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Abstract

In this paper, a truly sub-Nyquist sampling method for frequency estimation of sinusoidal signals in

noise is presented. Basically speaking, sinusoidal signals are first sampled at multiple sampling rates lower

than the Nyquist rate, and then a robust Chinese remainder theorem (CRT) is proposed to estimate the

frequencies of interest from the aliased frequencies obtained by taking the discrete Fourier transform of

the collected samples in each undersampled waveform. Compared with compressed sensing, this method

can be easily implemented from the hardware point of view. This paper provides a thorough overview of

the existing research results on the robust CRT during the last decade, and discusses some related open

problems as well.
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I. INTRODUCTION

Frequency estimation of sinusoidal signals from a finite number of noisy samples is a fundamental

problem in signal processing [1]–[3]. It has wide applications in many fields, such as radar, sonar, digital

communications, and image analysis. In the past few decades, numerous frequency estimation approaches

have been proposed in the literature, including maximum likelihood [4], [5], nonlinear least squares [6],

Prony’s method [7], MUSIC and ESPRIT [8], [9], just to name a few. In these methods, the signal is

usually assumed to be sampled at a rate higher than the Nyquist rate, i.e., the sampling rate is higher

than twice the highest frequency of the signal. However, in some applications, e.g., detecting high-speed

moving targets in a synthetic aperture radar (SAR) image andestimating the wide-range carrier frequency

offset in a coherent optical orthogonal frequency divisionmultiplexing (CO-OFDM) system, the signal to

be estimated has intrinsically high bandwidth, and the traditional Nyquist sampling consequently becomes

infeasible due to high power consumption, great cost, and limited bit resolution of a high-rate analog-to-

digital converter (ADC), or in spatial domain in, such as, SAR. Therefore, studies on frequency estimation

from sub-Nyquist sampling sequences are interesting and important.

Compressed sensing (CS), also known as compressive sampling or sparse sampling, has been proposed

in the recent years [10]–[13], which basically randomly samples signals with a much smaller number

of samples than that of using the Nyquist sampling if they aresparse or sparsable in an appropriate

transformation domain. However, the design of random sampling-based hardware is still a great chal-

lenge [14]. Another family of statistical frequency estimation methods based on two truly undersampled

signal sequences has been proposed in [15]–[17], where by truly undersampled it means that regular

samplers with sub-Nyquist sampling rates are used. More specifically, they use two uniform sub-Nyquist

samplers/arrays with sampling periods being coprime to estimate the signal autocorrelation sequence at

Nyquist rate, and from the estimated autocorrelation sequence the frequencies are estimated. However,

these coprime sampler based methods may require long time observations of signals in order to achieve

the same autocorrelation sequence estimation performanceas before.

Unlike the above statistical methods, an efficient deterministic method based on the Chinese remainder

theorem (CRT), which we will review in this paper, had been proposed in the earlier past to estimate

frequencies of sinusoidal signals from multiple truly undersampled waveforms [18]–[21] starting from the

mid 1990s. It takes the discrete Fourier transform (DFT) of the collected samples in each undersampled

waveform to detect the aliased frequency, and then the frequencies are estimated from these aliased

frequencies by using generalized versions of the CRT. Without loss of generality, let us consider a single
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harmonic signal

x(t) = a exp(j2πNt) + ω(t), (1)

whereN Hz, the frequency to be estimated, is assumed to be a positiveinteger for simplicity,a is an

unknown complex coefficient, andω(t) is an additive white noise. We now exploit multiple undersampled

versions ofx(t) with several different but much low sampling ratesm1 Hz, m2 Hz, · · · , mL Hz, i.e.,

xi[n] = a exp(j2πNn/mi) + ωi(n/mi) (2)

for 1 ≤ i ≤ L. Then, for each of the undersampled signals in (2), the remainder ri of N modulomi

is obtained as the aliased frequency by performing themi-point DFT, if the signal-to-noise ratio (SNR)

is not too low. It is equivalent to solving a system of simultaneous linear congruences for the signal

frequencyN given the remaindersri:

ri ≡ N mod mi (3)

for 1 ≤ i ≤ L, where the sampling ratesmi are called the moduli and0 ≤ ri < mi. Once we have

collected these remainders, we can uniquely determine the signal frequencyN via the CRT ifN is less

than the least common multiple (lcm) of all the moduli [22]–[24]. In this paper, we are more concerned

about the robust problem. When the SNR is too low, the detected remainders are most likely subject to

error contamination. It is well known that the CRT reconstruction formula is highly sensitive to errors

in the remainders in the sense that a small remainder error may produce a large reconstruction error in

N . In this paper, we first give an overview of a robust CRT [25]–[31] that can be precisely applied and

provide a robust solution to (3) or the above frequency estimation problem when the remainders have

errors. What the robust CRT basically says is that under someconditions on the moduli the reconstruction

error is upper bounded by the remainder error bound. Two generalizations of the robust CRT are then

presented: one is a robust generalized CRT for multiple integers [32] which aims to estimate more than

one integer (or frequencies of a multi-harmonic signal) from the remainder sets (or sets of the detected

aliased frequencies in undersampled waveforms), and the other is a robust double-remaindering CRT

[33] which aims to estimate a large integer (or the radial velocity of a ground moving target in a SAR

image) from the so-called double-remaindering remainders(or the detections after resolving Doppler

ambiguity successively in both time domain and spatial domain). The robust CRT and its generalizations

have been found to have many potential applications in otherfields, such as phase unwrapping in radar

signal processing [34]–[39] and optical interferometry [40]–[42], wireless sensor networks [43]–[45], and
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computational neuroscience [46], [47].

The rest of this paper is organized as follows. In Section II,we briefly introduce the CRT. In Sections

III, IV, and V, the robust CRT and its latest results are described in a self-contained manner. In Section

VI, we present the two generalizations of the robust CRT and discuss some interesting open problems

for future research. We conclude the paper in Section VII.

II. CHINESE REMAINDER THEOREM

Before stating the CRT, let us review some basic concepts andnotations from number theory.

i. For two or more integersm1,m2, · · · ,mL with L ≥ 2, their greatest common divisor (gcd), denoted

by gcd(m1,m2, · · · ,mL), is the largest integer that divides each of them, and their least common

multiple (lcm), denoted by lcm(m1,m2, · · · ,mL), is the smallest integer that is divisible by each of

them. Two integers are said to be coprime if their gcd is1.

ii. Given a positive integerm, two integersa and b are said to be congruent modulom, written

mathematically asa ≡ b mod m, if their differencea − b is divisible bym (i.e., (a − b)/m is an

integer), where the numberm is called the modulus. If and only ifa andm are coprime, there is

exactly one solution forx to the linear congruenceax ≡ 1 mod m with x ∈ {0, 1, · · · ,m− 1}. We

call such a solution the modular multiplicative inverse ofa modulom. For example,−5 ≡ 9 mod 7,

and4 is the modular multiplicative inverse of2 modulo7, i.e., 2 · 4 ≡ 1 mod 7.

iii. For two integersa and m with m > 0, there exists a unique pair of integersk and r such that

a = km+ r and0 ≤ r < m, where the numberk is called the folding number, andr is called the

remainder ofa modulom. Thus,a is congruent to its remainderr modulom, i.e., r ≡ a mod m,

and moreover, ifa ≡ b mod m, thena and b have the same remainder modulom. For example,

9 ≡ 15 mod 6, and the remainders of9 and15 modulo6 are both3.

The earliest congruence problem first appeared in the 3rd-century book entitledSunzi Suanjing:

“There are certain things whose number is unknown. If we count them by threes, we have

two left over; by fives, we have three left over; and by sevens,we have two left over. What will

be the number?”
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LettingN denote the number of such things, the congruence problem above can be interpreted as finding

N such that its remainders modulo3, 5, 7 are2, 3, 2, respectively, i.e.,

2 ≡ N mod 3

3 ≡ N mod 5

2 ≡ N mod 7.

(4)

In the year 1247, a Chinese mathematicianQin Jiushaofirst presented a complete solution to simultaneous

linear congruences, which is later named the CRT, in his bookentitled Shushu Jiuzhang. The CRT has

now evolved into a systematic theorem that exists ubiquitously in elementary mathematical textbooks.

We next formally introduce the CRT. LetN be a nonnegative integer,m1 < m2 < · · · < mL be the

L moduli,

M , lcm(m1,m2, · · · ,mL) (5)

be the lcm of all the moduli, andr1, r2, · · · , rL be theL remainders ofN , i.e.,

ri ≡ N mod mi or N = nimi + ri (6)

for 1 ≤ i ≤ L, where0 ≤ ri < mi, andni are the folding numbers. GivenN and the modulimi, the

remaindersri can be uniquely calculated from division. Conversely, given the modulimi and remainders

ri, N can be uniquely determined moduloM via the CRT as follows.

Theorem 1: [22] (Chinese remainder theorem) Given the modulimi and remaindersri in (6), there

is a unique solution forN moduloM , which is given by

N ≡
L
∑

i=1

riDiMi mod M, (7)

whereMi = M/µi, Di is the modular multiplicative inverse ofMi moduloµi (i.e., 1 ≡ DiMi mod µi)

if µi 6= 1, elseDi = 0, andµ1, µ2, · · · , µL are taken to be anyL pairwise coprime positive integers such

that
∏L

i=1 µi = M andµi dividesmi for each1 ≤ i ≤ L. In particular, if it is assumed thatN is less

than the lcm of all the moduli, i.e.,0 ≤ N < M , then we can uniquely determineN from (7), which is

in fact the smallest nonnegative integer solution to (6).

When the moduli are pairwise coprime, i.e., the gcd of every pair of mi andmj , denoted by

dij , gcd(mi,mj) (8)
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is 1, Theorem 1 reduces to the traditional CRT wherein we haveµi = mi for 1 ≤ i ≤ L in the

reconstruction formula (7). Another remark we have to make here is that to enforce the uniqueness of

the solution in the CRT, we tacitly admit thatN is in the range[0,M) in the remaining of this paper,

unless specifically stated otherwise.

Example 1:Let us find the solution to the simultaneous linear congruences (4) via the CRT. Since the

moduli in (4) are pairwise coprime, we haveµ1 = 3, µ2 = 5, µ3 = 7. Then, we calculate

1) M = 3 · 5 · 7 = 105;

2) M1 = 35,M2 = 21,M3 = 15;

3) D1 = 2,D2 = 1,D3 = 1;

4) N ≡ (2 · 2 · 35 + 3 · 1 · 21 + 2 · 1 · 15) mod 105 ≡ 23 mod 105.

As a result, we getN = 23.

Due to the carry-free property of the modular arithmetic, the CRT provides an energy-efficient and fast

arithmetic operation through breaking down a large computation into a series of smaller computations

that can be performed independently and in parallel. Thus, the CRT has offered widespread applications

in many fields such as computing, cryptography, and coding theory, see [22]–[24] and references therein.

III. ROBUST CHINESE REMAINDER THEOREM

In this section, we state the robust CRT that is the focus of this paper, and compare it with the Chinese

residue code.

As aforementioned in Introduction, the remaindersri are detected from noisy data in most signal

processing applications, and therefore, they are usually known inaccurately. Let̃ri , ri+△ri denote the

erroneous remainders, where△ri are the remainder errors. If we apply the CRT directly to reconstruct

N from the erroneous remaindersr̃i instead ofri, the reconstruction formula (7) is likely to yield a large

reconstruction error even though the remainder errors△ri are small enough. To illustrate this point, let

us look at a simple example.

Example 2:Consider the modulim1 = 16,m2 = 24,m3 = 40. The lcm of all the moduli isM = 240.

In this case, we letµ1 = 16, µ2 = 3, µ3 = 5. We then calculateM1 = 15,M2 = 80,M3 = 48 and

D1 = 15,D2 = 2,D3 = 2. The CRT says that any integerN in the range0 ≤ N < 240 can be uniquely

reconstructed from its remainders by (7). As one knows, all the remainders ofN = 1 are equal to1. If

its remainders are subject to small errors△r1 = △r3 = 0,△r2 = 1, i.e., r̃1 = 1, r̃2 = 2, r̃3 = 1, then

replacingri with r̃i in (7), we get a reconstruction̂N = 161, which differs significantly from the true

valueN = 1. In other words, a large reconstruction error occurs.

April 26, 2018 DRAFT



7

Indeed, a large reconstruction error indicates poor performance of applications. It is, therefore, a matter

of great importance to properly resist the remainder errors, in the sense that a robust reconstruction can

be obtained from the erroneous remainders, where, and throughout this paper, the term “robust” means

that when the remainders are known approximately within an error boundτ , i.e.,

| △ ri| = |r̃i − ri| ≤ τ for 1 ≤ i ≤ L, (9)

the reconstruction error is upper bounded byτ , i.e., the reconstructed integer̂N of N satisfies

|N̂ −N | ≤ τ. (10)

We also call it a robust CRT. In either theoretical or appliedresearches, the robust CRT raises two

fundamental problems: 1) How large can the remainder error boundτ be for the robustness to hold? The

larger τ is, the weaker the condition is required or the lower SNR is needed. 2) How do we develop a

fast and efficient reconstruction algorithm?

To the best of our knowledge, the robust CRT first appeared in resolving the ambiguity in radar signal

processing [48], [49]. Nevertheless, there was no dedicated and systematic approach proposed in [48],

[49] to well addressing the above two problems until two decades later the robust CRT was independently

investigated in [25]–[31] to estimate a large frequency from multiple undersampled waveforms. Under

the assumption that the remaining factors of the moduli divided by their gcd are pairwise coprime, i.e.,

mi = mΓi for 1 ≤ i ≤ L, whereΓ1,Γ2, · · · ,ΓL are pairwise coprime, it is basically stated in [25]–[27],

[30] that an integerN in the range[0,M) can be robustly reconstructed, ifτ is less than a quarter of

the gcd of the moduli, i.e.,τ < m/4. Especially, a closed-form reconstruction algorithm was proposed in

[27]. More recently, by removing the coprimeness assumption made in [25]–[27], [30], some improved

versions of the robust CRT with a general set of moduli and thecorresponding reconstruction algorithms

were presented in [28], [29], [31]. Their brief descriptions will be stated in the following Section IV and

Section V, respectively.

The key idea for the robust CRT in [25]–[31] is to accurately determine the unknown folding numbers

ni in (6) first and then reconstructN as

N̂ =

[

1

L

L
∑

i=1

(nimi + r̃i)

]

, (11)
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where[x] stands for the rounding function such that

− 0.5 ≤ x− [x] < 0.5. (12)

It is straightforward to see that as long as the folding numbersni are accurately determined, (11) provides

a robust reconstruction, i.e.,|N̂ − N | ≤ τ , because ofN̂ = N +
[

∑L
i=1△ri/L

]

and | △ ri| ≤ τ for

1 ≤ i ≤ L. Therefore, the robust CRT turns into a problem of accurately determining the folding numbers

ni from these erroneous remaindersr̃i.

The Chinese residue code is well known as another remainder-error-resistant technique, which is an

error-correcting code and has been investigated extensively in the literature [50]–[53]. More precisely,

given V pairwise coprime modulim1 < m2 < · · · < mV and an integerL < V , the Chinese residue

code has a message spaceN = {0, 1, · · · ,∏L
i=1mi−1}, and encodes a messageN ∈ N as its remainder

vector(r1, r2, · · · , rV ). In this code, the remainders form a redundant representation ofN , and according

to the CRT, if there are only⌊(V − L)/2⌋ or fewer erroneous remainders, where⌊·⌋ denotes the floor

function, thenN can be accurately reconstructed as a unique output in the minimum Hamming distance

decoding algorithm. Remarkably, an alternative decoding algorithm, called list decoding, was proposed for

the Chinese residue code with a large error rate in [54]–[56], where the number of erroneous remainders

may be larger than⌊(V − L)/2⌋, i.e., the number of erroneous remainders that the minimum Hamming

distance decoding algorithm can handle, and the decoding algorithm outputs a small list of possibilities

one of which is accurate. As a note, the robust CRT consideredin this paper is quite different from the

Chinese residue code: In the robust CRT, the moduli are generally not pairwise coprime, the reconstruction

may be inaccurate but is robust to the remainder errors, and all the remainders are allowed to have errors

that are not too large.

IV. CLOSED-FORM ALGORITHM FOR ROBUST CRT

In the robust CRT setting above, we first present a condition on the remainder error bound along with

a closed-form robust CRT algorithm [27], [29] in this section. We then develop a multi-stage extension

[29] of the proposed closed-form robust CRT algorithm to further improve the remainder error bound

condition. Some illustrative examples are given to verify the results.

As the CRT in Theorem 1 says, an integerN in the range[0,M) can be uniquely reconstructed from

its remaindersr1, r2, · · · , rL with respect to the modulim1,m2, · · · ,mL in (6). ThisN will also give

the unique folding numbersni asni = (N − ri)/mi, which satisfy0 ≤ ni < M/mi for 1 ≤ i ≤ L. In

what follows, we try to directly reconstructni for 1 ≤ i ≤ L from the remaindersr1, r2, · · · , rL.

April 26, 2018 DRAFT



9

Letting the lastL− 1 equations in (6) subtract the first one, we get

n1m1 − nimi = ri − r1 (13)

for 2 ≤ i ≤ L. Dividing both sides of (13) by the gcdd1i of m1 andmi, we get

n1Γ1i − niΓi1 = qi1, (14)

whereΓ1i , m1/d1i, Γi1 , mi/d1i, and

qi1 ,
ri − r1
d1i

. (15)

Next, we take both sides of (14) moduloΓi1, and then have

n1Γ1i ≡ qi1 mod Γi1. (16)

SinceΓ1i andΓi1 are coprime, the modular multiplicative inverse ofΓ1i moduloΓi1 uniquely exists,

denoted byΓ1i, and then it is not hard to see that the congruence (16) can be simplified to

n1 ≡ qi1Γ1i mod Γi1. (17)

According to (17),n1 and qi1Γ1i have the same remainders moduloΓi1 for 2 ≤ i ≤ L. Therefore, we

readily have the following simultaneous linear congruences

ξi1 ≡ n1 mod Γi1, (18)

whereξi1 are the remainders ofqi1Γ1i moduloΓi1 for 2 ≤ i ≤ L and can be calculated in advance.

Because of lcm(Γ21,Γ31, · · · ,ΓL1) = M/m1 and0 ≤ n1 < M/m1, we can uniquely reconstructn1 by

solving (18) via the CRT, and then from (14) the other foldingnumbers can be obtained by

ni =
n1Γ1i − qi1

Γi1
(19)

for 2 ≤ i ≤ L. Therefore, by following the above steps, the folding numbersni are uniquely reconstructed

from the remainders without first reconstructingN .

Since the erroneous remaindersr̃i are only known in place ofri in the robust CRT, we naturally use

q̂i1 ,

[

r̃i − r̃1
d1i

]

(20)

as an estimate ofqi1 in (15), where[·] is the rounding function as defined in (12). If the remainder error
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boundτ in (9) is less than each ofd1i/4 for 2 ≤ i ≤ L, i.e.,

τ < min
2≤i≤L

d1i
4
, (21)

it is immediate that[(△ri −△r1)/d1i] = 0 and

q̂i1 =

[

ri − r1
d1i

+
△ri −△r1

d1i

]

=
ri − r1
d1i

+

[△ri −△r1
d1i

]

=
ri − r1
d1i

= qi1.

(22)

One can see that the rounding function used in (20) enables usto completely eliminate the effect of the

remainder errors given by (21). Onceq̂i1 are equal toqi1, the remaindersξi1 of n1 in (18) are accurately

determined, and of course we can accurately reconstructn1 via the CRT as well as the otherni from

(19) for 2 ≤ i ≤ L. It then follows from (11) that a robust reconstruction̂N of N is ultimately obtained.

Therefore, (21) gives a condition on the remainder error bound τ such that a robust reconstruction ofN

is obtained.

Note that the subtractions in (13) are taken with respect to the first remainder. It is suggested that

n1 is selected as a reference to be first determined. In fact, we can arbitrarily select thek-th equation

in (6) to be subtracted from the others analogous to (13), andthereafter, by replacing the index1 with

k in (13)-(22), we first accurately determinenk followed by the other folding numbers, provided the

remainder error boundτ satisfies

τ < min
1≤i≤L
i 6=k

dki
4
. (23)

So, we are able to get the largest possibleτ by selecting a referencenk0
such that

min
1≤i≤L
i 6=k0

dk0i = max
1≤k≤L

min
1≤i≤L
i 6=k

dki. (24)

In the following, we summarize the closed-form robust CRT algorithm and present the corresponding

theorem.
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Algorithm 1 : Closed-form robust CRT [29]

Input: the moduli{mi}Li=1 and the erroneous remainders{r̃i}Li=1.
Output: a reconstructionN̂ .

1: Through (24), find the indexk0 of a proper reference.
2: Calculateq̂k0i for 1 ≤ i ≤ L, i 6= k0:

q̂ik0
=

[

r̃i − r̃k0

dk0i

]

. (25)

3: Calculate the remainders of̂qik0
Γk0i moduloΓik0

for 1 ≤ i ≤ L, i 6= k0:

ξ̂ik0
≡ q̂ik0

Γk0i mod Γik0
, (26)

whereΓk0i are the modular multiplicative inverse ofΓk0i moduloΓik0
.

4: Calculaten̂k0
via the CRT reconstruction formula for the simultaneous linear congruences:

ξ̂ik0
≡ n̂k0

mod Γik0
(27)

for 1 ≤ i ≤ L, i 6= k0.
5: Calculaten̂i for 1 ≤ i ≤ L, i 6= k0:

n̂i =
n̂k0

Γk0i − q̂ik0

Γik0

. (28)

6: CalculateN̂ :

N̂ =

[

1

L

L
∑

i=1

(n̂imi + r̃i)

]

. (29)

Theorem 2: [29] If an integerN is assumed to be in the range0 ≤ N < M and the remainder error

boundτ satisfies

τ < max
1≤k≤L

min
1≤i≤L
i 6=k

dki
4
, (30)

wheredki , gcd(mk,mi), then byAlgorithm 1 we can accurately determine the folding numbersni,

i.e., n̂i = ni, for 1 ≤ i ≤ L, and hence can robustly reconstructN as N̂ in (29), from the erroneous

remainders.

In particular, when the moduli are given bymi = mΓi for 1 ≤ i ≤ L, whereΓ1,Γ2, · · · ,ΓL are

pairwise coprime, Theorem 2 coincides exactly with the result in [25]–[27].

Example 3:Let m1 = 63,m2 = 224,m3 = 240. Based on Theorem 2, an unknown integerN with

0 ≤ N < M , lcm(m1,m2,m3) = 10080 can be robustly reconstructed from its erroneous remainders

by Algorithm 1, provided the remainder error bound is less than7/4. Without loss of generality, let

N = 7000, then its remainders and folding numbers are calculated asr1 = 7, r2 = 56, r3 = 40 andn1 =

111, n2 = 31, n3 = 29. If the remainders are contaminated with errors△r1 = 0,△r2 = −1,△r3 = −1,
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i.e., r̃1 = 7, r̃2 = 55, r̃3 = 39, the condition (30) is fulfilled and we can useAlgorithm 1 to robustly

reconstructN :

1: Find the indexk0 = 2 such that (24) holds.

2: Calculateq̂12 = [(7− 55)/7] = −7 and q̂32 = [(39 − 55)/16] = −1 from (25).

3: Calculateξ̂12 = 4 = (−7 · 2 mod 9) and ξ̂32 = 1 = (−1 · 14 mod 15) from (26).

4: Calculaten̂2 = 31 via the CRT reconstruction formula for (27).

5: Calculaten̂1 = 111 and n̂3 = 29 from (28).

6: CalculateN̂ = 6999 from (29).

From Theorem 2, the remainder error bound is closely relatedto the gcd of each pair of the moduli:

the larger the gcd is, the larger the remainder error bound is. Now the question of particular interest

is: For a given set of moduli, can we improve the remainder error bound obtained in Theorem 2 by

splitting the set of moduli into several groups so that the gcd in each group becomes larger and the

system of congruences in each group is independently solvedbased on the above closed-form robust

CRT algorithm? To answer this question, let us first review the cascade architecture of the CRT [28],

[29].

Suppose that the modulim1,m2, · · · ,mL are split intos groups, denoted by{mi,1,mi,2, · · · ,mi,Li
}

for 1 ≤ i ≤ s, which are not necessarily disjoint, i.e.,
⋃s

i=1{mi,1,mi,2, · · · ,mi,Li
} = {m1,m2, · · · ,mL}

and
∑s

i=1 Li ≥ L. Analogously, theL remaindersr1, r2, · · · , rL are correspondingly split intos groups,

denoted by{ri,1, ri,2, · · · , ri,Li
} for 1 ≤ i ≤ s. Then, it is shown conclusively that the integerN with

0 ≤ N < M can be uniquely reconstructed from its remainders by a two-stage CRT method, where the

basic idea is first to apply the CRT to each group and then to apply the CRT across all the groups. In

the first stage, we can uniquely reconstruct an integerNi with

0 ≤ Ni < ηi , lcm(mi,1,mi,2, · · · ,mi,Li
) (31)

via the CRT for each groupi, and with these obtained reconstructionsNi being the remainders andηi

being the moduli, the following new system of congruences isevident:

Ni ≡ N mod ηi (32)

for 1 ≤ i ≤ s. In the second stage, because of lcm(η1, η2, · · · , ηs) = M and 0 ≤ N < M , we can

uniquely reconstructN by solving (32) via the CRT again.

Motivated by this cascade architecture of the CRT, we next propose a two-stage robust CRT algorithm
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when the remainders have errors, as shown in Fig. 1. We first apply Algorithm 1 to obtain a robust

integerN̂i for each groupi, if the remainder error boundτ satisfies

τ < Gi , max
1≤k≤Li

min
1≤p≤Li

p 6=k

gcd(mi,k,mi,p)

4
, (33)

where in case groupi consists of only one modulus, letGi , mi,1/4 andN̂i is just r̃i,1. Then, regarding

these robust reconstructionŝNi for 1 ≤ i ≤ s as possibly erroneous remainders in (32),Algorithm 1 is

applied again across the groups, and a robust reconstruction N̂ of N can be obtained, ifτ satisfies again

τ < G , max
1≤k≤s

min
1≤i≤s
i 6=k

gcd(ηk, ηi)
4

. (34)

With this two-stage robust CRT algorithm, we may boost up theremainder error bound in Theorem 2 that

is obtained by applyingAlgorithm 1 to the simultaneous linear congruences (6) as a whole. Therefore,

we obtain an improved result as stated below.
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Fig. 1: Flowchart of the two-stage robust CRT algorithm.

Theorem 3: [29] If an integerN is assumed to be in the range0 ≤ N < M and the remainder error

boundτ satisfies

τ < min(G1, G2, · · · , Gs, G), (35)

then we can robustly reconstructN from the erroneous remainders.

Note that Theorem 2 can be viewed as a special case of Theorem 3with s = 1. It is due to the fact

April 26, 2018 DRAFT



14

that whens = 1, we haveG1 = max
1≤k≤L

min
1≤i≤L
i 6=k

dki/4, G = M/4, andG1 < G.

Example 4:Let us reconsider Example 3 with the two-stage robust CRT algorithm. We split the three

moduli into two groups{m1} and{m2,m3}. Based on Theorem 3, we can robustly reconstruct an integer

N with 0 ≤ N < M = 10080, if τ < 16/4. One can see that the remainder error boundτ < 16/4

in Theorem 3 is more than twice that (i.e.,τ < 7/4) in Theorem 2 for the same moduli but with the

grouping and the two-stage method. Similarly, letN = 7000, while the remainders have relatively large

errors△r1 = 2,△r2 = 3,△r3 = −1, i.e., r̃1 = 9, r̃2 = 59, r̃3 = 39. Since the condition (35) is fulfilled,

we can use the two-stage robust CRT algorithm to robustly reconstructN :

1) By Algorithm 1 for each group, we obtain̂N1 = 9 andN̂2 = 281.

2) By Algorithm 1 across the two groups again, we obtainN̂ = 7001.

The above two-stage robust CRT algorithm can be easily generalized to a multi-stage (three or more

stages) robust CRT algorithm. For instance, if we further split the moduli η1, η2, · · · , ηs in the second

stage into several groups, then we can develop a three-stagerobust CRT algorithm in the same way as

the two-stage robust CRT algorithm. Although we, by deploying a multi-stage robust CRT algorithm,

may improve the remainder error bound for a given set of moduli, there are certain challenges that are

especially difficult to overcome, such as how to allocate themoduli to each group and how many groups

and stages we shall split in order to achieve a best remaindererror bound. Interestingly, when the modulus

set is the case considered in [25]–[27], i.e., the remainingfactorsΓi of the modulimi = mΓi divided by

their gcdm are pairwise coprime, it is proven in [29] that the remaindererror bound cannot be enlarged

by the multi-stage robust CRT algorithm anymore. Apart fromthese challenges, one might ask what the

largest remainder error bound is for a given set of moduli. Wewill discuss it in a geometrical manner

in the next section.

V. GEOMETRICAL INTERPRETATION OFROBUST CRT

In this section, we describe an intuitive interpretation for the robust CRT from a geometrical point of

view, which helps us to develop a heuristic method and derivesome more in-depth results.

Given a set of modulim1,m2, · · · ,mL, the CRT says that all integers in the range[0,M) and

their remainder vectors are in one-to-one correspondence with each other. In other words, each integer

N ∈ [0,M) is paired with exactly its own remainder vector(r1, r2, · · · , rL), and vice versa. Thus,

we can represent each integerN ∈ [0,M) by a unique point with coordinates being its remain-

der vector(r1, r2, · · · , rL) in the L-dimensional remainder space, and all integers are connected by
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a set of parallel line segments, denoted byS, with direction (1, 1, · · · , 1) inside the hyperrectangle

[0,m1 − 1]× [0,m2 − 1]× · · · × [0,mL − 1], where the integers on a line segment inS share the same

folding number vector(n1, n2, · · · , nL), and all the line segments inS are characterized by different

folding number vectors, see, for example, Fig. 2(a).
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Fig. 2: (a) Integer position representation with respect totwo moduli,m1 = 15 andm2 = 25; (b) The
remainders of an integer with an error boundτ .

Accordingly, we next see the robust CRT from a geometric perspective. When the remainders have

errors with the error boundτ , the point(r̃1, r̃2, · · · , r̃L) is inside the hypercube of side length2τ centered

on the point(r1, r2, · · · , rL), but probably not lie on the line segment that passes throughthe point

(r1, r2, · · · , rL) (e.g., see Fig. 2(b)). Letdmin denote the minimum distance between the line segments

in S. It rapidly becomes apparent that if the remainder error bound τ satisfies

τ <
dmin

2
√
L
, (36)

the closest line segment inS to the point(r̃1, r̃2, · · · , r̃L) is exactly the one that passes through the

point (r1, r2, · · · , rL), which equivalently means that the folding number vector isaccurately determined

by finding the closest line segment inS to the point(r̃1, r̃2, · · · , r̃L), and as a consequence, a robust

reconstruction ofN can be obtained. It is worth mentioning here that (36) indeedgives the largest

remainder error bound for the set of moduli{m1,m2, · · · ,mL}. However, the direct computation of
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dmin is very cumbersome. A relatively efficient calculation is attainable via orthogonal projections. Since

all the line segments inS are parallel, we can project these line segments orthogonally onto a hyperplane

through the center(m1/2,m2/2, · · · ,mL/2) of the hyperrectangle, and then calculatedmin equivalently

as the minimum distance between these projected points on the hyperplane, as seen in Fig. 3.

In addition, we observe that the minimum distancedmin increases as the range ofN decreases. More

precisely, ifN is assumed to be in a smaller range[0, R) than the maximum possible range[0,M),

i.e., R < M , the number of the line segments inS that connect all the integers from0 to R − 1

becomes smaller, which implies that the minimum distance between these line segments becomes larger.

An example for a three-modulus system is shown in Fig. 3. As the minimum distance increases, the

remainder error bound increases according to (36). In short, there exists a tradeoff between the range of

N and the remainder error boundτ .

 
 

!
 

"
 

 
 

!
 

"
 

Fig. 3: Integer position representation with respect to three moduli.

Considering the robust CRT in a two-modulus system (i.e.,L = 2), some rough results on the tradeoff

between the range and the remainder error bound have been obtained in [57]. Inspired by [57], our recent

work [31] derived the explicit closed-form expressions forthe range and the remainder error bound by

a hierarchical structure in a two-modulus system, as brieflystated below.

Given two modulim1 andm2 with m1 < m2 andm1 ∤ m2 in a two-modulus system, writem1 = mΓ1

andm2 = mΓ2, wherem , gcd(m1,m2), and the notationa ∤ b means thatb is not divisible bya. Let
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σ−1 , Γ2, σ0 , Γ1, and for i ≥ 1,

σi = |σi−2|σi−1
, (37)

where |a|b is a shorthand notation for the remainder ofa modulo b. Based on (37), there must be an

indexK ≥ 0 such thatσ−1 > · · · > σK > σK+1 = 1. Then, we have the following result.

Theorem 4: [31] If an integerN is assumed to be in the range0 ≤ N < min(m2(1 + n̆2,i),m1(1 +

n̆1,i)) and the remainder error boundτ satisfies

τ <
mσi
4

(38)

for somei, 1 ≤ i ≤ K + 1, then we can robustly reconstructN from the erroneous remainders, where

n̆2,i and n̆1,i can be, respectively, calculated by the following recursive formulae:

i) WhenK = 0, we haven̆2,1 = Γ1 − 1, n̆1,1 = Γ2 − 1.

ii) WhenK ≥ 1, we haven̆2,K+1 = Γ1 − 1, n̆1,K+1 = Γ2 − 1, and for1 ≤ i ≤ K,

n̆2,i =







































⌊

Γ1

σ1

⌋

, if i = 1;
⌊

Γ1

σ1

⌋ ⌊

σ1

σ2

⌋

, if i = 2;
⌊

σ2p

σ2p+1

⌋

(n̆2,2p + 1) + n̆2,2p−1, if i = 2p+ 1 for p ≥ 1;
⌊

σ2p+1

σ2p+2

⌋

n̆2,2p+1 + n̆2,2p, if i = 2p+ 2 for p ≥ 1

(39)

and

n̆1,i =







































⌊

Γ2

Γ1

⌋ ⌊

Γ1

σ1

⌋

, if i = 1;
⌊

Γ2

Γ1

⌋ ⌊

Γ1

σ1

⌋ ⌊

σ1

σ2

⌋

+
⌊

σ1

σ2

⌋

+
⌊

Γ2

Γ1

⌋

, if i = 2;
⌊

σ2p

σ2p+1

⌋

n̆1,2p + n̆1,2p−1, if i = 2p+ 1 for p ≥ 1;
⌊

σ2p+1

σ2p+2

⌋

(n̆1,2p+1 + 1) + n̆1,2p, if i = 2p+ 2 for p ≥ 1.

(40)

Theorem 4 demonstrates that the remainder error bound decreases as the range increases for a two-

modulus system. When the range increases to the maximum, i.e., 0 ≤ N < lcm(m1,m2) or i = K+1 in

Theorem 4, the remainder error bound decreases to the minimum, i.e.,τ < m/4, which is in coincidence

with the result in Theorem 2 for a two-modulus system. Let us see this in an example below.

Example 5:Let m1 = 13 ·18 andm2 = 13 ·29. The lcm of the moduli is lcm(m1,m2) = 6786. Based

on Theorem 4, we have the following result in Table I, where the last row, i.e., Level I, is the known

result in Theorem 2.

However, for a multi-modulus (three or more moduli) system,it is very difficult to derive the explicit
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Level Value of σi Remainder error bound n̈1,i n̈2,i Range
V σ1 = 11 τ < (13 · 11)/4 = 35.75 1 1 0 ≤ N < 468
IV σ2 = 7 τ < (13 · 7)/4 = 22.75 3 1 0 ≤ N < 754
III σ3 = 4 τ < (13 · 4)/4 = 13 4 3 0 ≤ N < 1170
II σ4 = 3 τ < (13 · 3)/4 = 9.75 8 4 0 ≤ N < 1885
I σ5 = 1 τ < (13 · 1)/4 = 3.25 28 17 0 ≤ N < 6786

TABLE I: The tradeoff between the range and the remainder error bound in Example 5.

expressions for the range and the remainder error bound as what is done for a two-modulus system in

Theorem 4. Motivated by the two-stage CRT method introducedin the previous section, we propose

a suboptimal method to quantify the tradeoff between the range and the remainder error bound for a

multi-modulus system as follows. First, the moduli are split into two groups, and a robust reconstruction

is obtained for each group according to Theorem 3. Then, withthese two obtained reconstructions from

the groups, Theorem 4 is applied across the two groups. Let ustake a concrete example as an illustration

below.

Example 6:Let m1 = 60 · 2, m2 = 60 · 5, m3 = 70 · 3, m4 = 70 · 7. The lcm of all the moduli is

M , lcm(m1,m2,m3,m4) = 29400. We split the moduli into two groups:{m1,m2} and {m3,m4}.

Let m(1) , gcd(m1,m2) = 60, m(2) , gcd(m3,m4) = 70, η1 , lcm(m1,m2) = 600 = 30 · 20, and

η2 , lcm(m3,m4) = 1470 = 30 · 49. We first apply Theorem 2 or 3 to each group and obtain two

reconstructionsN̂1, N̂2. Then, regardingN̂1, N̂2 as the erroneous remainders andη1, η2 as the moduli

in (32), we apply Theorem 4 across the two groups and obtain a reconstructionN̂ as desired. Let

η , gcd(η1, η2) = 30, andΓ1,Γ2 denote the remaining factors ofη1, η2 divided by their gcdη, i.e.,

η1 = ηΓ1 and η2 = ηΓ2. Therefore,N̂ is a robust reconstruction ofN , if N is assumed to be in the

range0 ≤ N < min(η2(1 + n̆2,i), η1(1 + n̆1,i)) and the remainder error boundτ satisfies

τ <
min(m(1),m(2), ησi)

4
(41)

for somei, 1 ≤ i ≤ K + 1, where the values ofσi,K, n̆2,i, n̆1,i are determined byΓ1,Γ2 in (37), (39),

(40). The result is shown in Table II, where the last row, i.e., Level I, is the known result in Theorem

3. One can see that when the range ofN is 0 ≤ N < 13230, the remainder error bound can reach60/4

that is twice as large as that obtained in Theorem 3.
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Level Value of σi Remainder error bound n̈1,i n̈2,i Range
III σ1 = 9 τ < 60/4 = 15 4 2 0 ≤ N < 3000
II σ2 = 2 τ < 60/4 = 15 22 8 0 ≤ N < 13230
I σ3 = 1 τ < 30/4 = 7.5 48 19 0 ≤ N < 29400

TABLE II: The tradeoff between the range and the remainder error bound in Example 6.

VI. GENERALIZATIONS AND OPEN PROBLEMS

In this section, we introduce two interesting generalizations of the robust CRT, i.e., robust general-

ized CRT for multiple integers and robust double-remaindering CRT, and their related open problems,

respectively.

A. Robust Generalized CRT for Multiple Integers

The above robust CRT is studied for estimating the frequencyof a single harmonic signal in the signal

model (1). A common practice is to estimate the multiple frequencies of a superposition of harmonic

signals from multiple undersamplings. More explicitly, let us considerρ frequenciesNi Hz for 1 ≤ i ≤ ρ

that need to be estimated in a superpositioned signalx(t):

x(t) =

ρ
∑

i=1

ai exp(j2πNit), (42)

whereai are unknown nonzero complex coefficients. We undersamplex(t) with multiple sampling rates

mk Hz for 1 ≤ k ≤ L, and the sampled signal with sampling ratemk Hz is

xk[n] =

ρ
∑

i=1

ai exp(j2πNin/mk). (43)

We then take themk-point DFT toxk[n] and obtain

Xk[l] =

ρ
∑

i=1

aiδ(l − ri,k), (44)

where δ(l) takes1 when l = 0 and 0 otherwise, andri,k are the remainders ofNi modulo mk, i.e.,

ri,k ≡ Ni mod mk. Thus, what can be detected from the sampled signal with sampling ratemk Hz is

the following remainder set

Sk ,

ρ
⋃

i=1

{ri,k} , {ti,k : i = 1, 2, · · · , ρk}, (45)
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where ti1,k < ti2,k for 1 ≤ i1 < i2 ≤ ρk, and ρk ≤ ρ is the number of distinct elements, i.e., the

cardinality, of the setSk. Note that the correspondence between the elements in a remainder set and the

multiple integers is unknown. Hence, the multiple frequency estimation problem equivalently becomes

the reconstruction problem of the multiple integers from their unordered remainder sets [18]–[21], which

we call the generalized CRT for multiple integers.

As an illustrative example, let us consider the case when three integers are5, 19, 192 and three moduli

are5, 7, 9. In this case, the three remainder sets we can detect are{0, 2, 4}, {3, 5}, {1, 3, 5}, respectively.

The problem is to uniquely reconstruct the three integers from these remainder sets and moduli, where

the correspondence between the three integers and their remainders in a remainder set is not specified,

for example, in the second remainder set{3, 5}, we know neither whether3 is the remainder of the first,

second or third unknown integer modulo7, nor whether3 repeats once or twice. One can easily check that

another three integers10, 12, 59 have the same remainder sets as above. So, the range for the uniqueness

of the reconstruction of the three integers would be much smaller than [0, lcm(5, 7, 9)) = [0, 315),

unlike the CRT for a singe integer. Without loss of generality, assume thatm1 < m2 < · · · < mL are

pairwise coprime. A best known range for the generalized CRTfor multiple integers was proposed in

[58] whenρ > 2. Before stating it, let us introduce some notations. Let̟ be aγ-partition of modulus

set M , {m1,m2, · · · ,mL} such thatM is decomposed into a union of itsγ disjoint subsets, i.e.,

M = M̟
1

⋃M̟
2

⋃ · · ·⋃M̟
γ andM̟

i

⋂M̟
j = ∅ for any pair of i and j with i 6= j, whereM̟

i

can be the empty set. Defineb̟i ,
∏

ml∈M̟
i

ml if M̟
i is not empty, andb̟i , 1 otherwise. Then, let

b(γ) , max
̟∈P

min
1≤i≤γ

b̟i andc(γ) , min
̟∈P

max
1≤i≤γ

b̟i , whereP denotes the set of allγ-partitions ofM. Then,

we have the following result.

Theorem 5: [58] N1, N2, · · · , Nρ can be uniquely determined from their remainder sets, if

max{N1, N2, · · · , Nρ} < max







min{c(ρ), b(2)},
⌈L/ρ⌉
∏

i=1

mi,mL







(46)

whenρ > 2, and

max{N1, N2, · · · , Nρ} < max{b(2),mL} (47)

whenρ = 2, where⌈·⌉ denotes the ceiling function.

The range given in Theorem 5 is not necessarily the largest one. Let us give a simple counter example

as follows. Consider the case of two integer determination (i.e., ρ = 2) from their four remainder sets

(i.e., L = 4), where the four moduli are given bym1 = 17,m2 = 19,m3 = 20,m4 = 21. In this case,
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the range from Theorem 5 ismax{N1, N2} < 357, whereas the largest range is easily checked to be

max{N1, N2} < 737. Recently, the largest range along with an efficient reconstruction algorithm for the

generalized CRT for two integers, i.e.,ρ = 2, has been studied and/or provided in [59] and [60] with the

following theorem.

Theorem 6: [60] If mL−1 ≥ 3, the largest range for uniquely determining two integersN1, N2 from

their remainder sets is

max{N1, N2} < min
I⊆Q







∏

i∈I

mi +
∏

i∈I

mi







, (48)

whereQ = {1, 2, · · · , L}, and the symbolI denotes the complement ofI in Q.

So far the largest range and any simple reconstruction algorithm for the generalized CRT for multiple

(larger than2) integers are still unknown and would be interesting. Incidentally, by imposing additional

conditions on the multiple integers and/or the moduli, somedifferent results were proposed in [19],

[61]–[63].

On the other hand, considering that the detected remaindersin the remainder sets often have errors due

to noise in practical applications, there is an even greaterneed in the future for robustly reconstructing

the multiple integers from the erroneous remainders, similar to the robust CRT. Recently, the generalized

robust CRT for two integers has been presented in [32], underthe assumption that the remaining factors

of the moduli divided by their gcd are pairwise coprime. Mathematically, let modulimi = mΓi for

1 ≤ i ≤ L, whereΓ1,Γ2, · · · ,ΓL are pairwise coprime. Letτ be the remainder error bound, i.e.,

| △ ri,k| = |r̃i,k − ri,k| ≤ τ for i = 1, 2 and1 ≤ k ≤ L. Then, we have the generalized robust CRT for

two integers in the following.

Theorem 7: [32] If integersN1, N2 are assumed to be in the range

max{N1, N2} < m · min
I⊆Q







∏

i∈I

Γi +
∏

i∈I

Γi







(49)

and the remainder error boundτ satisfies

τ < m/8, (50)

whereQ andI are defined as in Theorem 6, then we can robustly reconstructN1, N2, i.e., |N̂i−Ni| ≤ τ

for i = 1, 2.

For a reconstruction algorithm of Theorem 7, we refer the reader to [32]. General results for the

generalized robust CRT for multiple integers as well as fastreconstruction algorithms are of great interest
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for further research.

Remark 1:Note that the estimation of frequencies of a multi-harmonicsignal in (42) from multiple

undersampled waveforms has also been considered in the morerecent sparse fast Fourier transform

(SFFT) [64]–[72]. The algorithm in [64], [65] relies on the combinatorial properties of aliasing among

frequencies in DFTs such that by taking enough DFTs of sub-samples with coprime sampling rates, each

frequency is isolated from the others in at least half of the DFTs. Then, based on the CRT and majority

rule, all the frequencies are guaranteed to be recovered. In[66], [67], enough DFTs of sub-samples with

coprime sampling rates are also needed such that each frequency is isolated for at least one DFT, and

then by using slightly shifted samples to distinguish non-aliased frequencies from aliased ones in a DFT

and determine the values of the non-aliased frequencies, a different algorithm with reduced sampling

and runtime complexities was proposed. In [68]–[72], by using aliasing filters with coprime sub-Nyquist

sampling rates, the frequency coefficients are split into buckets such that the value in each bucket is

the sum of the values of only the frequency coefficients that compose the bucket. All the frequencies

are then estimated by iteratively estimating the frequencies from buckets where they do not collide and

subtracting them from buckets where they do collide, in which the change of the phase caused by shifted

samples is used to determine the frequency and the corresponding frequency coefficient in the bucket

with exactly one frequency coefficient. The robust CRT and generalized robust CRT we have discussed

in this paper are different from the above mentioned SFFT based algorithms in a number of aspects:

1) The sub-Nyquist sampling rates (or moduli) are neither limited to being pairwise coprime nor require

specific combinatorial structures.

2) Additional samplings at slightly shifted points are not needed. The number of DFTs or the number

of samples required is significantly less.

3) All the frequencies (or large integers) are estimated in one shot based on the proposed generalized

(robust) CRT from the detected aliased frequency (or remainder) sets.

4) The robustness is considered with respect to the errors inthe remainders.

B. Robust Double-Remaindering CRT

Many ambiguity problems in practice can be reduced to the solution of simultaneous linear congruences.

So, the CRT provides an ambiguity resolution method. We nextstate the (robust) double-remaindering

CRT, which originally arises from estimating the radial velocity of a ground moving target by resolving

the so-called time-space Doppler ambiguity in multichannel SAR [33], where the time domain Doppler
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ambiguity occurs first in each channel and then the spatial domain Doppler ambiguity occurs among

multi-channels. We refer the reader to [33] for details.

In terms of number theory, the double-remaindering CRT opens a brand new mathematical problem,

as described below. LetM1,M2, · · · ,ML andN1, N2, · · · , NL be positive integers, whereNi < Mi for

1 ≤ i ≤ L. Then, a nonnegative integerN can be written as

N = miMi + niNi + ri, for 1 ≤ i ≤ L, (51)

whereri with 0 ≤ ri < Ni are called the double-remaindering remainders for whichN is first taken a

modulo with a larger positive integerMi and then its remainder is taken another modulo with a smaller

positive integerNi, i.e.,

ri ≡ (N mod Mi) mod Ni. (52)

For example, letM1 = 12,M2 = 20 andN1 = 5, N2 = 9. We can find thatN = 29 andN = 0 have the

same double-remaindering remaindersr1 = r2 = 0. A natural question is how large the integerN can

be so that it can be uniquely determined from the double-remaindering remaindersri for 1 ≤ i ≤ L. Let

di , gcd(Mi, Ni) andri = kidi + |ri|di
for 1 ≤ i ≤ L, where|ri|di

denotes the remainder ofri modulo

di. We rewrite (51) as

N =

(

mi
Mi

di
+ ni

Ni

di
+ ki

)

di + |ri|di
, (53)

and then we can simply regard the double-remaindering CRT asthe CRT. Accordingly,N can be uniquely

reconstructed fromri if 0 ≤ N < lcm(d1, d2, · · · , dL). Obviously, the range we have above is too weak,

especially whenMi andNi are coprime. This analysis is only a first look for this problem, and further

research is clearly needed. What is more is that we expect to see any development of the robust double-

remaindering CRT, when the double-remaindering remainders ri for 1 ≤ i ≤ L have errors.

VII. C ONCLUSION

In this paper, we have provided an overview on the robust CRT and its applications in frequency

estimation from multiple truly sub-Nyquist samplers. It summaries some of the research results on this

topic from the authors’ group starting from the mid 1990s. Italso provides some of the challenging open

research problems on this topic. Since the robust CRT problem is a fundamental problem, we believe

that it will have broader applications than what we have mentioned in this paper.
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