an energy-efficient and fast
arithmetic operation through breaking down a large comtputanto a series of smaller computations
that can be performed independently and in parallel. ThesQRT has offered widespread applications

in many fields such as computing, cryptography, and codiagrih seel[22]+[24] and references therein.

I[1l. RoBUST CHINESE REMAINDER THEOREM

In this section, we state the robust CRT that is the focusisfghper, and compare it with the Chinese
residue code.

As aforementioned in Introduction, the remaindeysare detected from noisy data in most signal
processing applications, and therefore, they are usuathyk inaccurately. Lef; £ r; + Ar; denote the
erroneous remainders, wheter; are the remainder errors. If we apply the CRT directly to nstauct
N from the erroneous remaindetsinstead ofr;, the reconstruction formul&](7) is likely to yield a large
reconstruction error even though the remainder erfors are small enough. To illustrate this point, let
us look at a simple example.

Example 2:Consider the modulin; = 16, ms = 24, m3 = 40. The lcm of all the moduli is\/ = 240.

In this case, we lejy; = 16,42 = 3, u3 = 5. We then calculateVl; = 15, My = 80, M3 = 48 and
D1 =15,Dy =2, D3 = 2. The CRT says that any integéf in the range) < N < 240 can be uniquely
reconstructed from its remainders Yy (7). As one knows,halremainders ofV = 1 are equal tal. If
its remainders are subject to small errdks; = Arg = 0,Ary =1, i.e., 7 = 1,75 = 2,73 = 1, then
replacingr; with 7; in (Z), we get a reconstructioV = 161, which differs significantly from the true

value N = 1. In other words, a large reconstruction error occurs.
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Indeed, a large reconstruction error indicates poor perdoice of applications. It is, therefore, a matter
of great importance to properly resist the remainder eriar¢he sense that a robust reconstruction can
be obtained from the erroneous remainders, where, andghoat this paper, the term “robust” means

that when the remainders are known approximately within raor éooundr, i.e.,
| Ary|=|ri—ri| <7 forl1<i<L, 9)
the reconstruction error is upper boundedhyi.e., the reconstructed integdf of N satisfies
IN-N|<T. (10)

We also call it a robust CRT. In either theoretical or appliedearches, the robust CRT raises two
fundamental problems: 1) How large can the remainder elwantr be for the robustness to hold? The
larger T is, the weaker the condition is required or the lower SNR isdeel. 2) How do we develop a
fast and efficient reconstruction algorithm?

To the best of our knowledge, the robust CRT first appearedsnolving the ambiguity in radar signal
processing[[48],[[49]. Nevertheless, there was no dedicatel systematic approach proposed_in [48],
[49] to well addressing the above two problems until two diesdater the robust CRT was independently
investigated in[[25]+[31] to estimate a large frequencyrfromultiple undersampled waveforms. Under
the assumption that the remaining factors of the modulideisli by their gcd are pairwise coprime, i.e.,
m; =mI; for 1 <i < L, wherel'y,T'y,--- ,T';, are pairwise coprime, it is basically stated[inl[25]2[27],
[30] that an integerV in the rangel0, M) can be robustly reconstructed,ifis less than a quarter of
the gcd of the moduli, i.e; < m/4. Especially, a closed-form reconstruction algorithm wesppsed in
[27]. More recently, by removing the coprimeness assumptiade in [[25]-+[2[7],[30], some improved
versions of the robust CRT with a general set of moduli andctiteesponding reconstruction algorithms
were presented in [28],[29], [81]. Their brief descripsowill be stated in the following Sectidn]V and
SectionY, respectively.

The key idea for the robust CRT in [25]=[31] is to accuratedyedtmine the unknown folding numbers
n; in (@) first and then reconstrué{ as

. 1 &
N = [Z Z(nzmz + 7;)

i=1

, (11)
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where [z] stands for the rounding function such that
—05<z—[z] <0.5. (12)

It is straightforward to see that as long as the folding numheare accurately determined,_{11) provides
a robust reconstruction, i.e.N — N| < 7, because ofV = N + [Zle Ari/L} and| A r;| < 7 for
1 <4 < L. Therefore, the robust CRT turns into a problem of accwyatetermining the folding numbers
n,; from these erroneous remaindéts

The Chinese residue code is well known as another rema@rderresistant technique, which is an
error-correcting code and has been investigated extdpdivehe literature [[50]+[58]. More precisely,

given V' pairwise coprime modulin; < me < --- < my and an integel. < V, the Chinese residue

code has a message space= {0,1, - - ,Hle m;—1}, and encodes a messalyec N as its remainder
vector(ry, 72, -+, 7y ). In this code, the remainders form a redundant representafiN, and according

to the CRT, if there are only(V — L)/2] or fewer erroneous remainders, wher¢ denotes the floor
function, thenN can be accurately reconstructed as a unique output in thienonim Hamming distance
decoding algorithm. Remarkably, an alternative decodiggrahm, called list decoding, was proposed for
the Chinese residue code with a large error raté_in [54]-[@6kre the number of erroneous remainders
may be larger than(V — L)/2], i.e., the number of erroneous remainders that the minimamnding
distance decoding algorithm can handle, and the decodgayidm outputs a small list of possibilities
one of which is accurate. As a note, the robust CRT considierduis paper is quite different from the
Chinese residue code: In the robust CRT, the moduli are gypent pairwise coprime, the reconstruction
may be inaccurate but is robust to the remainder errors, lhtldearemainders are allowed to have errors

that are not too large.

IV. CLOSED-FORM ALGORITHM FORROBUSTCRT

In the robust CRT setting above, we first present a conditiothe remainder error bound along with
a closed-form robust CRT algorithrn [27], ]29] in this seati?Ve then develop a multi-stage extension
[29] of the proposed closed-form robust CRT algorithm taHar improve the remainder error bound
condition. Some illustrative examples are given to verifg tesults.

As the CRT in Theoreml1 says, an integ€rin the rang€el0, /) can be uniquely reconstructed from
its remainders-y, 7o, - - -,z with respect to the moduling, mo,--- ,mz, in (@). This N will also give
the unique folding numbers; asn; = (N — r;)/m;, which satisfy0 < n; < M/m; for 1 <i < L. In

what follows, we try to directly reconstruet; for 1 < i < L from the remainders;,ry,--- , 7.
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Letting the lastL — 1 equations in[{6) subtract the first one, we get
nymi — n;m; = 1r; — 1 (13)
for 2 <4 < L. Dividing both sides of[{13) by the gcd; of m; andm;, we get
nil'y —nil'in = qa, (14)

whereTy; £ my /dy;, i1 = m;/dy;, and

AT —T1
a2 15
di1 di; (15)
Next, we take both sides df {14) modul;, and then have
n1l'y; = ¢1 mod I'yy. (16)

SinceT'y; andT;; are coprime, the modular multiplicative inverse Iof; modulo I';; uniquely exists,
denoted byl';, and then it is not hard to see that the congruehck (16) camipdified to

ny = Qilflz‘ mod Fil- (17)

According to [IT7),n; and ¢;;I'1; have the same remainders modiilg for 2 < i < L. Therefore, we

readily have the following simultaneous linear congruasnce
&1 =n1 mod Ty, (18)

where &;; are the remainders af;;T'y; moduloT;; for 2 < i < L and can be calculated in advance.
Because of lcrfT'e;, '3y, -+ ,I'1) = M/my and0 < ny < M/m4, we can uniquely reconstruat; by

solving [18) via the CRT, and then fror_{14) the other foldmgmbers can be obtained by

I‘ -
- nili1i —4gin (19)
i

for 2 <1 < L. Therefore, by following the above steps, the folding nuralag are uniquely reconstructed
from the remainders without first reconstructing

Since the erroneous remaindétsare only known in place of; in the robust CRT, we naturally use

gin = [Ticirl} (20)

as an estimate aof;; in (I5), where[-] is the rounding function as defined in{12). If the remaindeore
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10

boundr in @) is less than each afy;/4 for 2 <i < L, i.e.,

. dyg
— 21
7 < min =, (21)

it is immediate thaf(Ar; — Ary)/di;] = 0 and

R Ty — T A’I“i — ATl
gl = +

dy; dy;
_ ry — 71 4 |:A?"Z' — Arl]
dy; dy; (22)
_ Ty — T
- dy
= {qi1-

One can see that the rounding function usedd (20) enablés ecsmpletely eliminate the effect of the
remainder errors given b{z(R1). Ongg are equal tay, the remainders;; of n, in (I8) are accurately
determined, and of course we can accurately reconstructia the CRT as well as the other, from
(@I9) for 2 < i < L. It then follows from [T1L) that a robust reconstructidhof N is ultimately obtained.
Therefore,[(211) gives a condition on the remainder erromdausuch that a robust reconstruction f
is obtained.

Note that the subtractions if_{13) are taken with respechéofirst remainder. It is suggested that
ny is selected as a reference to be first determined. In fact,ameadbitrarily select thé-th equation
in @) to be subtracted from the others analogoug id (13),theckafter, by replacing the indéxwith
k in (I3)-(22), we first accurately determing. followed by the other folding numbers, provided the
remainder error bound satisfies

T < 11r§nii§nL % (23)
i#k

So, we are able to get the largest possibley selecting a referencey,, such that

min dp ; = max min d;. 24
1<icr T Zkenizi<n o (24)
i#ko itk

In the following, we summarize the closed-form robust CRgoathm and present the corresponding

theorem.
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11

Algorithm 1: Closed-form robust CRT_[29]

Input: the moduli{m;} £ -, and the erroneous remaindeig } -
Output: a reconstructionV.

Through [(24%), find the indeX, of a proper reference.

=

2: Calculategy,; for 1 <i < L,i # ko:
. Ty — Tk
i, = |7 (25)
_ k‘ol
3: Calculate the remainders @fj,, I'x,; moduloT';;, for 1 <i < L,i # ko:
Eiky = Giko ki mod Ty, (26)

whereT},; are the modular multiplicative inverse &f,; modulo Ty, .
4: Calculateny, via the CRT reconstruction formula for the simultaneousdincongruences:

Eiky = P, mod Ty, (27)
for1 <i<L,i# k.
5. Calculaten; for 1 <i < L,i # kq:
AL T — 6s
fy = (ko koi T diko (28)
Lik,

6: CalculateN:
(29)

1 L
[ Z nzmz + Tz
i=1

Theorem 2: [29] If an integerNV is assumed to be in the ran@e< N < M and the remainder error
boundr satisfies
dp;

7 < max min —— (30)
1<k<L1<i<L 4’

ik
wheredy; = gcdmg, m;), then byAlgorithm [I we can accurately determine the folding numbers
i.e., n; = n;, for 1 < i < L, and hence can robustly reconstriétas N in (29), from the erroneous
remainders.

In particular, when the moduli are given by; = mI'; for 1 < i < L, whereI'{,I'y,--- ,I', are
pairwise coprime, Theorefd 2 coincides exactly with the ltaau25]-[27].

Example 3:Let m; = 63, mo = 224, m3 = 240. Based on Theorem 2, an unknown inte@érwith
0 < N < M = lcm(mq,ma, m3) = 10080 can be robustly reconstructed from its erroneous remasnder
by Algorithm [I provided the remainder error bound is less thiad. Without loss of generality, let
N = 7000, then its remainders and folding numbers are calculated as7,r, = 56,r3 = 40 andn; =

111, no = 31,n3 = 29. If the remainders are contaminated with errdxg; = 0, Aro = —1, Arg = —1,
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12

i.e., 71 = 7,79 = 55,73 = 39, the condition [(3D) is fulfilled and we can ugdgorithm [ to robustly

reconstructV:

1: Find the indexky = 2 such that[(Z4) holds.

2: Calculateg2 = [(7 — 55)/7] = —7 and g3z = [(39 — 55)/16] = —1 from (28).
3: Calculate;y =4 = (—=7-2 mod 9) andésy = 1 = (=1 - 14 mod 15) from (Z8).
4. Calculateny = 31 via the CRT reconstruction formula fdr (27).

5: Calculaten; = 111 andngz = 29 from (28).

6: CalculateN = 6999 from (29).

From Theoreni2, the remainder error bound is closely relatetie gcd of each pair of the moduli:
the larger the gcd is, the larger the remainder error boun®ldsv the question of particular interest
is: For a given set of moduli, can we improve the remaindeorebbound obtained in Theoref 2 by
splitting the set of moduli into several groups so that thd gt each group becomes larger and the
system of congruences in each group is independently sdiasdd on the above closed-form robust
CRT algorithm? To answer this question, let us first review tlascade architecture of the CRTI[28],
[29].

Suppose that the moduliy, mo, - - - ,my, are split intos groups, denoted bym, 1,m;2,--- ,m; 1.}
for 1 <1 < s, which are not necessarily disjoint, i.6J;_, {m; 1, mi2, -+ ,m;r,} = {m1,ma,--- ,mp}
and) 7 | L; > L. Analogously, thel remainders-,r,--- ,rz are correspondingly split inte groups,
denoted by{r; 1,72, -+, } for 1 < i < s. Then, it is shown conclusively that the integ®&r with
0 < N < M can be uniquely reconstructed from its remainders by a tagesCRT method, where the
basic idea is first to apply the CRT to each group and then tdyapp CRT across all the groups. In

the first stage, we can uniquely reconstruct an intégewith
0< N; <n lem(mgi,mig, - ,mir,) (31)

via the CRT for each group and with these obtained reconstructioNs being the remainders ang

being the moduli, the following new system of congruencesvislent:
N; =N mod »; (32)

for 1 < i < s. In the second stage, because of (gmn,,--- ,ns) = M and0 < N < M, we can
uniquely reconstruciV by solving [32) via the CRT again.
Motivated by this cascade architecture of the CRT, we nexpp@se a two-stage robust CRT algorithm
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13

when the remainders have errors, as shown in [Hig. 1. We figsdy aplgorithm [I to obtain a robust

integer N; for each group, if the remainder error bound satisfies

gcdm’i,kv m’i,p)

7<G; & max min Z———2Y BPL (33)
1<k<L; 1<p<L; 4
p#k

where in case groupconsists of only one modulus, 16 £ m; /4 andN; is just7; 1. Then, regarding
these robust reconstructiodg for 1 < i < s as possibly erroneous remainders[inl (3®)gorithm [ is

applied again across the groups, and a robust reconstiugtiof N can be obtained, if satisfies again

7 <G £ max min M (34)
1<k<s 1%2%5 4
(2

With this two-stage robust CRT algorithm, we may boost uprémainder error bound in Theoréin 2 that
is obtained by applying\Igorithm [I to the simultaneous linear congruendés (6) as a whole. fidrere

we obtain an improved result as stated below.

Split the moduli into S groups

{miil,m._z,'-',muv} for1<i<s

i

The First Stage
By Algorithm 1 for congruences in each group i,

obtain a robust reconstruction N,

The Second Stage
By Algorithm 1 for congruences (32) across the
groups, obtain a robust reconstruction N from

remainders V,

Fig. 1. Flowchart of the two-stage robust CRT algorithm.

Theorem 3: [29] If an integerNV is assumed to be in the ran@e< N < M and the remainder error
boundr satisfies

7 < min(Gq, Ge, - ,Gs, G), (35)

then we can robustly reconstrudt from the erroneous remainders.

Note that Theorerhl2 can be viewed as a special case of Thédreith 3 = 1. It is due to the fact
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14
that whens = 1, we haveG; = 1r§nka§XL 121ii§11Ldki/4, G =M/4, andG; < G.

Example 4:Let us reconsider Examiﬁ 3 with the two-stage robust CRorilgn. We split the three
moduli into two groupgm; } and{ms, m3}. Based on Theoref 3, we can robustly reconstruct an integer
N with 0 < N < M = 10080, if 7 < 16/4. One can see that the remainder error bound 16/4
in Theorem[B is more than twice that (i.e.,< 7/4) in Theoren[R for the same moduli but with the
grouping and the two-stage method. Similarly, Mt= 7000, while the remainders have relatively large
errorsAry = 2, Aro = 3, Arg = —1, i.e., 71 = 9,79 = 59,73 = 39. Since the conditior(35) is fulfilled,
we can use the two-stage robust CRT algorithm to robustlgnstcuct/V:

1) By Algorithm [ for each group, we obtaiV; = 9 and N, = 281.
2) By Algorithm [ across the two groups again, we obtain= 7001.

The above two-stage robust CRT algorithm can be easily géped to a multi-stage (three or more
stages) robust CRT algorithm. For instance, if we furthdit spe moduliny,7.,--- ,ns in the second
stage into several groups, then we can develop a three-giagst CRT algorithm in the same way as
the two-stage robust CRT algorithm. Although we, by depigya multi-stage robust CRT algorithm,
may improve the remainder error bound for a given set of nmipthere are certain challenges that are
especially difficult to overcome, such as how to allocaterttoeluli to each group and how many groups
and stages we shall split in order to achieve a best rema@rdarbound. Interestingly, when the modulus
set is the case considered in[25]2[27], i.e., the remaifaatprsT’; of the modulim; = mI'; divided by
their gcdm are pairwise coprime, it is proven in_[29] that the remaineleor bound cannot be enlarged
by the multi-stage robust CRT algorithm anymore. Apart friitrese challenges, one might ask what the
largest remainder error bound is for a given set of moduli.Wilediscuss it in a geometrical manner

in the next section.

V. GEOMETRICAL INTERPRETATION OFROBUST CRT

In this section, we describe an intuitive interpretation tfee robust CRT from a geometrical point of
view, which helps us to develop a heuristic method and desbree more in-depth results.

Given a set of modulim;, mo,--- ,my, the CRT says that all integers in the range)/) and
their remainder vectors are in one-to-one correspondetitbeasch other. In other words, each integer
N € [0,M) is paired with exactly its own remainder vector,ro,--- ,rz), and vice versa. Thus,
we can represent each integdf € [0, M) by a unique point with coordinates being its remain-

der vector(rq,r2,--- ,7rr) in the L-dimensional remainder space, and all integers are coshdny
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a set of parallel line segments, denoted &y with direction (1,1,--- ,1) inside the hyperrectangle
[0,m1 — 1] x [0,mg — 1] x --- x [0,mp, — 1], where the integers on a line segmentSirshare the same
folding number vectorn,,no,--- ,nr), and all the line segments i§ are characterized by different

folding number vectors, see, for example, Fiy. 2(a).

25

(@) (b)

Fig. 2: (a) Integer position representation with respedwo moduli, m; = 15 andms = 25; (b) The
remainders of an integer with an error bound

Accordingly, we next see the robust CRT from a geometric geatve. When the remainders have
errors with the error bound, the point(7, 7, - - - , 71 ) is inside the hypercube of side length centered
on the point(ry,re,---,r), but probably not lie on the line segment that passes thrabghpoint
(ri,r9,---,71) (€.9., see Fid12(b)). Let,,;, denote the minimum distance between the line segments

in S. It rapidly becomes apparent that if the remainder errombdou satisfies

7 < dmin (36)

the closest line segment i§ to the point(7,72, -+ ,7) IS exactly the one that passes through the
point (ry,79,- -+ ,r), which equivalently means that the folding number vectadsurately determined
by finding the closest line segment & to the point(7,72,--- ,77), and as a consequence, a robust
reconstruction of N can be obtained. It is worth mentioning here tHafl (36) indge®s the largest

remainder error bound for the set of mod{tn,, mo,--- ,mz}. However, the direct computation of
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dmin 1S Very cumbersome. A relatively efficient calculation isatable via orthogonal projections. Since
all the line segments i§ are parallel, we can project these line segments ortholyomatio a hyperplane
through the centefm, /2, ms/2,--- ,mr/2) of the hyperrectangle, and then calculdtg,, equivalently
as the minimum distance between these projected pointseohytberplane, as seen in Fig. 3.

In addition, we observe that the minimum distang,, increases as the range df decreases. More
precisely, if N is assumed to be in a smaller rangeR) than the maximum possible rang@ 1),
i.e., R < M, the number of the line segments & that connect all the integers frofmto R — 1
becomes smaller, which implies that the minimum distande/éen these line segments becomes larger.
An example for a three-modulus system is shown in Elg. 3. Asrtiinimum distance increases, the
remainder error bound increases accordind td (36). In stimte exists a tradeoff between the range of

N and the remainder error bound

___________________________________

n

h i

Fig. 3: Integer position representation with respect teehmoduli.

Considering the robust CRT in a two-modulus system (Le= 2), some rough results on the tradeoff
between the range and the remainder error bound have beginaxbitn [57]. Inspired by [57], our recent
work [31] derived the explicit closed-form expressions floe range and the remainder error bound by
a hierarchical structure in a two-modulus system, as brifyed below.

Given two modulim; andms with m; < mg andm, { ms in a two-modulus system, write; = mI';

andmsy = mI'y, wherem 2 gcdmy, ms), and the notatiom { b means thab is not divisible bya. Let
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o_1 = I's, 00 £ Iy, and for: > 1,

i (37)

o = |oi—2

where |a|, is a shorthand notation for the remainder«ofmodulo b. Based on[(37), there must be an
index K > 0 such thatv_; > --- > o > ox41 = 1. Then, we have the following result.

Theorem 4: [31] If an integerN is assumed to be in the ran@e< N < min(ma(1 + n2;), mi(1 +
n1,)) and the remainder error boundsatisfies

maoy;

4

(38)

T <

for somei, 1 < ¢ < K + 1, then we can robustly reconstrust from the erroneous remainders, where
n9; andng; can be, respectively, calculated by the following recwsarmulae:
’L) When K =0, we havervzm =I - 1,77171 =19 —1.

i1) WhenK > 1, we haveng g1 =11 — 1,71 k41 =2 — 1, and forl <i < K,

Ll if i =1

) Lzl iti=2

fig; =4+ (39)
UjjilJ (ﬁ2,2p + 1) + 7V”L272p,1, if i=2p+1forp>1,;
Uzii;J ﬁ272p+1 + legp, ifi=2p+2forp>1

and

)+ 2« i) w2 “

T2p J ’er172p + ’rul172p,1, if i =2p+1forp>1;

22 | (i gpi + 1) + gy, i = 2p+2 forp> 1.

Theoren# demonstrates that the remainder error bound afszes the range increases for a two-
modulus system. When the range increases to the maximum) £eN < lcm(m, mg) ori = K+1in
Theoreni !, the remainder error bound decreases to the nmimiiret, 7 < m /4, which is in coincidence
with the result in Theorerml 2 for a two-modulus system. Letess this in an example below.

Example 5:Letm; = 13-18 andmgy = 13-29. The Icm of the moduli is lcrfin,, my) = 6786. Based
on Theoren 4, we have the following result in Table I, where ldwst row, i.e., Level |, is the known
result in Theoren]2.

However, for a multi-modulus (three or more moduli) systénis very difficult to derive the explicit
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Vv op=11 7<(13-11)/4=3575 1 1 O0<N <468
\Y op=7 1<(13-7)/4=2275 3 1 0<N<T754
Il o3 =4 r<(13-4)/4=13 4 3 0<N<1170
I o4=3 1<(13-3)/4=975 8 4 0<N <1885
| o5 =1 r<(13-1)/4=325 28 17 0<N <6786

TABLE I: The tradeoff between the range and the remainderdyound in Examplé]5.

expressions for the range and the remainder error bound asis/ldone for a two-modulus system in
Theorem#%. Motivated by the two-stage CRT method introduicethe previous section, we propose
a suboptimal method to quantify the tradeoff between thgeaand the remainder error bound for a
multi-modulus system as follows. First, the moduli aretsplio two groups, and a robust reconstruction
is obtained for each group according to Theofém 3. Then, thiése two obtained reconstructions from
the groups, Theorefd 4 is applied across the two groups. Letkasa concrete example as an illustration
below.

Example 6:Let mq = 60 -2, mg = 60 -5, m3 = 70 -3, myqy = 70 - 7. The Icm of all the moduli is
M £ lcm(my, mg, m3, mg) = 29400. We split the moduli into two groupsimy, mo} and {ms,m4}.
Let m(1) £ gcdmy, ms) = 60, m2 2 gcdms, myg) = 70, m1 = lem(my, mo) = 600 = 30 - 20, and
no = lcm(ms,my) = 1470 = 30 - 49. We first apply Theoreril2 drl 3 to each group and obtain two
reconstructionsV;, N». Then, regardingVi, N> as the erroneous remainders apdrn, as the moduli
in 32), we apply Theoreril4 across the two groups and obtaiacanstructionN as desired. Let
n £ gedn,n2) = 30, and Ty, Ty denote the remaining factors @f, 7, divided by their gcdy, i.e.,

m = nT'y andny = nly. Therefore,N is a robust reconstruction a¥, if N is assumed to be in the

range0 < N < min(na(1 4+ n2,),m (1 + 721,;)) and the remainder error boundsatisfies

i 1) 2 ‘
7_<mm(m ,4m ,N0;) (1)

for somei,1 < i < K + 1, where the values of;, K, 9 ;,7n;,; are determined by,T'y in (31), (39),
(40). The result is shown in Tablg I, where the last row, ilevel |, is the known result in Theorem
[B. One can see that when the rangeNofs 0 < N < 13230, the remainder error bound can redith'4

that is twice as large as that obtained in Theofém 3.
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1 o1=9 T <60/4=15 4 2 0< N <3000
Il oy =2 T <60/4 =15 22 8 0< N <13230
I o3 =1 T<30/4="15 48 19 0 < N < 29400

TABLE II: The tradeoff between the range and the remaindesrdsound in Examplél6.

VI. GENERALIZATIONS AND OPEN PROBLEMS

In this section, we introduce two interesting general@ai of the robust CRT, i.e., robust general-
ized CRT for multiple integers and robust double-remaimdeCRT, and their related open problems,

respectively.

A. Robust Generalized CRT for Multiple Integers

The above robust CRT is studied for estimating the frequefeysingle harmonic signal in the signal
model [1). A common practice is to estimate the multiple fiengies of a superposition of harmonic
signals from multiple undersamplings. More explicitlyt les considep frequenciesV; Hz for1 <i < p
that need to be estimated in a superpositioned sig(al

p
x(t) = Z a; exp(j2mN;t), (42)

=1
wherea; are unknown nonzero complex coefficients. We undersamlewith multiple sampling rates

my Hz for 1 < k < L, and the sampled signal with sampling ratg Hz is

p
zEn| = Z a; exp(j2m Nyn/my). (43)
i=1

We then take then;-point DFT toz[n] and obtain
P
Xpll] =Y aid(l = rig), (44)
i=1

where§(l) takes1 when! = 0 and 0 otherwise, and-; ; are the remainders a¥; modulo my, i.e.,
rix = N; mod my. Thus, what can be detected from the sampled signal with ls@gngate 2, Hz is

the following remainder set

p
Si 2 e} 2 {turzi= 1.2, .pi), (42)
i=1
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wheret;, ;, < t;, ) for 1 < i3 < ip < pg, andp, < p is the number of distinct elements, i.e., the
cardinality, of the sef5;,. Note that the correspondence between the elements in anadgnaet and the
multiple integers is unknown. Hence, the multiple frequeestimation problem equivalently becomes
the reconstruction problem of the multiple integers fromitlunordered remainder sefts [18]-[21], which
we call the generalized CRT for multiple integers.

As an illustrative example, let us consider the case whezetimtegers aré, 19, 192 and three moduli
areb,7,9. In this case, the three remainder sets we can detedi0a®e4}, {3,5}, {1, 3,5}, respectively.
The problem is to uniquely reconstruct the three integasmfthese remainder sets and moduli, where
the correspondence between the three integers and thesingens in a remainder set is not specified,
for example, in the second remainder §&t5}, we know neither whethed is the remainder of the first,
second or third unknown integer modulipnor whetheB repeats once or twice. One can easily check that
another three integers), 12,59 have the same remainder sets as above. So, the range forigjuengss
of the reconstruction of the three integers would be muchllsmthan [0,lcm(5,7,9)) = [0, 315),
unlike the CRT for a singe integer. Without loss of geneyalissume thatn; < mq < --- < my, are
pairwise coprime. A best known range for the generalized @RTmultiple integers was proposed in
[58] whenp > 2. Before stating it, let us introduce some notations. &cebe a~-partition of modulus
setM £ {m1,ma,--- ,mr} such thatM is decomposed into a union of itg disjoint subsets, i.e.,
M= MFUMFU---UMT and M7 MFT = ) for any pair ofi and j with i # j, where M
can be the empty set. Defitg £ ] my if M is not empty, and? = 1 otherwise. Then, let

myeEMFT
b(v) £ max mm bZ andc(y) £ min max b7, whereP denotes the set of all-partitions of M. Then,
weP 1<i<y weP 1<i<
we have the foIIowmg result.
Theorem 5: [58] Ny, N, --- , N, can be uniquely determined from their remainder sets, if
[L/p]
max{Ny, Na,--- ,N,} < max ¢ min{c(p) H mi, mp, (46)
whenp > 2, and
max{Ny, Na,--- , Ny} < max{b(2),mr} 47)

whenp = 2, where[-] denotes the ceiling function.
The range given in Theorel 5 is not necessarily the largestlogt us give a simple counter example
as follows. Consider the case of two integer determinatien, (p = 2) from their four remainder sets

(i.e., L = 4), where the four moduli are given by, = 17, ms = 19, ms = 20, myq = 21. In this case,
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the range from Theorefm 5 imax{N;, No} < 357, whereas the largest range is easily checked to be
max{Ni, No} < 737. Recently, the largest range along with an efficient recansbn algorithm for the
generalized CRT for two integers, i.@.= 2, has been studied and/or provided|inl[59] and [60] with the
following theorem.

Theorem 6: [60] If m_1 > 3, the largest range for uniquely determining two integhis N, from
their remainder sets is

max{N1, Nao} < IInglg gmz + gmi , (48)
whereQ = {1,2,--- , L}, and the symbol denotes the complement &fin Q.

So far the largest range and any simple reconstruction iligofor the generalized CRT for multiple
(larger than2) integers are still unknown and would be interesting. Ieai@lly, by imposing additional
conditions on the multiple integers and/or the moduli, satiifeerent results were proposed in_[19],
[611-[63].

On the other hand, considering that the detected remainuéne remainder sets often have errors due
to noise in practical applications, there is an even greaded in the future for robustly reconstructing
the multiple integers from the erroneous remainders, aimd the robust CRT. Recently, the generalized
robust CRT for two integers has been presented_in [32], utideassumption that the remaining factors
of the moduli divided by their gcd are pairwise coprime. Mattatically, let modulim; = mI; for
1 <i < L, whereT'{,T'y,--- ,T';, are pairwise coprime. Let be the remainder error bound, i.e.,
| Arig| = |7k —rip] <7 fori=1,2andl <k < L. Then, we have the generalized robust CRT for
two integers in the following.

Theorem 7: [32] If integers Ny, N> are assumed to be in the range

max{Ny, No} <m - %nclg HFZ- + HFZ' (49)
- €L i€l

and the remainder error boundsatisfies

T <m/8, (50)

whereQ andZ are defined as in Theordr 6, then we can robustly recons¥uavs, i.e., \Ni -Nj| <7
fori=1,2.
For a reconstruction algorithm of Theordh 7, we refer thedeeao [32]. General results for the

generalized robust CRT for multiple integers as well asfasbnstruction algorithms are of great interest
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for further research.

Remark 1:Note that the estimation of frequencies of a multi-harmaignal in [42) from multiple
undersampled waveforms has also been considered in the maoeat sparse fast Fourier transform
(SFFT) [64]-72]. The algorithm in_[64]/[65] relies on th@mbinatorial properties of aliasing among
frequencies in DFTs such that by taking enough DFTs of sufptes with coprime sampling rates, each
frequency is isolated from the others in at least half of th€l'® Then, based on the CRT and majority
rule, all the frequencies are guaranteed to be recoverdB6]n[67], enough DFTs of sub-samples with
coprime sampling rates are also needed such that each fegisisolated for at least one DFT, and
then by using slightly shifted samples to distinguish nbasad frequencies from aliased ones in a DFT
and determine the values of the non-aliased frequencie#ffemedt algorithm with reduced sampling
and runtime complexities was proposed.[In|[68]+[72], byngsaliasing filters with coprime sub-Nyquist
sampling rates, the frequency coefficients are split intokbts such that the value in each bucket is
the sum of the values of only the frequency coefficients tlwahmose the bucket. All the frequencies
are then estimated by iteratively estimating the frequesifiiom buckets where they do not collide and
subtracting them from buckets where they do collide, in Wwtifee change of the phase caused by shifted
samples is used to determine the frequency and the corrdisigofrequency coefficient in the bucket
with exactly one frequency coefficient. The robust CRT andegalized robust CRT we have discussed

in this paper are different from the above mentioned SFFEdabgorithms in a number of aspects:

1) The sub-Nyquist sampling rates (or moduli) are neithmitéd to being pairwise coprime nor require
specific combinatorial structures.

2) Additional samplings at slightly shifted points are neteded. The number of DFTs or the number
of samples required is significantly less.

3) All the frequencies (or large integers) are estimatedna shot based on the proposed generalized
(robust) CRT from the detected aliased frequency (or reda)nsets.

4) The robustness is considered with respect to the erraitseimemainders.

B. Robust Double-Remaindering CRT

Many ambiguity problems in practice can be reduced to thatisol of simultaneous linear congruences.
So, the CRT provides an ambiguity resolution method. We s&ate the (robust) double-remaindering
CRT, which originally arises from estimating the radiala@ty of a ground moving target by resolving

the so-called time-space Doppler ambiguity in multichar8®R [33], where the time domain Doppler
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ambiguity occurs first in each channel and then the spatiailaid® Doppler ambiguity occurs among
multi-channels. We refer the reader [0 [33] for detalils.

In terms of number theory, the double-remaindering CRT sepgefrand new mathematical problem,
as described below. LW/, Ms,--- , My and Ny, No,--- , N1, be positive integers, wher®; < M, for

1 <4 < L. Then, a nonnegative integ@f can be written as
N =m;M; +n;N; +r;, for1 <i< L, (51)

wherer; with 0 < r; < N; are called the double-remaindering remainders for whicls first taken a
modulo with a larger positive integéil; and then its remainder is taken another modulo with a smaller
positive integer\N;, i.e.,

r; = (N mod M;) mod N;. (52)

For example, letM; = 12, M> = 20 and Ny = 5, N» = 9. We can find thatvV = 29 and N = 0 have the
same double-remaindering remaindeys= r, = 0. A natural question is how large the integ¥T can
be so that it can be uniquely determined from the double-ieteaing remainders; for 1 <i: < L. Let
d; = gcd M;, N;) andr; = k;d; + |r;|q, for 1 < i < L, where|r;|4, denotes the remainder of modulo

d;. We rewrite [51) as

M; N;
N = <mi?+ni_+ki> di + |rila, (53)

d;
and then we can simply regard the double-remaindering CRAea€RT. AccordinglyN can be uniquely
reconstructed fromr; if 0 < N < lem(dy,ds,--- ,dr). Obviously, the range we have above is too weak,
especially whenV/; and N; are coprime. This analysis is only a first look for this probleand further
research is clearly needed. What is more is that we expeaeaa@sy development of the robust double-

remaindering CRT, when the double-remaindering remasdefor 1 < i < L have errors.

VIl. CONCLUSION

In this paper, we have provided an overview on the robust CRI igs applications in frequency
estimation from multiple truly sub-Nyquist samplers. linsmaries some of the research results on this
topic from the authors’ group starting from the mid 1990sl$o provides some of the challenging open
research problems on this topic. Since the robust CRT pmolidea fundamental problem, we believe

that it will have broader applications than what we have moeed in this paper.
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