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Filterbank Precoders for Blind Equalization:
Polynomial Ambiguity Resistant Precoders (PARP)
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Abstract—Filterbank precoding in the intersymbol interference  needed), and more importantly, enables an ideal FIR equalizer
(ISI) mitigation has recently attracted much attention. Two main  for any FIR ISI channel and any kind of signal symbols at the
areas of such research have been expl_ored. One of them is on fllter-expense of a minimum amount of bandwidth expansion. To
bank precoding when the ISI channel is known to both the trans- truct i . h h h th
mitter and the receiver, while the other is on filterbank precoding construct an equalizer using S_UC an approach, owever, . ¢
when the ISI channel is not known to the transmitter or the re- knowledge of an ISI channel is needed at the receiver. This
ceiver. This paper is in the second area and the aim is two-fold. precoding scheme has been generalized to the level of error
We first summarize some recent results orambiguity resistantil-  correction coding (ECC) [15], [16], [52], [17], [50] and is
terbank precoders for the ISI mitigation when the ISl channel is named as modulated coding (MC), i.e., ECC over the complex

not known at the transmitter or the receiver, i.e., for blind equal- . ; - .
ization. We then present somaewresults on the construction and field. The advantage of MC is that it can be naturally combined

characterization of such precoders. The theory presented in this With an ISI channel and therefore optimally designed for the
paper applies to both single antenna (SISO) systems and multiple ISI mitigation. As a result, the ISI in this case is no longer
antenna (MIMO) systems as space-time precoding. distortion but a gain. It is shown [15] that for any finite tap ISI
Index Terms—Blind equalization, filterbank precoding, inter- channel there always exists MC such that it has coding gain
symbol interference mitigation, polynomial ambiguity resistant in the ISI channel compared with the uncoded ideal additive

precoders, space-time precoding. white Gaussian noise (AWGN) channel. For the filterbank
precoding when the ISI channel is known, see also [11] and
I. INTRODUCTION [12], where the minimum mean square error (MMSE) criterion

or the optimal precoder design is used. The disadvantage of

. : f
UE TO the intersymbol interference (ISI), channelyis approach is that both the transmitter and the receiver need
equalization is one of the most important tasks in digita} know the 1SI channel.

communications which becomes more and more important in
high-speed communication systems. There have been extengjverrevious Work
studies on this problem in the last several decades, most of,

. . ) .. “As a part of postequalization techniques, blind equalization
which focus on the following three areas:1) post equalizatign .
) . - s attracted much attention lately due to the recent advances
techniques, such as zero-forcing (ZF) and decision feedbac

I . . 1IN channel identification using output diversities (for example,
equalization (DFE) [32], [33]; 2) precoding techniques, such " ) . . ;
as Tomlinson—Harashima (TH) precoding and trellis precodi multiple receivers) [18]-[20]. Spatial diversity (antenna arrays)

i L . . N d temporal diversity (fractional sampling) are the mostly
[38]-{47]; and 3) multicarrier modulation techniques [34}-{37]; lleied ones among possible others. Many blind identification

. t
Although many of these techniques have found SUCCGSS?Lf' orithms exploiting either second-order cyclostationary

applications in practical systems, their performance usuaﬁygtistics [18]-[31] or algebraic structures (often referred to

degrgdes s_|gn|f|cantly when the c_hannel; have spectrum nuﬁg'the deterministic solutions) [22], [23] have been proposed.
and in particular when the SNR is not high. Recently, a new : L S
However, the use of output diversities inevitably multiplies

filterbank precoding method shown in Fig. 1(a) was proposedtque number of data samples and therefore causes additional

[1], where the filterbank precoder is channel independent, Iineé':lorrn Utations at the receiver A new transmitter-assisted
(unlike the TH and trellis precoding, nho modulo operation if b . o ) ;
precoded) blind equalization method has been studied lately

in [2], [3], [51], and [4]-[7] as explained below, where the
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Fig. 1. (a) Filterbank precoding. (b) A general filterbank precoded system of matrix form.

—@

puts than inputs. With existing MIMO identification methodspaper applies to both single antenna (SISO) systems and mul-
for example [22], [23], [9], [28], and [29], the multi-input tiple antenna (MIMO) systems as space—time precoding. In the
signal can be identified up to a nonsingular constant matrbecond part (Section Ill), we present some new properties and
from the multi-output signal. The ambiguity resistant precodec®nstructions of (strong) PARP, such as a hew connection be-
proposed in [3] and [51] are capable of removing the constamteen PARP and strong PARP and a new sufficient condition

matrix ambiguity directly from the receiver outputs. Thes#or strong PARP. In Section IV, we present some simple simu-

precoders can be thought of as a family of the precoders ptation results.

posed in [1] with an additional ambiguity resistant capability

(by adding memory to the precoding), which is essential to thig. PoLYNOMIAL AMBIGUITY RESISTANT PRECODERS(PARP)

blind identifiability. In [5], ARP are systematically studied and

characterized and constructed. To resist an ISI channel, an ARIQ1 th'$ se_ctlon,_ we review the gonc_ept O_f (st_rong) PARP and
itS applications in blind signal identification introduced and

is sufficient. However, in practical communication systems, the """, . .
additive noise has to be taken into the account. Thereforesl:t‘Udled in [3], [51], [4]. By using the polyphase representation

S ) . "Cofa filterbank, the precoded system in Fig. 1(a) can be recast
natural question is which ARP is more robust to the add|t|\z<ra%tO the general one in Fig. 1(b), whe€¥z) is the polyphase

noise. In [6], such an issue is addressed, where an opt|ma|| trix of Go(2), - - -, Gy _1(#), andH(~) corresponds to the

on ARP is introduced and some optimal ARP are CharaCte“ZSseudo—circulant matrix blocked from (=); see for example

and constructed. In [4], the concept of the ambiguity resstan@]. In what follows, we focus on the general MIMO system in
I

is generalized from resisting only constant matrices to any F . .
polynomial matrices as shown in Fig. 1(b). For obvious rea-J: L(b), where(G(z) andH(z) are two polynomial matrices,

. .~ and the problems of interest are: What is the condition on a
sons, the precoders studied here are c48tdng) polynomial recoderGc(z) such that the receiver is able to blindly recover
ambiguity resistanprecoders (PARP). Based on the definition8 ) y

: . ; —1
in [4], strong PARP not only resist the ambiguity in the inpu‘%‘.n input signakX () and/or an MIMO channel inversd ()

i i ?
signals but also in the FIR channel inverse, while regular PAFgg/enG(z) anda rgcelved S|gnad’(7j) ? How to construct such
a precoder? We will answer the first question in this section,

only resist the aml_alguny in the Input S|gn<'_;1I. In th|s_paper, WFe., G(z) is PARP, and study the second question, i.e., the
shall use the notations and the terminologies used in [4]. . : :
construction of PARP, in the next section.

B. Outline of This Paper A. Definitions

As one can see, the filterbank precoding is a transmitter-as-A polynomial matrixH(z) of size N x K has the following
sisted approach and there have been two main areas of resefygh:
on filterbank precoders in an ISI channel. They are i) MC, when

an ISl channel is known at the transmitter and the receiver, H(z) = %”: H(m)>"" (1.1)
where the performance is the key factor and ii) PARP, when 2= t mz '

an ISI channel is not known at the transmitter or the receiver,

where the channel information is the key factor. This paperveghereH (m) areN x K constant matriced(z) is also referred
focused on the second area, i.e., PARP. The aim of this papeas a matrix polynomial in some literature; see for example,
is two-fold. In the first part of this paper (Section 1), we wanf48]. A function matrixV(z) is a matrix where all entries are
to review the concepts of PARP and strong PARP. We also fenctions ofz=1. If H(Q},) # 0, the integerQ,, is defined as
view the related applications and the blind identifiability in athe order of H(z). A polynomial matrixH(z) is invertibleif it

ISI channel. We show that, for the blind identifiability of thehas full rank for some value, wheread (=) is irreducibleif it
input signal in the precoded system, it is necessary and suffas full rank for allz # 0 includingz = oo, which is equivalent
cient for a precoder to be a PARP. The theory developed in thisthe conventional definition of the nonfactorizability [49]. A
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square polynomial matrix ignimodularif its determinantisa  Theorem 1: The following polynomial matrixG(z) of size
nonzero constant. Whel = K, the irreduciblility of H(z) is N x (VN —1) is strongrth-order polynomial ambiguity resistant:
equivalent to the unimodularity (z), i.e., its determinant is

a nonzero constanH(z) has FIR inverse if and only iH(z) 71,71 o 0 0 0

has determinantz~"° for some nonzero constantind integer z _1_1 0~ 0 0

ng. H(z) is irreducible implies that it has FIR inverse. Clearly, G(z) = 0 z 1 ’ 0 0

the probability of anV x N polynomial matrix having FIR in- : : : :

verse is zero. On the other hand, wh&nh > K, H(z) is ir- 0 0 0 .--- "1 1

reducible if and only if all the determinants of all the x K 0 0o 0-- 0 z"t Nx(N—1)
submatrices oH(z) are coprime, which holds with probability (11.3)

1 for an arbitrarily givenV x K polynomial matrixH(=). It is

clear that anV x K irreducible polynomial matri¥(~) with  for an integerr > 0.

K < N has anK x N irreducible polynomial matrix inverse  We shall characterize (strong) PARP later in Section IlI.
H=1(z),i.e, H Y (2)H(z) = Ix, whereH™*(z) may not be

unique. For more about unimodular and irreducible polynomiBl. Applications in Blind Identification

matrices, we refer the reader to Vaidyanathan [48]. ~_ We now discuss the application of the PARP to blind system
We are now ready to define (strong) polynomial ambiguitiyentification of a MIMO communication system with ISI/mul-
resistant precoders. First, let us define polynomial amb@u%ath channels.
resistant precoders (PARP). , _ ~ 1) Blind Identifiability: A general 1SI communication
Definition 1: An N x K irreducible polynomial matrix qystem is shown in Fig. 1(b), whel&(z) is the input signal of
G(;;) is rth—qrder polynomial amp|guny r¢3|stant if the fol-gi,e i « K, G(2) is the precoder of siz& x K, H(z) is an
lowing equation for ai’ x K function matrixV(z) has only |s| channel transfer matrix of sizel x N, Y () is the output
trivial solutions of formatV(z) = «(z)I) for some nonzero signal of sizeM x K, K < N < M, andz(z) is the additive
polynomiala(z) of order at most: noise term of sizé/ x K. Herein, the goal is to identifi(z)
from Y (z) without knowing the ISI channel characteristics.
Note thatG(z) is chosen by the designer and is thus known
E(2)G(z) = G(2)V(?) (I.2)  to the receiver. The techniques presented here concern the
exploitation of the precoder structure in removing the unknown
whereE(z) is anN x N nonzero polynomial matrix of order channel effects.
at mostr. _ o _ SinceH(~z) is almost surely irreducible, we assume it is ir-
The above polynomial ambiguity resistant property only reeduycible in the remainder of this paper. The irreducibility of
quires the uniqueness of the right-hand side ma¥f{x) up to  11(;) ensures that its inverse is also a polynomial matrix and
a nonzero polynomial. Strong PARP are defined as follows. thys input can be perfectly recovered from the output using FIR
Definition 2: An IV x K irreducible polynomial matrixa(z) equalizers.
is strong rth-order polynomial ambiguity resistant if the fol-  Tnere are essentially two problems to be studied in blind iden-
lowing equation for anV x N nonzero polynomial matri(z) tification. One on blind identifiability and the other on blind
of order at most and aK » K function matrixV(z) has only gentification algorithm development. For convenience, we as-
trivial solutions of formalEi(z) = «(z)Iy andV(z) = a(z)lx  sume a noise-free system and sét) to be zero. In the case
for some nonzero polynomial(=) of order at most: of K = 1, the overall system in Fig. 1(b) is a single-input/mul-
tiple-output (SIMO) system, which has been extensively studied
[18]-[31]. Therefore, in the following we only consider the case
E(2)G(z) = G(2)V(z). whereK > 1. Foran inputi x K signalX(z) with K > 1, the
greatest common divisor (gcd) of all component polynomials
The above strong polynomial ambiguity resistant property rgf X () is almost surely a nonzero constant. Such is assumed
quires the uniqueness up to a nonzero polynomial not only f@roughout our discussions. Note that considefihg K input
the right-hand side matri¥(z) but also for the left-hand side signals is equivalent to consideridx 1 input signals. Clearly,
nonzero polynomial matrif(z). Obviously, strong PARP are 3 column of ak’ x K input signal is @ x 1 input signal. Con-
PARP. The ambiguity resistant precoders studied in [3] and [SJdrsely, ak x K input signal can be obtained by splitting a
are the (strong) zeroth-order PARP here. It can be easily verifigdx 1 Signa| intokK manyK x 1 signa|s and putting thedg
that a (strongjth-order PARP is also a (stron@) — 1)th-order many K x 1 signals together.
PARP. We will see later in Section II-B-1 that: i) the inXit 2) We first study the blind identifiability for the input signal.
is blindly identifiable from the outpul(z) and the precoder KnowingY(z), letX,(z) andH; (=) be the candidate input and
G(z) in the precoded system in Fig. 1(ib)and only ifthe pre- channel, respectively. The gcd of the componentXefz) is
coderG(z) is PARP and ii) both the inpuK(z) and the ISl assumed to be a nonzero constant, wheEggs) is anM x N
channel invers&l—*(z) are blindly identifiable from the output irreducible polynomials aH(z). Then, the blind identifiability

Y (2) and the precode (2) in the precoded system in Fig. 1(b)can be described by the following uniqueness:
if and only ifthe precodefz(z) is strong PARP. The following

family of strongPARP is first presented in [3], [51], [4]. Y(z) =H1(2)G(2)X1(z) = H(2)G(2)X(2)
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implies where the lower bound is achievable; see for example [23] and
X, (2) = aX(z) (1.4) [30]. Therefore, the total orderof H{'(2)H(z) satisfies
NQ,+N-M NQy,
for some nonzere. The uniqueness (11.4) implies that the input > Q}— +Qn = 1V ?}N

signal X(z) can be uniquely determined up to a scale from M-N

the output signaly’ () and the known precode€i(z). In other ~ Conversely, ifV(z) in (I1.2) has a nontrivial solutioV (z) #
words, the input signaX (z) can be blindly identified. It should a(z)Ix, the inputsX(z) andX; (z) with X(z) = V(2)X1(z)
be noticed that without the precod8x ») in Fig. 1(b), the input andH;(z) = H(z)E(z) satisfy
signalX(~) can only be blindly identified up to & x K nons-
ingle constant matrig® ambiguity by using MIMO blind iden- Y (z) = Hi(2)G(2)X1(2) = H(2)G(2)X(2).
tification techniques [22], [28]-[30].

In [3] and [51], blind identification is accomplished in two
steps. First, existing MIMO blind identification techniques are

used to determine the input signal within a matrix ambiguity, : . L .
i . . ; . ducible polynomial matrix with orde®,. If G(z) is arth-order
and then this constant matrix ambiguilyis resisted through lynomial ambiguity resistant precoder, then, the input signal

; . 0
a zeroth-order PAR precoder. In this subsection, we study P e . - _
possibility of employing a proper order PARP so that the inpl%t'(ij; :nl;l?ﬁelfgk)r)e::sozlég(IZ)Idﬁﬁg:ﬁlble from the output signal

signal X(») can be directly identified from the output signal
Y (z) using a closed-form algebraic algorithm. NQy
The input signal blind identifiability in (11.4) can be refor- "= [M _ NW :
mulated as follows by pre- and post-multiplyidd; () and
X_l(z), respectively, to both sides On the other hand, if the input sigrn®l =) in Fig. 1(b) is blindly
identifiable from the output signaf () and the precodd&( 2),
G(z) must be a polynomial ambiguity resistant precoder of a
certain order.
o Similar arguments apply to the blind identifiability for both
implies the channel inversH~—(z) and the input signaX(z) by using
X1 (2)X Hz) =alk (IL5)  strong PARPY (2) = H;(2)G(2)X1(2) = H(2)G(2)X(2)
if and only if H ' (2)H(7) = a(2)Iy andX;(2)X(2) =
for some nonzero constant whereH; ' () is a left inverse of a(z)Iy, i.e., H*(2) = a(2)H 1(z) andX;(z) = a(2)X(2)
H,(z), i.e, HT*(»)H(2) = Iy. Note that (I1.4) is stronger for some nonzero polynomiaz). Following the proof of The-
than (I1.5) sinceH,(2)G(2)X1(z) = H(#)G(#)X(z) indi- orem 2 about the gcd divisiony z) can be found fronX (z) =
catesH ' (2)H(2)G(z) = G(2)X1(2)X1(2) but not vice «(z)X(z), and thenH~1(z) can be found fromH['(z) =
versa. a(z)H~1(2). The necessity is also similar to the one for The-
The N x N matrix H; ' (2)H(%) is almost surely a nonzeroorem 2. This proves the following result.
polynomial matrix. IfH *(»)H(z) has order at most, thenas ~ Theorem 3: Assume the ISI chann&(z) is anM x N irre-
long asG(z) is rth-order polynomial ambiguity resistant, (I.5)ducible polynomial matrix with orde®,,. If the precodeiG(z)
implies X1 (2)X71(2) = a(2)lg, i.e., X1(2) = a(2)X(z) is strongrth-order polynomial matrix ambiguity resistant, then
for a nonzero polynomiak(z) of order at most. This implies the input signalX(~) and the ISI channel inverd—*(z) in
that arth-order PARRG(z) can reduce thd/ x N polynomial Fig. 1(b) are blindly identifiable from the output sigrgl(>)
matrix ambiguity into a scalar polynomial ambiguity. Under thand the precodd& (=), wherer is defined in (11.6). On the other
assumption that the gcd of all componentXaf ») is anonzero hand, if the input signaK(z) and the channel inverdd=!(z)
constant, we can easily redueéz) to a constant scala,. This in Fig. 1(b) are blindly identifiable from the output sigrigl z)
proves that if a signaX (z) with the gcd of its all components and the precode&(z), G(z) must be a strong polynomial am-
as a nonzero constant, aif{z) = H;(z)G(2)X1(z), then biguity resistant precoder of a certain order.
X1(z) = aX(z) for a nonzero constant. In other words, the As a remark on the blind identifiability, sincH(z) is not
input signalX(z) is blindly identifiable. a square matrix, its inversl—1(z) is not unique. The above
The above discussions imply that whéh =) is rth-order blind identifiability means the unique solution (up to a nonzero
polynomial ambiguity resistant, the input sigri¥l z) can be constant difference) for the input sigri€{z) and a solution for
blindly identified from the outpul (=) and the precodd&(z). the inversdl—(z) of H(z). Although the overall solutions for
In order to choose a proper precod@iz), it is important X(z) andH 1(z) may not be unique due to the nonuniqueness
to estimate the minimal order of the polynomial matrix of H=!(z), the inputsignal paiX(x) is always unique. Another
H, '(2)H(z) given the ISI channel order #(z), Q. remark is that although a PARP is good to resist an ISI channel,
It is known that the orde);, -« of H=!(z) satisfies its sensitivity to additive noise is not addressed in this paper.
A design property was proposed in [6]. As a final remark, the
irreducibility of an MIMO channeH(z) in Theorems 2 and 3
NQL+N-M is satisfied almost surely as mentioned before for a randomly
T M_-N given M x N polynomial matrixH(z) whenM # N.

Therefore, it is not possible to identify the input signal.
The above results are summarized in the following theorem.
Theorem 2: Assume the ISI chann&l(z) isanM x N irre-

(11.6)

H ' (+)H(2)G(2) = G(=)X1 (X ~1(2)

Qh*l >
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2) An Algebraic Blind Identification AlgorithmResults Then fromF(2)Y (z) = G(2)X(z) we have
in Section II-B-1 suggest an algebraic algorithm for the

blind identification: solve for X;(z) in the equation & _
Y(z) = Hi(2)G(2)X1(z) from the known outputy(z) > (Z FOY(m — l>> %
and the precodet(z); then remove the scalar polynomial, mo\=0
a(z), from X4 (») to obtainaX(2). “y
Although the input and output signa¥(z) andY (z) are in = D eoxm-p |
matrix forms in the previous sections, they can also be column m \1=0

vectors by equating corresponding columns in the matrices,
To derive a time-domain closed-form algorithm, we adopt the

vector representation for the input and output in the following @ @y
discussion. More specifically, we consider Z FOyY(m-1) = Z G(HX(m - 1), meEZ
=0 =0
Y(2) = H(2)G(2)X(2) (11.7) (1.12)

whereF'(m), 0 < m < @y, andX(m), 0 < m < @, are
whereX(z) is of sizeK x 1andY (z) is of sizeM x 1. H(z)is unknowns to solve. For each, let
the M x N irreducible 1SI channel of ordep;,, andG(z) the
strongrth-order PARP, where takes the value in (11.6). The fim
parameterd(, N, M satisfy the inequalitie® < N < M. F(m) = F2.m
It is established in the previous section that solutions of :

fN, m

wheref; ., is thelth row of the matrix#'(m). DenoteF asuper
. column vector containing all unknowns in matricggm), 0 <
satisfyX,(z) = a1 (2)X(z) andH ' (2)H(z) = ai()Lz2). m < Qy, e,
ReplacingY (z) with 2"Y (z) in the above equation yields

=(f1,0, =+, fzvoo fi,1 05 I

H, (2)2"Y (2) = G(2)X2(2) (11.9) v L vt (1.13)

The size ofF is (M N(Q; + 1)) x 1. Let Y(m) be the block

- .
whereH; " (z) and }52( #) are the solutions corresponding tGy,4rix shown in (11.14) at the bottom of the next page, of size
the received signad” Y (z). Clearly, X2(z) = z"aa(2)X(z). N x (MN(Q; + 1)) for each integern.

To exploit the precoder structure and remove the scalar p°|yn°Then the time-domain equivalent of (11.10) is given by
mial from the input estimate in one shot, consider the following .

H'(2)Y(2) = G(2)X1(2) (1.8)

equation set: X(m)
. A YmF =(GO)--G| i |, mz0
{ IOV =X | X(m— Q)]
Hy ' (2)2"Y (2) = G(2)X(2) (11.15)
and L i
Then X(2) = ai()X(z) and at the same time, X(m)
X(2) = 2"aa(2)X(z). Since ai(z) and as(z) are of Y(m 4 r)Fy =(G(0)---G(f)) ; m > 0.
order at most, it is not difficult to show thatX(z) must be X(m—-Q,)
of form aX(z). Hence, the input sequence can be uniquely - g (11.16)
identified by solving the above linear equation set in the time '
domain. Upon defining; = [V (i)--- Y7 (Q, — r)]", we are able to
. Denote]_i‘(z) = H™!(z). From previous discussion, the min-combine the above equations and establish a linear equation set
imum achievable order df(z), Q) is given by with respect to all unknowns as follows:
- NQh + N - M Fl
Qr = [—M N —‘ (I.11) Y 0 -G Fy
0 Y. -G X0 | =0 (11.17)
Let Yo =Y 0 :
Qf Qg X(QT - 7‘)
F(z) = Z Fim)z~™" and G(z)= Z G(im)z—™

- v whereG is the generalized Sylvester matrix shown in (11.18)
Q. Q, at the bottom of the next page. Since (11.17) is a typical linear
X(z) = Z X(m)z~™ and Y(z)= Z Y (m)z™. system, itcan _be s_olved by using any n_umerical method of linear
equations, which is not the focus of this paper.

m=0 m=0
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The input signal as well as the zero-delay and mawhereH,(>) isthelth polyphase component &f(~) as follows:
imum-delay zero-forcing equalizers can be readily determined.
It can be easily verified that when the number of data vectordli(z) = > H(Mn+10)z"",  0<1< M —1. (11.20)
increases, there are more equations than unknowns in the above n

linear homogeneous system, which renders an overdetermineg, matrixE(z) is pseudo-circulant and can be diagonal-

system with a unique solution. ized as follows (see [42], and [48]): L&y, be theM x M
DFT matrix, i.e., Wy é (Wjj\k)ogjykgjwfl, whereW,, =

_ _ _ _ e~ 2V=1/M: A (%) the diagonal polynomial matrix
In this section, we will apply the theory previously devel-

oped to blind identification of a baud-rate sampled communica- An(z) EY diag1, =%, - -
tion system and an undersampled system with multiple receivers
(antennas). Contrary to most existing blind identification teclandV (z) the following diagonal polynomial matrix in terms of
nigues, the use of PARP allows the blind identification to béae polynomialH (z):
accomplished without output diversities.

1) Applications in Single-Receiver, Baud-Rate SampledV(z) £ diag(H (z), H(zWay), -+, HWM=1). (1.21)
Systems:A precoded single-receiver communication system
is shown in Fig. 2, where the baud-rate sampled ISI channelligen
characterized by a polynomiél () of orderg;,. S My X -1 "

To apply the blind technique(s ()jeveloped in the previous sec- H(T) = (Wi A ()7 VWi AN(Z). - (122)
tion, we need to formulate the above system and transfer it intopgy g precoder to resist the polynomial ambiglfﬂ)(,z) and
the one shown in Fig. 1(b). To achieve this, we block the outpg( ) must be rearranged so that the channel becomes a tall
signaly[n] with block size} (from serial to parallel) into an anq irreducible polynomial matrix. Clearly, whefi(z) is not
M-element vectoy’(n). The system in Fig. 2 can then be repa nonzero constant, the polynomial matiikz) is not irre-
resented as in Fig. 3, wheld(z) is the blocked version (seeqycible. Although this is true, it has been proved in [1] that any
[48]) of the channeH (=) in Fig. 2 M x N submatrix ofH(z) is irreducible as long as two rota-
tions of the zero set of the polynomi#l(~) at the angle$V [}

C. Applications in Communication Systems

271\4+1)

7

r _1 . .. _1 T
Ho(z) 27 Hua(2) 2T H(2) for 0 < m < M — 1 do not intersect. Since this condition is
Hi(z) Hy(») - 2 THy(2) satisfied almost surely for a polynomiAl(z), we may assume
H(z) = . ) . ) that allAf x N submatrice¥#(z) of H(z) are irreducible when
o : : : : N < M. Hence we can design the x K precoder in Figs. 2
H]w_g(z) H]w_g(z) v ZﬁlH]w_l(z) and 3 to be
LHyr—1(z)  Hp—o2(2) - Ho(z) | > [ In }
G(z) = G(z 11.23
(I119) = Lo nyn | €@ (1.23)
Y¥(m) - Y'(m—Qy) 0 0
0 0 YT(m) YT(m—Qf) 0
Y(m) =
0 0 0 0 YT(m) YT(m—Qf)
(11.14)
[ G(0) 0 0 0 0 0 7
G(1) G(0) 0 0 0 0
G=1GQg) GQ;-1) G(Qy—2) --- G(0) 0 T 0 (1.18)
0 G(Q,) GQ,-1) - GQ1) GO) - 0
L O 0 0 0 G(Qg) G(0) |
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precoder channel

binary complex

data ECC/| data serial to| X(n)
MOD | x(n)

= z(n) parallel Y )
parallel [—9=|G(Z)—® " i —®H(2)

Mxk

n(n)

Fig. 2. A single-receiver communication system with baud-rate sampling.

precoder channel

binary complex Y(n)

a data ial to] X[~ Z(n)| ..
S Pl parallel [—#-| G (z)—m=H(2)
MOD | x(n)

MxK MxM

n(n)
Fig. 3. A blocked single-receiver system with baud-rate sampling.
whereG(z) is an N x K PARP studied previously. Conse-identified from the outpu¥ (») using the closed-form algorithm

quently, the system in Fig. 3 can be described as follows: in Section 1I-B-2.
Notice that the existing blind identification techniques require

Y(z) =H(2)G(2)X(2) the data rate to be at least twice the input symbol rate at the
and receiver.
. In 2) Applications in Undersampled Antenna Array Receiver
H(z) =H(2) |:0(J\4 NMN} (11.24)  systems:Having shown that blind identification can be accom-

plished with a minimum amount of bandwidth expansion using
whereH(z) is actually anM x N submatrix of theM x M p.recoding techniques, we now study the possibility of perfect
pseudo-circulant matri€l(z) in (11.19), which is irreducible. Signal recovery when the received signals are undersampled.

From (11.24), itis clear that the system in Fig. 3 is reduced to the Without loss of generality, an _undersampled antenna
one in Fig. 1(b). The theory/algorithm developed in Section |I-BMay system can be shown in Fig. 4, whek(z) for

becomes readily applicable to the above single-receiver systerm 1> 2 ---» M are the ISI channel transfer polynomials of
in Fig. 2. the M antennas, andv | means downsampling by factéy,

Given the order of the ISI channel polynomil(z), g, i.e., taking one sample from eadki samples. Clearly, only

the order of precode€(z), r, can be determined as foIIows.partial information of the input is available in each antenna
From (11.19) and (11.20), the order of the pseudo-circulant m&utput. It is proved in [3] and [51] that it is impossible to

trix H(z) and its submatrisH(z) is recover the input inndIy from thé/ outputs without using
precoding at the transmitter.
an The system in Fig. 4 can be converted to the one in Fig. 5,
Qn= {M} : whereH(z) is theM x N polyphase matrix of théd/ polyno-

mials Hy(z),1 <1 < M: H(z) = (Hy, o(2))pxn. Here
From (11.6), the corresponding parameters of the precoder in

(11.3) can be set as Hyn(2) = Z H(Nk+n)z"F
k
N {%1 is thenth polyphase component of ta polynomial H;(z) =
r = TN K=N-1 and M > N. (I1.25) S Hi(m)z"™, andY (n) = (y1(n), y2(n), - -, yM(n))T_

As discussed in Section I, whel > N this matrix H(z)

is almost surely irreducible. From Fig. 5, one can see that the
With these parameters, the output data rate relative to the inpHliersampled antenna array receiver system in Fig. 4 can be
signal rate for the above precoded single-receiver systemcigst into the exact same framework in Fig. 1(b), allowing direct
(N/K)(M/N) = M/(N — 1), where M can be chosen as gpplications of the theory/algorithm developed in Section I1-B.
N + 1. ThUS, the relative data rate inCI’ease2j/!~.{N — 1), Assumeqh is the maximum of the orders of the po|yn0_

which approaches zero, i.e., no expansion, whetis large. mials H,(z) for the M antennas. The ord€};, of the polyphase
This proves the following theorem. matrix H(z) is

Theorem 4:For anye > 0, there exists a positive integer
N for the precodefz(») in (11.3) such that the overall data rate Q= {@] .
expansion for the single antenna receiver system in Fig. 2 is less N
thane and at the same time, the input sigl&]z) can be blindly For blind identification, the parameters for the precoditz)
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precoder
binary goxélplex () 2 ()
data ECC/[ @82 serial to| £{n)|~ parallel
g MOD | x(n) parallel [P G(z)—m to seriall
MxK
channel
yl(n)
— B H (Z) ?—» N v -
. (n)
I nl
yM(n)
— 1 (7) ?-» N * e
n,n)
Fig. 4. Anundersampled antenna array system.
precoder channel precoder channel
binary complex binary complex
. (n) ¥(n) data ; X (n) z(n) [¥ (n]
data_ [Ecc/|deta  [serial tof X(n) z data . [ECC/] serial to L
— MOD/W parallel |G (Z)—mH(z) oD || paraller | G (2= [H(z)],
NxK MxN NLxKL MLxNL
1(n) nnl,
Fig. 5. An equivalent undersampled antenna array system. Fig. 6. A blocked undersampled antenna array system.

Here,H, () is thelth polyphase component of the matF( =)
as follows:

w, K=N-1 and M>N. (11.26) Hi(z) =) H(In+Dz",  0<l<L-1

) , where H(m) are the M x N constant matrices from
It should be noticed that the number of antennts, in a H(z) =Y, H(m)z~™. Matrix [H(z)], is block pseudo-cir-

systemis usually fixed. Becausé < M is required, this seems culant.[Y]z(n) and ] (n) with size NL x 1 in Fig. 6 are
to provide a lower bound for the data rate expansioninthe tragsa piocked forms of the vector sequendégy) and n(n)
mitter, which require®) < K_< N < M. With the minimum  oqhectively. Correspondingly, The minimum rate-increase
bandwidth expansion setuf: = N —1, N = M — 1, at least precoderG(z) has sizeNL x (NL — 1). Therefore, if the
1_/(M—1) data rate increase is needed for the blind equalizatigfycreq channel polynomial matr(z)]; in Fig. 6 is stil
given the number of antenna/. In the following, we ShOW i reqcible, then the system in Fig. 6 is reduced to the one in
that this limitation can be lifted by blocking the vector outpult;ig 1(b)

— T in Ei i : ’
sequencd’(n) = (y1(n), y2(n), ---, ym(n))" INFig. 5siM- "Befora hroving the irreducibility of the matrfH(z)]z, letus
ilar to the way for the single antenna system studied in the pr&gestigate the effects of the blocking operations above. Notice
vious subsection. The blocked equivalent of the undersamplgd; ihe overall data rate expansion in Fig. &M — 1)L) by
antenna array receiver system in Fig. 5 is shown in Fig. 6, th{ﬁoosingN — M—1andK = NL—1, which approaches zero
the block size isl, and the matri{H(2)]., is the blocked Vver- \non the block sizé is large. The advantage is that the data rate
sion of the matrbd () in Fig. 5 expansion at the transmitter can be reduced by employing the
above blocking procedure, even when the number of antennas

in (11.3) can be chosen as

. {N (%]

M-N

[H()]e s fixed
- -1 -1 - :
Ho(2)  27"Hya(z) -+ 27 Hi(z) We now need to prove that the blocked versi#h(z)];,
H, () Ho(z) o 2 THu(2) of H(») is irreducible whenH(») itself is irreducible. Since
_ [H(»)]r is block pseudo-circulant, by permuting its rows
o : : : and columns, it can be converted into the block matrix with
Hy 2(2)  Hy3(2) s 2T Hy 1(2) MN blocks and each of the blockB,,, ,(z) is anL x L
| Hyu (%) Hasoo(2) Ho(z) . pseudo-circulant matrix

(”27) [H(z)]L = B(Brn,n(z))l\lxNR’
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whereP; and P, are the row and column block permutation ma- Last but not the least, we want to point out that the precoders
trices. Similar to (11.21) and (11.22) thé x L pseudo-circulant proposed in (11.3) have some interesting features which are es-
matrix B,,, »(z%) can be diagonalized as sential to applications. For example, assuming that theér;/putdata
. 1 to the precoders are modulated complex values, suettag*,
B, n(2") = (WLAL(2) T diag Hpn, n(2), Himon(2W1), . _ 0, 1, 2, 3,in QPSK modulation, since the precoder in (11.3)
oy Hp nGWETY) only sums the current samplé(n) and the pask (n—r—1) as
-WiAL(2) X(n)+ X(n—r—1), the output dat& (n) from the precoder,
which are to be transmitted after a pulse shaping filter, preserves
the modulation symbol patterns except some occasional 0 sym-
bols. This implies that the precoding in Fig. 2 and Fig. 4 can be

[H(25)]; = B[W]Zl(diaQKHm,n(Z), Hop o (2W1), implemented without introducing undue complexity.

oo, Hyp n(zWEL ;
s Hin, n (zWE 7)) ll. CHARACTERIZATION ON POLYNOMIAL AMBIGUITY
[WI]LP- RESISTANT PRECODERS

whereH,, »(z) come from matrixt(z) = (Hm n(2))mxn-
Therefore

where In this section, we want to present some new and known prop-
. X N erties and characterizations of PARP, which are useful in the
[Wlp = diag Wi AL(2), -~ WLAL(2)). PARP construction. It was proved in [4] that for a PARP< K
By implementing the same permutations polynomial matrix we havéV > K. Therefore, in what fol-
I s lows, we always assum® > K unless otherwise specified. It
[H(=")]z = A[W];" Pdiag H(z), H(zWTr), was also shown in [3], [51], and [4] that any constant precoders
-, HEWE™) cannot be PARP of any order whéf > 1. WhenK = 1, the
- P.[W].,P.. precoded system is equivalent to the fractionally spaced equal-

] ] . ] ] izer system studied in [18] and [19], which is blindly identifi-
Since matrice[W] " F; andP,.[W]. P, are irreducible, ma- gpje In what follows, we always assurfe> 1.

trix [H(=)]y, is irreducible if and only isH(>=) is irreducible.
This proves the following lemma. A. PARP-Equivalence and Canonical Forms

Lemma 1: The blocked versiofH(z)], in (11.27) of H(z) Let us first see an equivalence for PARP, which is first in-

is ireducible if and only ifH(z) is ireducible. troduced in [5] for the ambiguity resistant precoder canonical

This lemma and the previous discussion on data rate eXpgljys. LetM v« x (#) denote the set of alV x K polynomial
sion in the transmitter lead to the following result. matrices x

Theorem 5: For anye > 0, there exists a positive integ&f Definition 3: The transformatiofp, q of My () de-
for the precodefz(z) in (11.3) such that the data rate expansiorhned by ’
at the transmitter for the antenna array system in Fig. 5 is less
thane and at the same time, the input sigh&(z) can be blindly 1P, @(A(2)) = PA(2)Q(z),  VA(z) € Mnxk(2)

identified from the undersampled outpuign), 1 < I < M, \whereP isanN x N nonsingular constant matrix a2 is a
of the M antennas with the undersampling facfér= M — 1 g » K unimodular polynomial matrix, is called a PARP-equiv-
using the closed-form algorithm in Section II-B-2 alence transformation, arifie (A(z)) and A(z) are called
It should be noticed that, although blind identifiability in thepaARP-equivalent.
above two theorems holds theoretically for an arbitrary small one can see that a PARP-equivalence transformation includes
amount of data (or bandwidth) expansion, the implementatigl) three row elementary operations with constant multipliers
of the closed-form algorithm in Section II-B-2 may become progng all three column elementary operations where an operation
hibitive when the sizes of the precoders get larger. We wantdpmultiplying a nonzero degree polynomial to a column is not
emphasize that the focus of this paper is on feasibility studigg|uded. From the PARP-equivalence definition, we have the
rather than algorithm development. There is an evident need fgfiowing result.
more sophisticated precoding-based blind identification algo-Theorem 6: A PARP-equivalence transformation preserves
rithms which are of practical importance. the (strong)th PARP property, i.e., aV x K polynomial ma-
Another remark we want to make here is the following oljx G(z) is (strong)rth PARP if and only ifPG(z)Q(z) is
servation. When the ord€},, of the ISI channeH(z) is large, (strong)rth PARP for anyV x N nonsingular constant matrix

the size of the linear system (I1.17) is also large due to the largeang any unimodular polynomial matri@(z)
number of unknowns itF in (11.13) for H=!(z). In this case, Proof: Consider equation

it might be better to use the current MIMO blind identification
methods to reduce the large order ISI charldét) into a non-
singular constant matrix, i.e., a zero-order ISI charhefhen, Then
the technique developed in [3] and [51], or zeroth-order polyno- _ _
mial matrix ambiguity resistant precoders in this paper can be ~ ©. 'E(:)P - G(2) = G(2) - Q) V(2)Q(z) 7"

used to blindly identify the input signal and the constant ambi G(z) is (strong)rth PARP, then we havéP~'E(z)P =
guity matrix 7. The tradeoff between these two approachesdgz)Iy), Q(2)V(2)Q(z)~! = a(z)Ix for some polynomial
under our current investigation. a(z) of order at most, i.e.,PG(2)Q(z) is (strong)r-th PARP.

E(2)PG()Q(x) = PG(2)Q(:) V().
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On the other hand, PG(2)Q(>) is (strong)rth PARP, then Clearly,{1, g31, gso} are not linearly independent, bGt( 2) is
from E(2)G(2) = G(2)V(z) we have actually strong zeroth PAR as we shall see later.

PE(:)P' - PG(2)Q(2) = PG(:)Q(») - Q(2) " V(:)Q(2). To conclude this subsection, we generalize the linear inde-

pendence as follows.
So, we havgPE(z)P~ = a(2)In), Q(2)"'V(2)Q(z) = Definition 4: A set of polynomials{g;(z)}i<i<, is said
a(z)I i for some polynomiak(z) of order at most, i.e.,G(z) rth-order linearly independer{t-th LID) if
is (strong)-th PARP. q.e.d. n
This theorem tells us that a PARP-equivalent transformation ei(2)gi(z) =0 <= e;(z) =0, i=1,2,---,n

maintains the PARP property. In other words, as soon as a PARE=;

is constructed, its all PARP-equivalent transformations affhere{c;(2)}1<i<n are polynomials of orders at most
PARP too. By noticing from Definition 3 tha@ andQ(z) are |, the above definition, when= 0, it reduces to the conven-

arbitrarily nonsingular and unimodular matrices, respectivelyy 4 jinear independence of polynomials. To give an intuition
PARP-equivalent transformations easily provide a rich family, the aboveth LID. if deg(g;) < deg(git1) — 7, theng;(z)

of PARP from a single PARP. . arerth LID. For example, 1;~"—1, andz—2"~2 arerth LID.
The following canonical form under the PARP-equivalence

transformation was obtained in [5]. B. (Strong)rth PARP withV > K > 1
Theorem 7: Any irreducible matrix inM y x i () is PARP-

. . : A In this subsection, we want to present a new relationship be-
equivalent to a polynomial matrix of the following form:

tweenrth PARP and strongth PARP. We also derive a new

1 0 o - 0 0 sufficient condition for the strongth PARP withV > K.
0 1 U 0 0 Theorem 9:Let G(z) be of the canonical form (lll.1). If
0 0 0 1 0
gx1(2) gr2(2) grs(z) - grk-1)(?) grxK(2) IJQ?E(N(deg girc) > 1
axi(2) ana(2) gnalz) - gnicon(®) onw(2) Proof: If deg g, < r forany: with K <i < N, let
(n.1) E(z)
with ged(gicrc, gy, -+, oni) = 1 anddes g < . T S S
deg g(x+1yk < --- < deg gyk. Furthermoregy,(») can be
either zero or a nonconstant polynomial (ideg gx; > 1) for _ 0 0 1 0 ... 0
K <k< Nandl <1 < K —1,andgyi(z2) = --- = -
9x( 1)(2) = 0,1 < deg gyr, < -+ < deg gy for someL o) @) a4 0
withl < L < K.
With the above canonical form, to consider a PARP we only gvi(z) gnk(z) -+ gnk(z) O - 1
need to consider a PARP of the form (l11.1). The following sufand
ficient condition for strong zeroth PARP with = K + 1 was 1 0 --- 0 0
obtained in [5]. o 1 --- 0 0
Theorem 8:Let G(z) have the canonical form (Ill.1) with V)= o
N =K+ 1LIfgnyi(2) = -+ = gna—p(?) = 0andl < o 0 -~ 1 0
deg gnp < --- < deg gng forsomel, 1 < L < K, and if 1 1 ... 1 1
{1, 9xc1, 92, -+, grep-1), 9ve, 5 INGc-n) } Then we can check th@(2)G(z) = G(z)V(z), andE(z)
are linearly independent over the complex filed, &igh W, = is anN x N polynomial matrix of order at most. This is
{0}, where contradictory to theth PARP ofG(x). q.ed.
This theorem provides a necessary condition for a precoder
Wi =span {gnK, NKIKL, "+ INKIK(K-1) } to berth PARP, and from this theorem one can clearly see that
Wy =span {gm(, IKKIKL, s GKKGK(L—1)s any constant matrix cannot be PARP of any order. If we have a
IKKINL, " » IKKIN(K—1) } rth PARPG(z) of size N x K, itis easy to construeth PARP

of sizeM x K with M > N from the following result.

where span means the set of all linear combinations with Con~raqrem 10: 1fan M x K polynomial matrixA (=) is PARP-
stant coefficients, thefi(z) is strong zeroth order PARP. equivalent too(\;Gij)xK)’ andG(z) is rth PARP, therA (z) is

It laimed in [5] thatin Th 8thet ditions: i M
was claimed in [5] thatin Theorem 8 the two conaions %|SO7’th PARP. HoweverA(z) must not be strongth PARP,
{1, gK1, grc2s oo+ 9K (L-1), INLs * 5 gN(K —1) } @relinearly even wherG(z) is strongrth PARP
independent and iijy; N W, = {0}, are also necessary. How- Proof- Frbm equatigon '

ever, they are not necessary from the following counterexample:

1 0 0 <E11(2) E12(Z)>< G(2) )

E2(2) E2(2) ) \ O—nyxk

0 1 0 21 22 ( )x
OR[N R (0 S9 v
0 =zt 2z O(m—NyxK i
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we getE;1(2)G(z) = G(2)V(z). SinceG(z) is rth PARP, so
ie., o (9% isrth PARP.
(5" 2 ) Couran) = (o )
0 2Iy ~ Ov—nyxi Ovi—nyxx K
whereE(z) is not equal to any(z)Iy, i.e., M)

V(z) = a(z)Ix for some polynomial(z) of order at most:,
However, since
strong zeroth PARP. So it is not stronti PAﬁP eitherq.e.d.

We now see a new connection between strong PARP and

PARP.

Theorem 11:Suppose that(z) has the form (Ill.1) with
N > K. If G(Z) is rth PARP, and{gKK, RN gNK} arerth
order linearly independent, th&R( ) is also strong'th PARP.

Proof: G(z) can be written as

m@=<éﬁ5 G&@)

where

9r1(%) gK(K—l)(Z)
Gii(z) = ... ...
gn1(z) gN(K—l)(Z)

and

QKK(Z)

G12 (Z) =
QNK(Z)

(& o)
T4 0

(&) adiw) ¥

whereE;;(z), E12(2), E21(2) andE(z) are polynomial ma-
trices of orders at most. If G(z) is rth PARP, thenV(z) =
a(z)Ir for some polynomiak(z) of order at most. There-
fore

Consider equation

(B

Elg(z)
EQQ(Z)

Ell(z) + Elg(z)Gll(z) IO((Z)IK_l (”|3)
Egl(z) + EQQ(Z)Gll(Z) ICY(Z)Gll(Z) (”|4)
Elg(z)Glg(z) =0 (|||5)
E2s(2)Gia(z) = a(2)Gia(z).  (11l.6)

Since {gixx, -, gyx} are rth order linearly indepen-

dent, from (IIl.5) and (Ill.6) we haveE;s(2) 0 and
EQQ(Z) CM(Z)IN_K+1. SUbStitUtingElg(z) and EQQ(Z)
into (111.3) and (l1l.4), we obtainEy;(z) = a(z)Ix_; and
E;1(z) = 0. SoG(z) is strongrth PARP. q.ed.

Theorem 12:Suppose thaG(z) has the form (l11.1) with
N > K. If

A 2

A
it {gnlk'gi(1>[(a InK3;(2 K
ImK (971(1>197‘,(2> K — 9i@19;m K)v
1g1§K—LKgmﬂmgmamn¢N§

203

arerth order linearly independent for sonié’ andi(? with
K < i < i@ < N, thenG(z) is strongrth PARP.

Proof: Consider equationE(z)G(z) G(2)V(z),
whereE(z) is anN x N nonzero polynomial matrix of order
at mostr andV(z) is a K x K polynomial matrix. Denote
E(Z) = (eij)NxN andV(z) = (Uij)KxKn then we have the
following equations:

1<4, j<K-—1(I7)

7

N
Cij + 5 CimGmj = Vij,

m=K

N K
ci; + Z CimImj = Z UnjGin,
m=K n=1
K<i<N, 1<j<K-1 (111.8)
N
Z CimgmK = ViK, 1<i<K-1 (111.9)
m=K
N K
Z CimgmK = Z UnK Gin, K S i S N. (”llO)
m=K n=1
From (111.10) we have
N K-1
< Z Ci(HmdmK — Z vnz(gimm) 9K
m=K n=1
N K—-1
= < Z Ci2ymImK — Z Un,k’gi(2>n> GO K-
m=K n=1
(I11.11)

Substituting (111.9) to (111.11), we get
r K-1 N

Z CiVmImK i@ K — Z Z EnmImK 9;(1V)n9:(2) K

m=K n=1 m=K
N K-1 N

Z CimImK iV — Z Z EnmImK 9;(2)n9i (D K

m=K n=1 m=K
l.e.,
(€ — €@ )G K Fi» K
N N

+ E iV mImK Gy K — E i mImK GO K
m=K m=K
mi(1) m£i(2)
K-1 N

=3 > enmImr(Giwngio ke — Giongio i) =0.
n=1 m=K

SinceAi<1>7i(2> arerth LID, so Ci(1);(1) = €;(2)4(2), Ci(1)y, = 0
ande;),, = 0for K < m, n < N withm # (U andn # 2,
ande;; = 0forl < i < K—-landK < j < N.Also
we can obtaivkrx = e;w;m €2y, andwv; g = 0 for
1<i<K-1.

Now from (111.7) and (l11.8) we have
1<,

J<K -1
(I1.12)

Cij =Vij,

K
Cij + i i) = Y UnjGiton, I<jsK-1
n=1
(I11.13)
K
i+ e iy = Z Vnj i I<j<K-1
n=1

(I11.14)



204 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 48, NO. 2, FEBRUARY 2001

From (111.13) and (l11.14) we get Theorem 14:Suppose tha€(z) has the form (Ill.1) with

N=K+1.1If
K—-1
Ci(1y5 T G gy — Z Unj%in | S K Ak, N
n=1

A 2 2
= {gKKgNKa 9Kk K INK>» KK (gNKgKn - gKKgNn)a
INK(ONK YK — 9k KINn), L S0 < K — 1}

K-1

= <Ci(2)j te@igi@; — Z Unjf]i@)n) i) i

n=1
are rth-order linearly independent, the@(>) is strongrth
PARP.

As a remark, the condition in Theorem 14 is sharper than the
conditions in Theorem 8. Let us see the example in (111.2). We
know G(z) does not satisfy the conditions in Theorem 8. But

Az 4 2 {778 4275, 278 42273 41,2710, 279 4 76 710

foranyjwithl1 < j < K —1,i.e,

GG K — € GV

+ (e — e (9w ;9 Kk — %950 K )

K-l 27 t— 1 o1 12 -9 -5 gre actually zeroth LID,
— > enilGionbiox — Giondivx) =0, i.e., G(z) is strong zeroth PARP by Theorem Moreover we
e canshowthatix y are zeroth LID if the conditions in Theorem
1<j<K-1. (I.15) 8 are true. In fact, if there exist constantss, ¢, d,, ande,,

(1 <n < K —1)suchthat
The rth LID of Ai(1>,i(2> Imp|IeS that{gi@)KgimK, gi2(2>1('

2 2
g k(GG — Gengiog), 1 <1< K — 1} arerth WK KINK + 9K + N

LID, i.e, {g;05» i) i GiviGin o — Giengioog, L < 1< iy
K — 1} arerth LID. So from (I11.15) we haves;y;) = ¢jj, + Z dngr Kk (INKGRn = GK K INn)
ey = e(i@;j =0ande,; =0 fOE 1)§ j#n<K—1.Thus Zz_ll
we getV(z) = e, i, i.e.,G(z) is rth PARP. .
From the rth LID of A, ;» agan, we know + z_: engN i (gN I Gicn = gicicgim) =0
that {g.xg;0r, K < m < N} arerth LID, ie., =t
{9k K, 9(cv1yx, -+ gvi} are rth LID. According to then
Theorem 11G(z) is also strongth PARP. q.ed. o1
The above theorem provides us a new and more general suf- o b2 — Z do a2 an
ficient condition for constructingv x K strongrth PARP and, INK |\ PIKK o nIKKINn | -

therefore, alseth PARP for a generaV with N > K.
From the assumption in Theorem 8, we get 0, d,, = 0 for

C. (Strong)yrth PARP withN = K + 1

L<n<K-1,and

In this subsection, we discuss polynomial matrices only with r—1
N = K + 1 and achieve some simplified results. This case is agxrx +cgni + Z dn 9K KIKn
interesting in practice since, for a givén, the case ofV = n=1
K + 1 corresponds to the minimal data rate expansion case in K-l
the precoding. + Z en(gNKGKn — 9K gnn) = 0
n=1

Theorem 13:Let G(z) has the form (111.1) withV = K +1.
ThenG(z) is rth PARP if and only ifG(z) is strongrth PARP.

Proof: The sufficiency is obvious. Now we prove the ne-
cessity. IfG(z) isth PARP, according to Theorem 11, we only
need to prove thatyx i, gn i } arerth-order linearly indepen-
dent ¢th LID).

1

K

@ngKn> gNK
1

If there exist polynomialg; (=) ande;(z) of orders at most L-1 K-1
7 such that =9KkK | —a— Z dngrn + Z CngKKYNn | -
n=1 n+L

e1(2)grer(z) + ea()gnr(2) =0 SinceW, N Wy = {0} and {1, gi, - Grc(r-1)» N L, -
gn(Kk -1y} are zeroth LID, we get = 0,a = 0, d,, = 0 and
sinceged(gx x, gvx) = 1 from the canonical form, we havee, =0 (1 < n < K —1). S0Ag, v are zeroth LID.
gNK(Z)|61(Z) and gKK(Z)|62(Z). According to Theorem 9, Therth LID of AK7 N |mp||eS that{gKK, INK, gNK9Kn —
max(deg gk, deggnri) > 7. S0e1(z) = 0andes(z) =0, grrgnn, 1 < n < K — 1} arerth LID. In fact, therth LID
i.e., {gr K, gnr } arerth LID. This proves the necessity. of {grr, gNK, INKIKn — 9K KGNn, 1 S n < K — 1} is also
q.e.d. necessary for theth PARP ofG(z), and is certainly necessary

The following theorem can be derived from Theorem 12 dfer the strong-th PARP ofG(z), as we see from the following

rectly. result.
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Theorem 15:If G(=z) has the form (Ill.1) withV = K + 1,
andG(z) isrth PARP, thedgr i, gn k) gNK9Kn — 9K K IN R
1 < n £ K — 1} arerth-order linearly independent.

Proof: Assume that {gKK, INK, GNKIKn —
I9kKgNn, 1 < n < K — 1} are notrth LID, then there
exist polynomialsy, b ande,,, 1 < n < K — 1, of order at most
7 such that

K-1
agxk +bank + Z cn(gNK IKn — gKKINn) =0

n=1

i.e.,

K—1 K—1
<b+ Z CngKn> INK = 9KK <—a—|— Z CngNn> .
n=1 n=1

So
K—1 K—1

IKK <b+ Z CngKn> and gnx <—a+ Z CngNn> .
n=1 n=1

Now let E(Z) = (Cij)NxNa whereeyny = ek, enkg = 0,
egkny = 0,e,x =0 andenN = 0for1l <n< K-1, and
for any j with1 < I < K-1, €j; = CEKK — Cj, CKj = b,
en; = —a,ande,; = —¢,, 1 < n < K —1forn # j.
Let V(Z) = (Uij)KxKn wherevix = enn, Vij = Cij for
1<, j<K-1l,andforanywithl <j< K-1

K—1
VK = <b+ Z CngKn> / IKK
n=1
K—1
<—a + Z CngNn>/QNK-
n=1

We can check thaE(z)G(2) = G(z)V(z). It is obvious that
V(z) # a(z)I k. Thisis contradictory to tha®(z) isrth PARP.
q.e.d.

or

Combining Theorems 14 and 15, we have the following cor
lary for a complete characterization of a systematic (strong)

PARP, which also provides a construction method-tarstrong
PARP by separating the degreesgpf ;1),, 1 < n < K, by
7 + 1 from one to another.
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Proof: The necessity comes from Theorem 15 immedi-
ately. Now we prove the sufficiency. According to Theorem 14,
we need to prove thatl, gix41yn, 9x+1) KK+, L <1 <
K} arerth LID.

With PARP-equivalence transformations, we can assume
deg g(x+1)n < deggr41yr forl <n < K — 1. If there exist
polynomialsa, b, andc,, 1 < n < K, of orders at most
such thata

K K

a—+ Z bng(K+1)n + Z Cn9(K+1)KJ(K+1)n = 0 (11.16)

n=1 n=1

then

9(K+1)K

K—1
<a + Z bn9(1(+1)n> .

n=1

Fromtherth LID of {1, g(x41)15 9k +1)25 ** "5 J(K+1)K }» WE
havea = 0 andb, = 0forl < n < K — 1. Using (Ill.16)
again, we havéy, = 0andc¢, = 0forl < n < K. So
{1, 9115 9r1)2s s G+ f arerth LID. qeed.
The special case when= 0 in the above corollary has been
obtained in [5]. From Theorem 13, the result in Corollary 1 also
holds forrth PARP. The following corollary is not hard to see
from Theorem 14, which provides a convenient way to construct
nonsystematic strongh PARP withV = K + 1.
Corollary 2: Suppose tha€z(z) has the form (l11.1) with
N = K+ 1.1If gni(2) = -+ = gn@—1)(2) = 0 for some
L(1<L<K)and

1<n<L-1
L<n< K

deg gxn < deg gr(nt1) — 7
deggnn < deggn(nyr) — 1,

anddeg g (1) < deg gnr,—7, thenG(z) is strongrth PARP.
To see the above result, let us consider the case Wherl.

In this case, when the degrees of the polynomjals(z), 1 <

n < K, in G(z) are at least + 1 differ from their adjacent

Jpnes, the precoder is then strorth PARP.

IV. NUMERICAL EXAMPLES

In this section, we want to present two numerical examples to
verify the theory/algorithm developed in Section Il. Simulated

Corollary 1: If G(z) has thesystematic forras shown at the outputs from a baud-rate sampled single-receiver system and an

bottom of the page, the6:(z) is strongrth PARP if and only
if {1, g(k+1)1> 9(k+1)25 - -5 9(k+1)K } arerth-order linearly
independent.

undersampled antenna array system are used for blind identi-
fication. The results presented here are to illustrate the feasi-
bility rather than efficiency of the proposed precoding and blind

1 0
0 1
ax=| " Y
0 0

IK+1)1 (2) 9(1(-1-1)2(2)

0 . 0
0 e 0
1 0
0 . 1
9(1(-1-1)3(2) 9(1(-1-1)1((2)



206 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 48, NO. 2, FEBRUARY 2001

10 T T T T T T T 2 T T T T T T T
8f- *+ 15k ]
; ; : ;
sl R B U S 2 :
: - : tho i e BTSRRI PR 4
+ i om L+ ‘
41 s g o col :
M + N
*+ *+ + : * : 0.5 T h
+ T B Th L +
2 RN : . N i *+ ,,,,,, + i ¥ .
E*%h +*+"4,j+1'+ et : 0 T
B + 4 R
0 Lo T + At Lh S
:+1+ L + ‘:"++++++:§‘ 0t + + *
N A N LN . -0.5 —
2L * e " ook U A
* iy 1+ A + :
+ + ++ ++¢ + *-':* . : -1 S N -
+ + :
% SO UE RN ] BT O PO OO SRRt PPN OO PP OPPUUPNT SURRRPPRON i
++
N + .
_8 n L A L 2 n " L 1 1 I
-8 -6 -4 -2 0 2 4 -2 -1 -0.5 0 05 1 15 2
Received signals Signal pattern after processing
(a) ()

Fig. 7. (a) ISI channel outputs with baud sampling; (b) recovered signal after blind identification using precoding techniques.

identification techniques, although some robustness in handlh@nd 5. Four ISI channel;(z), ! = 1, 2, 3, 4, are randomly
noisy data is demonstrated by the proposed algorithm. chosen, which in this example are

A. Single Antenna Receiver with Baud Sampling Rate Hy(2) = (0.3323 + 0.3446) + (—0.2337 + 0.7782;)

In this example, we set the ordgr of the baud-rate samplgd I$I £0.25115)272 + (—0.5945 + 1.1582)2~3
channel to be 4. The ISI channel is randomly selected, which in N 4
4 (—0.5398 — 1.29975) 2

this example is 3
+ (—1.5044 — 2.79605)2>;
Hy(z) =(0.5580 — 0.7233;) + (1.4499 + 2.18055)2~*
+ (—0.9646 — 0.3105;) 22
+(0.1302 + 0.86255)2 2

H(z) =0.9275 — 0.517427% 4 0.23432 2
+0.795527% 4 0.15512 ",

The parameters in Fig. 2 and Fig. 3 and (11.23) and (11.24) are + (1.8800 4 0.30665)z*
K =2, N =3, M = 4. Inthis case, the channel mat#k(») N 5
. g P . ' —0.0954 + 0.69677)2"°;
in (11.24) is shown in the matrix at the bottom of the page. The *( E i 9 N
order ofH(z), Qy, is thus 1. Based on (I1.25), it is adequate toH3(?) = (0.8999 4 1.2682j) + (1.8361 + 0.4378;) 2
user = 3 for the precodefG(z) in (11.3). The order ofG(z) is + (0.0388 — 0.92305)z 2
r+1 = 4. G(z) is capable of resisting any third-order polyno- -(0.0350 — 1.03475)2 2
mial matrix ambiguity. N 4
. . . L —1.0038 + 0.96907 ) >
QPSK signals are used as the input signal in this example. The *+( + ) J)_Z
received data without identification is shown in Fig. 7(a). The + (03967 + 3.20695)2™";
processed data after applying the proposed blind technique f4(z) = (—0.2009 — 0.03125) + (—0.3829 + 1.3333;)z "
shown in Fig. 7(b). In this particular example, we use noise-free +(0.7655 — 0.38485)2 2
obse_rvatlons to demonstrate t_hat th_e_proposed techniques can (—0.6247 — 0.19275)2 3
provide closed-form solution with a finite number of data sam- N
ples. + (—0.4974 — 0.7473j) 2
+ (=0.5271 + 0.53605) 2.
B. Undersampled Antenna Array Receivers
In this example, we use four antennas and undersample thén this case, the channel matH(z) in Fig. 5 is of order
received signals by factor 3, i.e/ = 4 andN = 3in Figs. @Q; = 1. Similar to the previous example, the parametén

0.9275 4+ 0.15512~1 0.79552~1 0.2343~~1

H(») = —0.5174 0.9275 + 0.15512 1 0.7955z 1
© 0.2343 —0.5174 0.9275 4 0.155121

0.7955 0.2343 —0.5174
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Fig. 8. (a) Undersampled antenna outputs before blind identification. (b) Recovered signal after blind identification using precoding techniques

(11.3) is set to be 3, which enables the preco@HE) to resista powerful equalizers: zeroth-order block precoders without
third-order polynomial matrix ambiguity. any memory in [1] only allow ideal FIR equalization at the
Instead of noise-free data, we apply the proposed blind ideeceiver when the channel is known; first-order precoders in
tification algorithm to a minimum amount of output vectors, 503], [51] allow ideal FIR blind equalizers at the receiver when
under 30 dB SNR. Fig. 8(a) and (b) compare the signal pattethe ambiguity is a constant matrix; whileh-order precoders

before and after the identification. in [4] allow ideal FIR blind equalization at the receiver when
the ambiguity is & — 1)th-order polynomial matrix. For an
V. CONCLUSIONS optimality on PARP in terms of the robustness of the channel

. . . : additive noise, we refer the reader to [6]. Practical applications
In this paper, we studied the following two questions of @ L o

i of PAPR in wireless communication systems are under current
precoded MIMO system: Let

investigation.

Y(z) = H(2)G(2)X(z) ACKNOWLEDGMENT
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a”fjl what is the condition oiG(z) such thatX(z) and/or carefyl reading and useful comments that have helped to im-
H'(2) can be recovered fron¥(>) and G(2)? How to prove the clarity of this manuscript.
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