
MIMO OFDM Radar IRCI Free
Range Reconstruction With
Sufficient Cyclic Prefix

XIANG-GEN XIA, Fellow, IEEE
University of Delaware
Newark, DE, USA

TIANXIAN ZHANG
LINGJIANG KONG, Senior Member, IEEE
University of Electronic Science and Technology of China
Chengdu Sichuan, P. R. China

In this paper, we propose multiple-input multiple-output
(MIMO) orthogonal frequency division multiplexing (OFDM) radar
with sufficient cyclic prefix (CP), where all OFDM pulses
transmitted from different transmitters share the same frequency
band and are orthogonal to each other for every subcarrier in the
discrete frequency domain. The orthogonality is not affected by time
delays from transmitters. Thus, our proposed MIMO OFDM radar
has the same range resolution as single transmitter radar and
achieves full spatial diversity. Orthogonal designs are used to achieve
this orthogonality across the transmitters, with which it is only
needed to design OFDM pulses for the first transmitter. We also
propose a joint pulse compression and pulse coherent integration for
range reconstruction. In order to achieve the optimal signal-to-noise
ratio (SNR) for the range reconstruction, we apply the paraunitary
filterbank theory to design the OFDM pulses. We then propose a
modified iterative clipping and filtering (MICF) algorithm for the
designs of OFDM pulses jointly, when other important factors, such
as peak-to-average power ratio (PAPR) in time domain, are also
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considered. With our proposed MIMO OFDM radar, there is no
interference for the range reconstruction not only across the
transmitters but also across the range cells in a swath called
inter-range-cell interference (IRCI) free that is similar to our
previously proposed CP-based OFDM radar for single transmitter.
Simulations are presented to illustrate our proposed theory and
show that the CP-based MIMO OFDM radar outperforms the
existing frequency-band shared MIMO radar with polyphase codes
and also frequency division MIMO radar.

I. INTRODUCTION

The multiple-input multiple-output (MIMO) concept
using multiple transmit and receive antennas has been
intensively investigated in the last decades in wireless com-
munications to collect spatial diversity, see, for example, [1,
2]. In recent years, this concept has been introduced to the
radar applications [3–5], which is named “MIMO radar.”
Unlike the traditional mono-static radar or phased-array
radar, MIMO radar systems employ multiple transmitters,
multiple receivers, and multiple orthogonal signals,
and can provide more degrees of freedom for the design of
a radar system as well as more advantages for radar signal
processing. According to the configuration of anten-
nas/transmitters, MIMO radar systems can be divided into
two types, namely statistical MIMO radar and colocated
MIMO radar. For statistical MIMO radar, the transmitters
and receivers are widely separated, then, a target can be
observed from different spatial aspects, resulting in spatial
diversity and performance improvements of target detection
[3], synthetic aperture radar (SAR) applications [6], and
direction of arrival estimation [7, 8]. For colocated MIMO
radar, the transmitters and receivers are located closely
enough. By exploiting waveform diversity, colocated
MIMO radar can improve the flexibility for transmit beam
design [4, 5], and low-grazing angle target tracking [9].

The above advantages of MIMO radar systems are
achieved under the assumption that the transmitted signals
are orthogonal to each other in time domain despite their
arbitrary time delays. It is well known that this assumption
can hold only when the frequency bands of all the
transmitted signals do not overlap each other [10]. Then,
the signals of different transmitter and receiver pairs can
be independently processed and the spatial diversity can
be obtained. This MIMO radar system can be denoted as
“frequency division MIMO radar” system, which requires
a relatively wide frequency band, since each transmitter
occupies a unique frequency band. Therefore, the
frequency spectrum efficiency is low, especially, for a high
range resolution radar system. In other words, the spatial
diversity advantage of frequency division MIMO radar
systems is built upon the sacrifice of the range resolution.
To increase the spectrum efficiency or the range resolution
of frequency division MIMO radar systems, there
have been many works on investigating “frequency-band
shared MIMO radar” systems through the design of time
domain orthogonal codes/sequences and/or waveforms,
which contain not only good autocorrelation but also good
cross-correlation properties [11–18] However, the design
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of binary sequences [11, 12], polyphase sequences [13, 14],
unimodular sequence sets [15], or chaotic phase codes [18]
can only somewhat mitigate waveform cross-correlation
effects or reduce the sidelobes of autocorrelation
function. The cross correlations between the delayed time
domain waveforms from different transmitters cannot be
zero and thus cause interference among transmitters. This
limits the collection of the spatial diversity. Therefore,
the performance of MIMO radar systems will still
be degraded by using the existing designed waveforms.

To deal with the sidelobe issues from the nonideal
autocorrelations across the range cells in the conventional
SAR systems, in [19, 20] we have proposed a sufficient
cyclic prefix (CP) based orthogonal frequency division
multiplexing (OFDM) SAR imaging for single transmitter
radar systems. By using a sufficient CP, zero range
sidelobes and inter-range-cell interference (IRCI) free
range reconstruction can be achieved, which provides an
opportunity for high resolution range reconstruction. As
has been explained in [19], the major differences between
our proposed CP-based OFDM SAR and the existing
OFDM SAR systems are in two aspects. One is that a
sufficiently long CP is used at the transmitter and the CP
should be as long as possible when the number of range
cells in a swath is large. The other is the SAR imaging
algorithm at the receiver, which is not the matched filter
receiver by simply treating the CP-based OFDM signals as
radar waveforms as is done in the existing OFDM radar
systems. With these two differences, the key feature of an
OFDM system in communications applications of
converting an intersymbol interference (ISI) channel to
multiple ISI-free subchannels is analogously obtained in
our proposed CP-based OFDM SAR imaging as IRCI free
range reconstruction among range cells in a
swath.

In this paper, we consider a frequency-band shared
statistical MIMO radar range reconstruction using OFDM
signals with sufficient CP by generalizing the CP-based
OFDM SAR imaging from single transmitter and receiver
to multiple transmitter and receiver radar systems called
“MIMO OFDM radar.” With our newly proposed
CP-based MIMO OFDM radar, all the signal waveforms
from all the transmitters have the same frequency band
and thus the range resolution is not sacrificed and the same
as the single transmitter radar. Furthermore, their
arbitrarily time delayed versions are still orthogonal for
every subcarrier in the discrete frequency domain and
therefore, the spatial diversity from all the transmitters can
be collected the same as the frequency division MIMO
radar. In addition to the two differences mentioned above
for single transmitter and receiver CP-based OFDM radar
systems with the existing OFDM radar systems, the
orthogonality in the time domain under arbitrary time
delays between different transmitters has not been
considered in most of the existing MIMO OFDM radar
systems [6, 8, 9] where IRCI exists not only among range
cells in a swath but also among the transmitters. Although
it is considered in [7], IRCI is not the focus. In this paper,

IRCI free is achieved among both range cells in a swath
and all the transmitters.

We first formulate the problem and describe the MIMO
OFDM radar signal model by considering the feature of
sufficient CP-based OFDM pulses, where the CP part takes
all zero values. Using the properties of frequency domain
orthogonal OFDM pulses for every subcarrier between
different transmitters, we then derive a MIMO OFDM
radar range reconstruction algorithm, which includes the
joint processing of pulse compression and pulse coherent
integration. We also analyze the change of noise power
in every step of the range reconstruction and evaluate the
possible signal-to-noise ratio (SNR) degradation caused
by the range reconstruction. We then propose the design
criterion for the multiple OFDM pulses used at transmitters.

The orthogonality for every subcarrier in the discrete
frequency domain among the OFDM waveforms for all the
transmitters is done by employing the theory of orthogonal
designs [21–28] that has been used as orthogonal
space-time codes in MIMO wireless communications
[1, 2, 21–28]. To achieve the optimal SNR
after the range reconstruction, we propose a joint multiple
OFDM pulse design method with a closed-form solution
by using paraunitary filterbank theory [29, 30]. With the
paraunitary filterbank theory in the design of the MIMO
OFDM waveforms, although the SNR after the range
reconstruction is maximized, it is not easy to search for the
sequences to generate the MIMO OFDM waveforms so that
their peak-to-average power ratio (PAPR) is low, while a
low PAPR is important in radar practical implementations.

By considering the trade-off between the PAPR and
the SNR degradation within the range reconstruction, we
propose a modified iterative clipping and filtering (MICF)
joint OFDM pulse design method, which can obtain OFDM
pulses with low PAPRs and an acceptable SNR degradation.
We then present some simulations to demonstrate
the performance of the proposed MICF joint OFDM pulse
design method. By comparing with the frequency-band
shared MIMO radar using polyphase code waveforms and
frequency division MIMO radar using linear frequency
modulated (LFM) waveforms, we present some simulations
to illustrate the performance advantage of the proposed
MIMO OFDM radar range reconstruction method. We find
that, with the designed OFDM pulses from our proposed
MICF method, our proposed CP-based MIMO OFDM
radar can obtain the range reconstruction without any
interference between different transmitters and achieve
the full spatial diversity from all the transmitters and
receivers. Meanwhile, it can still maintain the advantage
of IRCI free range reconstruction with insignificant SNR
degradation and completely avoid the energy redundancy
in the case when there are only a limited number of range
cells of interest. Note that constant orthogonal/unitary
matrices for every subcarrier in the discrete
frequency domain across transmitters and waveforms
have been constructed in [7] where only a few parameters
are used and may limit the waveform designs with
other desired properties, such as those discussed above.
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Fig. 1. MIMO OFDM radar geometry.

The remainder of this paper is organized as follows. In
Section II, we establish the CP-based MIMO OFDM radar
signal model and describe the problem of interest. In
Section III, we propose CP-based MIMO OFDM radar
range reconstruction. In Section IV, we propose two new
arbitrary length OFDM sequence design methods. In
Section V, we show some simulation results. Finally, in
Section VI, we conclude this paper.

II. CP-BASED MIMO OFDM RADAR SIGNAL MODEL
AND PROBLEM FORMULATION

Consider a MIMO radar system with T transmitters
and R receivers, as shown in Fig. 1. All the antennas of the
MIMO radar system we consider in this paper are located
in a fixed area, and the antennas are not as close to each
other as colocated MIMO radars [4, 5]. The instantaneous
coordinate of the αth transmitter and the βth receiver are,
respectively, (xα, yα, zα), α = 1, . . . , T, and (xβ, yβ, zβ),
β = 1, . . . , R, where zα and zβ are the altitudes of the
corresponding antennas. After the demodulation to
baseband, the complex envelope of the received signal
observed at the βth receiver due to a transmission from the
αth transmitter and reflection from the far field scatterers
in the mth range cell with instantaneous coordinate (xm,
ym, zm) (and excluding noise) is given by

uβ,α,m (t) = gβ,α,mexp{−j2πfc[τα,m + τβ,m]}
× sα

(
t − τα,m − τβ,m

)
, (1)

where sα (t) is a transmitted signal of the αth transmitter,
fc is the carrier frequency, gβ ,α ,m is the radar cross section
(RCS) coefficient caused from the scatterers in the mth
range cell within the radar mainbeam footprint and related
to the αth transmitter and the βth receiver. We assume that
the mainbeam footprints of each receiver are overlapped
together and included in the footprints of the transmitters.
τα,m = Rα,m

c
is the signal propagation time delay between

the αth transmitter and the mth range cell, and similarly,
τβ,m = Rβ,m

c
is the signal propagation time delay between

the mth range cell and the βth receiver, where c is the
speed of light,
Rα,m =

√
(xm − xα)2 + (ym − yα)2 + (zm − zα)2 and

Rβ,m =
√

(xm − xβ)2 + (ym − yβ)2 + (zm − zβ)2 are,
respectively, the slant range between the αth transmitter
and the mth range cell and the slant range between the mth
range cell and the βth receiver.

At the receiver, to a transmitted signal with bandwidth
B, the received signal is sampled by the analog-to-digital
(A/D) converter with sampling interval length Ts = 1

B
and

the range resolution is ρ = c
2B

= c
2Ts . Assume that the

width for the radar footprints in the range direction is Rw.
Then, a range profile can be divided into M = Rw

ρ
range

cells as in Fig. 1 that is determined by the radar system.
From the far field assumption, as we have discussed in
[19], we can obtain

Rα,m = Rα,0 + mρ, m = 0, 1, . . . , M − 1, (2a)

Rβ,m = Rβ,0 + mρ, m = 0, 1, . . . , M − 1. (2b)

Then, the signal propagation time delay between the
αth transmitter and the βth receiver can be denoted by

τα,m + τβ,m = τβ,α,0 + mTs, (3)

where

τβ,α,0 = Rα,0 + Rβ,0

c
. (4)

In radar applications, there is usually more than one
scatterer within a range cell, and each scatterer owns its
unique delay and phase. However, for a given range
resolution (or signal bandwidth), a radar is not able to
distinguish these individual scatterers, and the responses
of all these scatterers are summarized as the response of
one range cell with a single delay and phase in the
receiver. Thus, each range cell can be treated as one
point-like target. This kind of model is reasonable and
commonly used in the existing radar applications [31].

Let τmin be the minimal signal propagation time delay
between all the transmitter and receiver pairs through the
nearest (m = 0) range cell. And τmin is defined as

τmin = min
β=1,...,R
α=1,...,T

{
τβ,α,0

}
. (5)

By arranging the antennas, the time delays between
different transmitter and receiver pairs can approximately
satisfy the relationship

ηβ,α = τβ,α,0 − τmin

Ts

, (6)

where ηβ,α ∈ N. The maximal relative time delay
difference among all the transmitter and receiver pairs is
ηmaxTs, and

ηmax = max
β,α

{
ηβ,α

}
. (7)

We remark that the values of ηβ ,α may slightly change,
when a radar scans the radar surveillance area with
different azimuth angle. But, in practice, considering the
far field assumption, ηβ ,α is constant within a consecutive
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radar scan sector. Thus, the radar surveillance area can be
divided into different radar scan sectors with different
precalculated values of ηβ ,α . Also, parameter ηmax is
determined by the system configuration and may be
estimated a priori, and it is used for the MIMO OFDM
pulse designs later.

In most of the MIMO radar literature, it is assumed
that the transmitted signals are orthogonal to each other
and even when there are different time delays among these
signals, i.e.,

∫
sα(t)sα̃(t − τ )∗dt = 0 for α �= α̃, and

arbitrary time delay c of interest, where (·)* denotes the
complex conjugate, or it is assumed that there are no
different time delays among the transmitted signals from
multiple transmitters. However, in practice, this is
generally not possible [10], unless the frequency bands of
all the transmitted signals do not overlap with each other,
which then leads to frequency division MIMO radar and
will either reduce the range resolution or not be able to
collect the transmitter spatial diversity as we have
mentioned in the Introduction. As we see later in this
paper, these two assumptions will not be needed with our
proposed MIMO OFDM radar.

In this paper, we consider that there are P coherent
pulses in a radar coherent processing interval (CPI) (as we
see later that some of these P pulses may be all
zero-valued). Each non-zero-valued pulse is an OFDM
signal with N subcarriers and a bandwidth of B Hz. Let
S(p)

α = [S(p)
α,0, S

(p)
α,1, . . . , S

(p)
α,N−1]T represent the complex

weights transmitted over the subcarriers of the pth OFDM
pulse and the αth transmitter, where p = 0, 1, . . . , P – 1,
and (·)T denotes the transpose. For convenience, we
normalize the total transmitted energy within a CPI to 1,
and assume the energy of each transmitted pulse is the

same, i.e.,
N−1∑
k=0

|S(p)
α,k|

2 = 1
TP1

for all non-zero-valued pulses

where P1 is the number of non-zero-valued pulses. All the
transmitted signals share the same frequency band. Then,
a discrete time OFDM signal is the inverse fast Fourier
transform (IFFT) of the vector S(p)

α and the corresponding
time domain OFDM signal is

s(p)
α (t) = 1√

N

N−1∑
k=0

S
(p)
α,kexp {j2πk�f t} ,

t ∈ [pTr, pTr + T + TGI ] , (8)

where �f = B
N

= 1
T

is the subcarrier spacing, and Tr is
the time interval between two consecutive pulses within a
CPI. [pTr, pTr + TGI) is the time duration of the guard
interval that corresponds to the CP in the discrete time
domain as we see later in more detail and its length TGI is
specified later as well; T is the length of the OFDM signal
excluding CP. Due to the periodicity of the exponential
function exp(·) in (8), the tail part of s

(p)
α (t) for t in (pTr,

pTr + T + TGI] is the same as the head part of s
(p)
a (t) for

t in [pTr, pTr + TGI). Note that in the above transmission,
the CP is added to each pulse s

(p)
α (t).

Then, the complex envelope of the received signal in
the βth receiver due to the pth transmitted pulses of all the
transmitters and the reflection from all range cells within
the mainbeam footprint can be written as

u
(p)
β (t)

= 1√
N

T∑
α=1

M−1∑
m=1

gβ,α,mexp
{−j2πfc

[
τα,m + τβ,m

]}
×

N−1∑
k=0

S
(p)
α,kexp

{
j2πk

T

[
t − τα,m − τβ,m

]}+w
(p)
β (t),

(9)

where w
(p)
β (t) represents the noise. For convenience, in

this paper, we assume the RCS coefficients gβ ,α ,m are
constant within a CPI, and it can be generalized to the case
of maneuvering targets similar to what is done in the
literature.

In our MIMO radar applications, the values of time
delays τβ ,α ,0 are different from one transmitter and
receiver pair to another, which depend on the relative
locations of antennas. All the received signals due to T

transmitters and reflections from each range cell will
overlap together at the receiver and cannot be separated in
general. Thus, the interferences will occur including
different range cells and different transmitted signals from
the transmitters and result in IRCI. Notice that, to one
range cell, each transmitter and receiver pair can be
regarded as one path of communications, and, to one
transmitter and receiver pair each range cell can also be
regarded as one path of communications as analyzed in
[19]. Comparing with the main path that we define as the
shortest path, the longest time delay among all the paths is
(ηmax + M – 1)Ts. As we have mentioned in [19], to
eliminate the interference between different transmitted
signals and IRCI, similar to OFDM systems in
communications, the time duration of guard interval
should be at least (ηmax + M – 1)Ts. For convenience, we
use CP length ηmax + M – 1 in this paper, i.e., a CP of
length ηmax + M – 1 is added at the beginning of an
OFDM pulse, and then the guard interval length TGI in the
analog transmission signal is TGI = (ηmax + M – 1)Ts.
Notice that T = NTs, so the time duration of an OFDM
pulse is To = T + TGI = (N + ηmax + M – 1)Ts. To
completely avoid the range interference between different
transmitted signals and range cells, the number N of the
OFDM signal subcarriers should satisfy N ≥ ηmax + M as
we have analyzed in [19] and will be seen in more detail
later, and it is also well understood in communications
applications [32].

III. CP-BASED MIMO OFDM RADAR RANGE
RECONSTRUCTION

This section is on the MIMO radar range
reconstruction that includes the joint processing of pulse
compression and pulse coherent integration. Going back
to (9), for the pth pulse, let the sampling at all receivers be
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aligned with the start of the received signals after pTr +
τmin seconds of the transmitted pulses, where we recall
that Tr is the time interval between two consecutive
pulses. Combining with (3), (6), and (9), u

(p)
β (t) can be

converted to the discrete time linear convolution of the
transmitted sequence with the weighting RCS coefficients
dβ ,α ,m after the sampling t = pTr + τmin + iTs and the
received sequence can be written as

ũ
(p)
β,i =

T∑
α=1

M−1∑
m=0

dβ,α,ms
(p)
α,i−m−ηβ,α

+ w̃
(p)
β,i ,

i = 0, 1, . . . , N + 2 (ηmax + M) − 3, (10)

where

dβ,α,m = gβ,α,mexp{−j2πfc[τα,m + τβ,m]}, (11)

in which 2π fc [τα ,m + τβ ,m] in the exponential is known
and related to the target location,1 and s

(p)
α,i is the complex

envelope of the OFDM pulse in (8) with time duration t∈
[pTr, pTr + T + TGI] for T = NTs and TGI = (ηmax + M
– 1)Ts. In (10), w̃

(p)
β,i is the noise. After sampling at t = pTr

+ iTs, (8) can be recast as

s
(p)
α,i = s(p)

α (iTs) = 1√
N

N−1∑
k=0

S
(p)
α,kexp

{
j2πki

N

}
,

i = 0, 1, . . . , N + ηmax + M − 2, (12)

and s
(p)
α,i = 0 if i < 0 or i > N + ηmax + M – 2.

When the sequence
ũβ = [ũβ,0, ũβ,1, . . . , ũβ,N+2(ηmax+M)−3]T in (10) is
received, the first and the last ηmax + M – 1 samples are
removed as [19], and then, we obtain

u
(p)
β,n =

T∑
α=1

M−1∑
m=0

dβ,α,ms
(p)
α,n+ηmax+M−m−ηβ,α−1 + w

(p)
β,n,

n = 0, 1, . . . , N − 1. (13)

The OFDM demodulator then performs the N-point
fast Fourier transform (FFT) on the vector
u(p)

β = [u(p)
β,0, . . . , u

(p)
β,N−1]T , and obtains

U (p)
β = [U (p)

β,0, . . . , U
(p)
β,N−1]T , where U

(p)
β,k can be denoted

as

U
(p)
β,k = Dβ,k S

(p)
k + W

(p)
β,k , k = 0, 1, . . . , N − 1, (14)

where S
(p)
k = [S(p)

1,k , . . . , S
(p)
T,k]T is a T × 1 column vector.

W
(p)
β,k is the FFT of noise, and Dβ,k = [Dβ,1,k, . . . , Dβ,T,k]

with

Dβ,α,k =
M−1∑
m=0

dβ,α,mexp

{
j2πk

(
ηmax + M − ηβ,α − 1

)
N

}

×exp

{−j2πkm

N

}
, k = 0, 1, . . . , N − 1, (15)

1 Notice that the values of j2π fcτα ,m and j2π fcτβ ,m form the transmitter
steering vector and receiver steering vector [33], respectively, which are
often assumed known.

where, dβ ,α ,m is the weighting RCS coefficient from the
αth transmitter, the mth range cell, and the βth receiver.

From the constant assumption of gβ ,α ,m within a CPI,
for given β, α, and m, the values of dβ ,α ,m in (11) and
Dβ ,α ,k in (15) are also constant within a CPI. Combining
all the received signals of R receivers and P pulses within
a CPI, we can obtain the following matrix representation:

Uk = DkSk + Wk, k = 0, 1, . . . , N − 1, (16)

where Uk = [U (0)
k , U (1)

k , . . . , U (P−1)
k ] is an R × P matrix,

U (p)
k = [U (p)

1,k , U
(p)
2,k , . . . , U

(p)
R,k]T is an R × 1 column vector

for 0 ≤ p ≤ P – 1.

Sk
�=
[

S
(0)
k , S

(1)
k , . . . , S

(P−1)
k

]
=

⎡⎢⎢⎢⎢⎢⎣
S

(0)
1,k S

(1)
1,k · · · S

(P−1)
1,k

S
(0)
2,k S

(1)
2,k · · · S

(P−1)
2,k

...
...

. . .
...

S
(0)
T,k S

(1)
T,k · · · S

(P−1)
T,k

⎤⎥⎥⎥⎥⎥⎦
(17)

is a T × P matrix. Wk = [W (0)
k , W (1)

k , . . . , W (P−1)
k ] is an

R × P matrix, W (p)
k = [W (p)

1,k , W
(p)
2,k , . . . , .W

(p)
R,k]T is an

R × 1 column vector. And

Dk =

⎡⎢⎢⎢⎢⎢⎣
D1,1,k D1,2,k · · · D1,T,k

D2,1,k D2,2,k · · · D2,T,k

...
...

. . .
...

DR,1,k DR,2,k · · · DR,T,k

⎤⎥⎥⎥⎥⎥⎦ (18)

is an R × T matrix.
By assuming P ≥ T, we can construct such a T × P

matrix Sk to guarantee SkS+
k = IT for all k, where IT is the

T × T identity matrix, S+
k = S†

k(SkS†
k)−1 ∈ C

P×T is the
Penrose-Moore pseudoinverse of Sk, and (·)† denotes the
conjugate transpose. Note that as long as matrix Sk has full
row rank, i.e., 1 × P weight vectors in the P OFDM
waveforms from all transmitters are linearly independent
on every subcarrier k, property SkS+

k = IT is satisfied.
Then, the estimate of Dk in (16) is

D̂k = UkS+
k = Dk + Wk, (19)

where Wk = WkS+
k denotes the new noise matrix. One

can see from the above estimate that the new noise matrix
is obtained by multiplying the inverse of matrix Sk to the
original noise matrix Wk for each subcarrier index k.
Clearly, in order not to enhance the noise, it is desired that
the matrix Sk is unitary, which is similar to the MIMO
OFDM channel estimation in wireless communications [1,
2, 32]. Since Sk is a flat matrix in general, in what follows
we require that the row vectors of Sk are orthogonal to
each other and have the same norm called flat unitary
matrix, i.e., SkS†

k = IT. This means that the weight vectors
at every subcarrier k in the OFDM waveforms transmitted
through T transmitters are orthogonal to each other among
different transmitters, i.e., the discrete versions in
frequency domain are orthogonal to each other for every
subcarrier, which still holds when there are time delays
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among the corresponding waveforms in time domain,
although the delayed waveforms may not be orthogonal in
time domain. This property is fundamentally different
from most of the existing MIMO radars including the
existing MIMO OFDM radars.

According to (15), vector Dβ ,α = [Dβ ,α ,0, Dβ ,α ,1, . . .,
Dβ ,α ,N – 1]T is just the N-point FFT of vector

√
Nγ , where

γ is an N-dimensional vector, which is a right cyclic shift
of ηmax + M – ηβ ,α – 1 positions of vector⎡⎣dβ,α,0, dβ,α,1, · · · , dβ,α,M−1, 0, · · · , 0︸ ︷︷ ︸

N−M

⎤⎦T

,

where dβ ,α ,m are the weighting RCS coefficients, similar
to the single transmitter and single receiver case studied in
[19].

Then, the pulse compression and coherent integration
can be achieved by performing the N-point IFFT operation
on vector D̂β,α = [D̂β,α,0, D̂β,α,1, . . . , D̂β,α,N−1]T and we
obtain

d̃β,α,m̃ = 1√
N

N−1∑
n=0

D̂β,α,nexp

{
j2πm̃n

N

}
,

m̃ = 0, 1, . . . , N − 1. (20)

So, the estimate of dβ ,α ,m can be achieved by a left
cyclic shift of ηmax + M – ηβ ,α – 1 positions of vector
d̃β,α,m̃, i.e., vector [d̂β,α,0, . . . , d̂β,α,M−1]T is equal to the
first M elements of vector

[d̃β,α,N−ηmax−M+ηβ,α+1, . . . , d̃β,α,N−1,

d̃β,α,0, . . . , d̃β,α,N−ηmax−M+ηβ,α
]T .

We then obtain the following estimates of the M
weighting RCS coefficients at the βth receiver due to the
αth transmitter:

d̂β,α,m =
√

Ndβ,α,m + wβ,α,m, m = 0, 1, . . . , M − 1,

(21)
where wβ ,α ,m is the mth output of the N-point IFFT of the
vector [W̄β,α,0, W̄β,α,1, . . . , W̄β,α,N−1]T that is the βth row
and the αth column element of matrix Wk for k = 0, 1, . . .

, N – 1. W̄β,α,k can be written as

W̄β,α,k =

P−1∑
p=0

W
(p)
β,kS

(p)
α,k

P−1∑
p=0

∣∣∣S(p)
α,k

∣∣∣2 , k = 0, 1, . . . , N − 1. (22)

In (21), dβ ,α ,m can be recovered without any
interference from other transmitted signals or IRCI from
other range cells. Then, using (11), we can compensate the
phase and obtain the estimate of the RCS coefficient
gβ ,α ,m as

ĝβ,α,m = d̂β,α,mexp
{
j2πfc

[
τα,m + τβ,m

]}
. (23)

In the above joint pulse compression and coherent
integration, the operations of FFT in (14), the estimate of
Dk in (19), and IFFT in (20) are applied. Thus, we need to

analyze the changes of the noise power in each step of the
above range reconstruction method. Assume that the noise
component w

(p)
β,n in (13) is a complex white Gaussian

variable with zero-mean and the same variance σ 2, i.e.,
w

(p)
β,n ∼ CN (0, σ 2) for all receivers β, pulses p, and

samples n. Since the FFT operation is unitary, after the
process in (14), the additive noise power of W

(p)
β,k does not

change, i.e., W
(p)
β,k ∼ CN (0, σ 2). In the same way, the

noise power of each element in Wk in (16) is also σ 2.
However, after the operation for the estimate of Dk in (19),
the variance of a noise component W̄β,α,k in (22) can be
calculated as

E
{
W̄β,α,kW̄

†
β,α,k

}
= σ 2

⎡⎣P−1∑
p=0

∣∣∣S(p)
α,k

∣∣∣2
⎤⎦−1

,

and thus

W̄β,α,k ∼ CN

⎛⎜⎝0, σ 2

⎡⎣P−1∑
p=0

∣∣∣S(p)
α,k

∣∣∣2
⎤⎦−1

⎞⎟⎠ ,

k = 0, 1, . . . , N − 1,

for all β and α. Moreover, after the IFFT operation in (20),
we then have finished the joint pulse compression and
coherent integration. The noise power of wβ ,α ,m in (21) is

E
{
wβ,α,mw

†
β,α,m

}
= σ 2

N

N−1∑
k=0

⎡⎣P−1∑
p=0

∣∣∣S(p)
α,k

∣∣∣2
⎤⎦−1

and

wβ,α,m ∼ CN

⎛⎜⎝0,
σ 2

N

N−1∑
k=0

⎡⎣P−1∑
p=0

∣∣∣S(p)
α,k

∣∣∣2
⎤⎦−1

⎞⎟⎠ .

Thus, from (21), we can obtain the SNR of the signal
after the joint pulse compression and coherent integration
at the βth receiver due to the transmission from the αth
transmitter and reflected from the mth range cell as,

SNRβ,α,m = N2
∣∣dβ,α,m

∣∣2
σ 2

N−1∑
k=0

[
P−1∑
p=0

∣∣∣S(p)
α,k

∣∣∣2]−1 . (24)

Notice that a larger SNRβ ,α ,m can be obtained with a
smaller value of

N−1∑
k=0

⎡⎣P−1∑
p=0

∣∣∣S(p)
α,k

∣∣∣2
⎤⎦−1

by designing S
(p)
α,k . With a given αth transmitter and the

energy constraint

P−1∑
p=0

N−1∑
k=0

∣∣∣S(p)
α,k

∣∣∣2 = 1

T
,
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when
P−1∑
p=0

|S(p)
α,k|

2
has constant module for all k, i.e.,

P−1∑
p=0

∣∣∣S(p)
α,0

∣∣∣2 =
P−1∑
p=0

∣∣∣S(p)
α,1

∣∣∣2 = . . . =
P−1∑
p=0

∣∣∣S(p)
α,N−1

∣∣∣2 = 1

NT
,

(25)
we obtain the minimal value of

N−1∑
k=0

⎡⎣P−1∑
p=0

∣∣∣S(p)
α,k

∣∣∣2
⎤⎦−1

= N2
T.

In this case, the maximal SNR after the joint pulse
compression and coherent integration can be obtained as

SNR(max)
β,α,m = max

S̃α :‖̃Sα‖2= 1
T

{
SNRβ,α,m

}=
∣∣dβ,α,m

∣∣2
Tσ 2

, (26)

where S̃α =
[(

S(0)
α

)T
, . . . ,

(
S(P−1)

α

)T ]T

∈ C
PN×1.

Thus, for the αth transmitter, the optimal signal S
(p)
α,k

should satisfy a requirement that the transmitted energy

summations of the P pulses within a CPI, i.e.,
P−1∑
p=0

|S(p)
α,k|

2
,

have constant module for all k. Otherwise, the SNR after
the range reconstruction will be degraded. Here, we define
the SNR degradation factor as

ξ = SNRβ,α,m

SNR(max)
β,α,m

= N2
T

N−1∑
k=0

[
P−1∑
p=0

∣∣∣S(p)
α,k

∣∣∣2]−1 . (27)

Notice that ξ ∈ (0,1] is independent of the noise power σ 2

and the weighting RCS coefficient dβ ,α ,m. Since we
assume that the row vectors of matrix Sk are orthogonal to
each other and have the same norm, the above degradation
factor ξ is also independent of β and α. The SNR
degradation factor ξ in (27) is for the performance of both
pulse compression and coherent integration of all the P
pulses within a CPI, but not only the pulse compression of
a single pulse in [20].

We recall that the number of the OFDM signal
subcarriers should satisfy N ≥ ηmax + M. Thus, the length
of the transmitted signals should be increased with the
increases of the width Rw for the radar footprints in the
range direction and/or ηmax. The pulse length will be much
longer than the traditional radar pulse for a wide width Rw

(or large M) and/or a large delay ηmax, which may be a
problem, especially for covert/military radar applications.
Meanwhile, the CP removal for the elimination of the
interference at the receivers may cause high transmitted
energy redundancy as we have mentioned in [20].
Therefore, it is necessary for us to achieve MIMO OFDM
radar with arbitrary pulse length that is independent of Rw.
The main idea is to generate P pulses
s

(p)
α (t), t ∈ [pTr, pTr + T + TGI ], p = 0,1, . . . , P – 1, for

all T transmitters, such that the discrete time sequence of
s

(p)
α (t), pTr ≤ t ≤ pTr + T + TGI :

s
(p)
α,i = s

(p)
α (iTs), 0 ≤ i ≤ N + ηmax + M − 2 in (12), is

zero at the head and the tail parts as[
s

(p)
α,0, . . . , s

(p)
α,ηmax+M−2

]T

=
[
s

(p)
α,N , . . . , s

(p)
α,N+ηmax+M−2

]T

= 0(ηmax+M−1)×1. (28)

In the meantime, s
(p)
α,i is also a sampled discrete time

sequence of an OFDM pulse in (8) for t ∈ [pTr, pTr + T
+ TGI]. This zero head and tail condition (28) is the same
as that in [20]. Then, in this case, the continuous time
signal s

(p)
α (t) is only transmitted on the time interval t ∈

[pTr + TGI, pTr + T] that has length T – TGI, where TGI

is the length of the guard interval and also the zero-valued
head part of the signal that leads to the zero-valued CP
part at the tail. Since T can be arbitrarily designed, the
OFDM pulse length T – TGI can be arbitrary as well. For
more details, we refer to [20]. Based on the above
analysis, the key task of the following section is the design
of these multiple OFDM sequences.

IV. DESIGN OF MULTIPLE OFDM SEQUENCES

In this section, we design the weight sequences in the
P OFDM pulses for each transmitter, i.e., the matrix
Sk = [S(p)

α,k]1≤α≤T,0≤p≤P−1 for k = 0,1,..., N – 1 in (17).
There are three indices here: one is the transmitter index
α, one is the OFDM pulse index p for each transmitter,
and the third one is the subcarrier index k. We start with
the design criterion.

A. Design Criterion

Any segment of an OFDM pulse in (8) is determined
by a weight sequence S(p)

α = [S(p)
α,0, S

(p)
α,1, . . . , .S

(p)
α,N−1]T

that is determined by its N-point IFFT
s(p)
α = [s(p)

α,0, s
(p)
α,1, . . . , s

(p)
α,N−1]T . Thus, the design of s(p)

α is

equivalent to the design of S(p)
α . Based on the above

discussions, s(p)
α and S(p)

α should satisfy the following
conditions.

1) Frequency domain orthogonality among
transmitters for every subcarrier: As was mentioned
earlier, in order not to enhance the noise in the estimate in
(19) for RCS coefficients, matrix Sk has to be a flat unitary
matrix, i.e., SkS†

k = IT for each k = 0,1, . . . , N – 1.
Specifically, the sequence Sα ,k should be orthogonal to
sequence Sα̃,k for different transmitters α �= α̃ and
1 ≤ α, α̃ ≤ T, and have the same norm, where
Sα,k = [S(0)

α,k, S
(1)
α,k, . . . , S

(P−1)
α,k ] is the αth row of Sk. Note

that this orthogonality is for every subcarrier in the discrete
frequency domain of the signal waveforms but not in the
time domain as commonly used in a MIMO radar. The
advantage of this orthogonality in the frequency domain is
that it is not affected by time delays in the time domain,
while the orthogonality in the time domain is sensitive to
any time delays. In addition, this discrete orthogonality in
the frequency domain does not require that the frequency
bands of the waveforms do not overlap each other as
commonly used in the frequency division MIMO radar
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and in fact, all the frequency bands of the T waveforms
can be the same. It implies that the range resolution is not
sacrificed as is done in frequency division MIMO radar.
This criterion deals with the transmitter index α and the
OFDM pulse index p, and the subcarrier index k is free.

2) Zero head and tail condition: Sequence s(p)
α

should satisfy the zero head and tail condition in (28) for
all p and α. This criterion only deals with the time index i
in a pulse, or equivalently, the subcarrier index k.

3) Flat total spectral power of P pulses: To avoid
the SNR degradation as the estimation of the weighting
RCS coefficients in (19) and what follows, and achieve the
maximal SNR after pulse compression and coherent
integration, for the αth transmitter, the transmitted energy
summation of all the P pulses within a CPI should have
constant module for all k, i.e.,

P−1∑
p=0

∣∣∣S(p)
α,k

∣∣∣2 = 1

NT
.

This criterion only deals with the pulse index p.
4) Good PAPR property: The PAPR of the

transmitted OFDM pulse s
(p)
α (t), p = 0, 1, . . . , P − 1, in

(8) for t ∈ [pTr + TGI , pTr + T ] should be minimized for
an easy practical implementation of the radar. This
criterion also only deals with the time index t in a pulse, or
equivalently, the subcarrier index k.

The basic idea of the following designs to satisfy the
above four criteria is to first use a pattern (called
orthogonal design) of placing P pulses to ensure the
orthogonality condition 1) among all the T transmitters,
where the P pulses and/or their complex conjugates and/or
their shifted versions etc. are used by every transmitter.
After this is done, it is only needed to work on these P
pulses to satisfy the other three criteria above, which are
independent of a transmitter.

B. Frequency Domain Orthogonality Using Orthogonal
Designs

The orthogonality condition 1) for the weighting
matrix Sk in (17) is for all subcarrier indices k, i.e., it is for
a matrix whose entries are variables but not simply
constants. This motivates us to use complex orthogonal
designs (COD) [21–28] whose entries are arbitrary
complex variables. Furthermore, each row vector of a
COD uses the same set of complex variables, which
corresponds to each transmitter using the same set of
OFDM pulses and therefore we only need to consider P
pulses for one transmitter as explained above.

Let us briefly recall a COD [21–28]. A T × P COD2

with P1 complex variables x1, x2, ..., xP1 is a T × P

2 The COD definition we use in this paper follows the original COD
definition [22, 26] where no linear combinations or repetitions of
complex variables xi is allowed in the matrix entry or any row of the
matrix. This appears important in the applications in this paper. More
general COD definitions can be found in [22, 25, 26, 28] where any
complex linear combinations of complex variables xi are allowed in the

matrix X such that its every entry is either 0, xi, −xi, x∗
i ,

or −x∗
i and satisfies the following identity

XX† =
(
|x1|2 + · · · + ∣∣xP1

∣∣2) IT, (29)

where every xi may take any complex value. CODs have
been used for orthogonal space-time block codes
(OSTBC) in MIMO communications to collect full spatial
diversity with fast maximum likelihood (ML) decoding,
see for example [21–28]. Note that, as we see later, our
use of a COD in the following is not from an OSTBC
point of view but only from the structured orthogonality
(29). A closed-form inductive design of a T × P COD for
any T is given in [28]. The following are two simple but
nontrivial COD for T = 2 and 4, respectively,

X2 =
[

x1 x2

−x∗
2 x∗

1

]
and X4 =

⎡⎢⎢⎢⎣
x1 x2 x3 0

−x∗
2 x∗

1 0 x3

−x∗
3 0 x∗

1 −x2

0 −x∗
3 x∗

2 x1

⎤⎥⎥⎥⎦ .

(30)
The above COD X2 was first used as an OSTBC by

Alamouti in [21] and it is now well known as Alamouti
code in MIMO communications. From the second
example X4 above, one may see that the number P1 of the
nonzero variables in a COD may not be necessarily equal
to the number P of its columns. In fact, for a given T, the
relationship between P, P1, and T has been given in [26,
28], where it is shown that

P1

P
=

⌈
T

2

⌉ + 1

2
⌈

T

2

⌉ (31)

is achieved with closed-form designs in [28]. From the
COD definition, it is not hard to see that every row of a
COD contains the same set of complex variables
x1, ..., xP1 and every such variable xi only appears once.
With this property, when we apply a COD as a weighting
matrix Sk for every k, among the P pulses, only P1

nonzero OFDM pulses are used for every transmitter and
the other P – P1 pulses are all zero-valued.

With a COD, we may design a weighting matrix Sk for
every k. Let us use the above 2 × 2 COD as an example.
It is used for the case of T = P = 2. The corresponding 2
× 2 weighting matrix Sk for every k is[

S1,k

S2,k

]
=
[

S
(0)
1,k S

(1)
1,k

S
(0)
2,k S

(1)
2,k

]
=
⎡⎣ S

(0)
1,k S

(1)
1,k

−
(
S

(1)
1,k

)∗ (
S

(0)
1,k

)∗

⎤⎦ ,

k = 0, 1, . . . , N − 1. (32)

Then, S1,k and S2,k are orthogonal and have the same
norm for every k. The discrete time domain sequences
s(p)
α = [s(p)

α,0, . . . , s
(p)
α,N−1]T for the αth transmitter and the

pth OFDM pulse is obtained by taking the N-point IFFT of
S(p)

α = [S(p)
α,0, . . . , S

(p)
α,N−1]T . From the above design in (32)

entries of the matrix and does not affect their applications in wireless
MIMO communications.
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for two transmitters, the two OFDM pulses for the first
transmitter are free to design so far, while the two OFDM
pulses for the second transmitter in the frequency domain
are determined by the two pulses for the first transmitter.
The two OFDM pulses for the second transmitter in the
discrete time domain are, correspondingly,

s
(0)
2,i =−

(
s

(1)
1,N−i

)∗
and s

(1)
2,i =

(
s

(0)
1,N−i

)∗
, i =0, 1, ..., N − 1.

In the continuous time domain, they are

s
(0)
2 (t) = −

(
s

(1)
1 (T − t)

)∗
and s

(1)
2 (t) =

(
s

(0)
1 (T − t)

)∗
,

where t ∈ [TGI, T + TGI] when the CP is not included and
t ∈ [0, T + TGI] when the CP is included.

For general T transmitters, from a COD design [28],
such as (30) for T = 4, the discrete complex weight
sequences for the first transmitter
S(p)

1 = [S(p)
1,0, . . . , S

(p)
1,N−1]T are either the all zero sequence

(P – P1 of them) or free to design (P1 of them) so far
(more conditions will be imposed for the other criteria,
2)–4), later). The discrete complex weight sequences for
any other transmitter S(p)

α = [S(p)
α,0, . . . , S

(p)
α,N−1]T for α > 1

are either the all zero sequence (P – P1 of them as the first
transmitter), or ±S(p′)

1 , or ±(S(p′)
1 )∗ for some p′ with 0 ≤ p′

�= p ≤ P – 1. Then, the discrete time domain sequences for
any other transmitter s

(p)
α,i for α > 1 are either the all zero

sequence or ±[s(p′)
1,i ]0≤i≤N−1 or ±([s(p′)

1,N−i]0≤i≤N−1
)∗ for

some p′ with 0 ≤ p′ �= p ≤ P – 1. In the continuous time
domain, a pulse transmitted by any other transmitter
s

(p)
α (t) for α > 1 are either the all zero-valued pulse, or

±s
(p′)
1 (t) or ±(s(p′)

1 (T − t))∗ for some p′ with 0 ≤ p′ �= p ≤
P – 1. Note that for notational convenience, all the above
P pulses are considered over the same time interval.
However, these P pulses are arranged sequentially in time
after they are designed and when they are
used/transmitted.

In the case of T = 4 in (30), P1 = 3 and P = 4 and
there is one all zero pulse for each transmitter and at any
time, only three transmitters transmit signals and the idle
transmitter alternates.

From the above pulse placement among transmitters
using a COD, the transmitted pulses for the first transmitter
are either all zero-valued, or free to design, and the pulses
transmitted by any other transmitters are the pulses
transmitted by the first transmitter possibly with some
simple operations of negative signed, complex conjugated,
and/or time-reversed in the pulse period, and no more and
no less pulses are transmitted. These operations do not
change the signal power in frequency domain or the signal
PAPR in time domain for a pulse, and thus do not change
the conditions 3) and 4) of the design criteria studied
above. So, for the design criteria 3) and 4), we only need
to consider the P1 nonzero pulses for the first transmitter.
Note that the complex conjugation in frequency domain
not only causes the complex conjugation in time domain
but also causes the time reversal in time domain as

expressed above. The time reversal operation to a pulse in
time domain may change the zero head and tail condition
2) in the above design criteria, i.e., if a sequence satisfies
the zero head and tail condition (28), its time-reversed
version may not satisfy the zero head and tail condition
(28) anymore. However, if sequence s(p)

α , with its FFT
S(p)

α , satisfies not only the condition in (28) but also[
s

(p)
α,N−ηmax−M+2, . . . , s

(p)
α,N−1

]T

= 0(ηmax+M−2)×1, (33)

then, not only sequence s(p)
α = [s(p)

α,i ] satisfies the zero head
and tail condition (28) but also its time-reversed version
[s(p)

α,N−i] also satisfies the zero head and tail condition (28).
Due to this additional zero-segment condition in (33), the
PAPR in time domain should be redefined as the PAPR
only over the nonzero portion, i.e., the portion for t ∈
[pTr + TGI, pTr + T – TGI + Ts], of a pulse. Therefore,
the design criteria 2) and 4) should be updated as follows.

2) New zero head and tail condition: Sequence s(p)
α

should satisfy the zero head and tail conditions in (28) and
(33) for all p and α.

4) New good PAPR property: The PAPR of the
transmitted non-zero-valued OFDM pulse s

(p)
α (t) for each

p, p = 0, 1, . . . , P1 – 1, and each α, 1 ≤ α ≤ T, in (8) for t
∈ [pTr + TGI, pTr + T – TGI + Ts] should be minimized.

In this case, with the conditions in (28) and (33), a
transmitted time domain sequence of the αth transmitter
and the pth pulse becomes s̃(p)

α =
[s(p)

α,ηmax+M−1, s
(p)
α,ηmax+M, . . . , s

(p)
α,N−ηmax−M+1]T ∈ C

Nt×1 for
1 ≤ α ≤ T and 0 ≤ p ≤ P – 1, where Nt = N – 2ηmax – 2M
+ 3 is the length of the transmitted nonzero OFDM
sequences. Among these P pulses, only P1 of them are not
all zero pulses. Thus, the normalized transmitted energy
constraint of s̃(p)

α is that the mean transmitted power of s̃(p)
α

is 1
Nt TP1

. Hence, the SNR of the received signal from the
mth range cell before pulse compression and coherent
integration is

SNRβ,α,m =
∣∣dβ,α,m

∣∣2
NtTP1σ 2

. (34)

Note that the maximal SNR of the mth range cell after the
joint pulse compression and coherent integration
SNR(max)

β,α,m in (26) is equal to P1NtSNRβ,α,m, and the SNR
gains of the pulse coherent integration P1 (the number of
nonzero pulses) and the pulse compression Nt (the
non-zero-valued pulse length) are consistent with the
traditional radar applications [31]. Based on the above
analysis, the key task of the remainder of this section is to
design a sequence s(p)

α that simultaneously satisfies the
above criteria 2), 3), and 4).

Before finishing this subsection, a remark on using a
COD in the above pulse placement among transmitters is
made as follows. When the number T of transmitters is not
small, either the number P of pulses will be much larger
than T or the number P1 of nonzero pulses can be put in
will be small. There is a trade-off among these three
parameters as we have mentioned earlier for a COD
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design. When P1 is small, there are less degrees of
freedom in the pulse design, which will affect the MIMO
OFDM radar performance, when other conditions are
imposed as we see later. Furthermore, when P1 is small,
the radar transmitter usage is low and may not be preferred
in radar applications. From the COD rate property (31),
one can see that P1 is always more than P/2, i.e., among a
CPI of P pulses, there are always more than half of P
pulses that are nonzero OFDM pulses. A trivial unitary
matrix Sk in (17) is a diagonal matrix with all diagonal
elements of the same norm. This corresponds to the case
when there is only one transmitter that transmits at any
time in a CPI and then the radar transmitter usage
becomes the lowest, which is again not preferred. On the
other hand, when P is large, the time to transmit these P
pulses becomes long, which may not be preferred in some
radar applications either. Another remark is that unitary
matrices Sk have been also constructed in [7] where all
unitary matrices Sk for all k are from a single constant
unitary matrix and each Sk for each k has only one free
parameter on phase. This may limit the ability to find
desired waveforms with some additional desired
properties, such as those we discuss next.

Also in what follows, for the notational convenience,
we use P instead of P1 to denote the number of nonzero
OFDM pulses to design since an all-zero-valued pulse
does not affect the other pulses.

C. Flat Total Spectral Power Using Paraunitary
Filterbanks

From the above studies, we only need to design P
pulses for the first transmitter. In this subsection, we
design P OFDM pulses by designing their equivalent
OFDM sequences s(p) in time domain or S(p) in frequency
domain, for p = 0,1, . . . , P – 1, that satisfy the design
criteria 2) (new) and 3) precisely. We omit their
transmitter index 1 for convenience. The main idea is to
apply the paraunitary filterbank theory [29] ([30] for a
short tutorial) as follows.

Considering the above criterion 2) (new), the complex
weight sequences S(p), for p = 0,1, . . . , P – 1, can be
written as

S
(p)
k = 1√

N

N−η1st∑
i=η1st

s
(p)
i exp

{
−j2πik

N

}
, k=0, 1, . . . , N−1,

(35)
where η1st = ηmax + M – 1 is the index of the first nonzero
value of sequence s(p). Then, we have S

(p)
k = S(p)(z)|z=Wk

for k = 0,1,..., N – 1, where Wk
�= exp{ j2πk

N
} and

S(p) (z) = z−η1st

√
N

Nt−1∑
i=0

s
(p)
η1st+iz

−i , (36)

where we recall that Nt = N – 2ηmax – 2M + 3 is the
length of the transmitted nonzero OFDM sequences. Then,
the flat total spectral power in the criterion 3) can be

rewritten as

P−1∑
p=0

∣∣S(p) (z)
∣∣2∣∣∣∣∣∣

z=Wk

= 1

NT
, k = 0, 1, ..., N − 1. (37)

The above identity for all k is ensured by the following
identity on the whole unit circle of z,

P−1∑
p=0

∣∣S(p) (z)
∣∣2 = 1

NT
, |z| = 1. (38)

This identity tells us that if S(p)(z), p = 0,1,...,P – 1,
form a filterbank, then this filterbank can be systematically
constructed by a paraunitary filterbank with polyphase
representations of P filters S(p)(z), p = 0,1,...,P – 1 [29] as
follows. For each p, rewrite S(p)(z) as

S(p) (z) = z−η1st

P−1∑
q=0

z−qS(p)
q

(
zP
)
, (39)

where

S(p)
q (z) = 1√

N

⌈
Nt −P

P

⌉∑
i=0

s
(p)
η1st+P i+qz

−i (40)

is the qth polyphase component of S(p)(z). Clearly, a filter
S(p)(z) and its P polyphase components
S

(p)
q (z), q = 0, 1, ..., P − 1, can be equivalently and easily

converted to each other as above. These P2 polyphase
components for all the P filters form a P × P polyphase
matrix S(z) = [S(p)

q (z)]0≤p≤P−1,0≤q≤P−1. Then, the flat
spectral power condition (38) is equivalent to the
losslessness (or paraunitariness) of the P × P matrix
S(z)̃S(z) = 1

NT
IP for all complex values |z| = 1 (or all

complex values z and then this matrix is called a
paraunitary matrix) [29], where S̃(z) is the tilde operation
of S(z), i.e., S̃(z) = S†(z−1). Such a paraunitary matrix can
be factorized as [29]

S(z) = 1√
NT

⌈
Nt −P

P

⌉∏
l=1

V l(z)V , (41)

where V is a P × P constant unitary matrix and

V l(z) = IP − vlv
†
l + z−1vlv

†
l , (42)

where vl ∈ C
P×1 is a P by 1 constant column vector of

unit norm.
In order to construct OFDM sequences s(p) that satisfy

the new zero head and tail condition 2), when Nt−P

P
is not

an integer, the above paraunitary matrix S(z) can be
constructed as

S(z) = 1√
NT

⌈
Nt −P

P

⌉∏
l=1

V l(z)V , (43)

where V and Vl(z) are as in (41) and (42), respectively.
After a paraunitary matrix S(z) = [S(p)

q (z)] is constructed
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in (43), we can form S(p)(z) for p = 0,1,..., P – 1 via (39).
Then, sequences S

(p)
k , k = 0,1,..., N – 1, for p = 0,1,...,P –

1, satisfy the flat total spectral power condition 3). The
discrete time domain OFDM sequences s(p) can be
obtained by taking the N-point IFFT of S(p) for every p =
0,1,...,P – 1, which satisfy the new zero head and tail
condition 2). In this construction, there are P2

complex-valued parameters in the unitary matrix V and
�Nt−P

P

 × P complex-valued parameters in the P × 1

vectors vl with unit norm for l = 1,2,..., �Nt−P

P

.

Therefore, there are total

P 2 +
⌊

Nt − P

P

⌋
× P ≈ Nt + P 2 − P

complex-valued parameters to choose under the
constraints of VV† = IP and ||vl|| = 1. As a remark,
compared with the single OFDM pulse case studied for
single transmitter radar in [19, 20] i.e., P = 1, the flat total
spectral power 3) for P > 1 is easier to achieve.

In order to design OFDM pulses to satisfy the criterion
4), i.e., to have low PAPR in the time domain,
unfortunately, there is no closed-form construction (see,
for example, a tutorial [35] for PAPR issues) as for the
previous three criteria 1)–3). One way to design good
PAPR pulses satisfying 1)–3) is to search the above
parameters in V and vl. However, since there are too many
complex-valued parameters to search, it is hard to find
OFDM pulses that satisfy 1)–3) and have good PAPR
property in time domain. Let us go back to reexam the flat
total spectral power property 3) that is used to achieve the
optimal SNR after the joint pulse compression and
coherent integration as is studied in (24)–(26). In practice,
a small SNR degradation with ξ ≈ 1 in (27) may not
impact the radar performance much by slightly relaxing
the flat total spectral power condition 3). With this small

relaxation, i.e.,
P−1∑
p=0

|S(p)
k |2 ≈ 1

NT
for all k = 0,1,...,N – 1, it

will be much easier to achieve good PAPR criterion 4) as
we see below.

D. OFDM Sequence Design Using MICF

A simple method was proposed in [20] for single
OFDM pulse design, in which the filtering and clipping
operations were iteratively applied in time and frequency
domains to reduce the PAPR of the transmitted OFDM
pulse and make the complex weights of different
subcarriers to be as constant as possible. Since the above
requirements 2), 3), and 4) are respectively similar3 to the
corresponding requirements 1), 2), and 3) in [20], by using
the method in [20], a simple method to achieve
P−1∑
p=0

|S(p)
k |2 ≈ 1

NT
and the zero head and tail condition 2) is

to design each individual sequence S
(p)
k for each p

3 The difference is that an additional condition of (33) is added in the
above requirement 3 of this paper.

Fig. 2. Block diagram of joint multiple OFDM sequence design using
MICF.

separately for approximately constant module S
(p)
k for all k

and p, i.e., |S(p)
k | ≈ 1√

NTP
. However, with this simple

method, there are less degrees of freedom than that when
all P pulses are jointly considered in the design, which can
be evidenced by observing that there are closed-form
solutions to achieve the flat total spectral power when P >

1 as studied in the preceding subsection, while it is much
harder (if not impossible) when P = 1. In the meantime,
there are more degrees of freedom for filtering and
clipping when all P OFDM pulses are designed jointly and
then, the above requirements 2)–4) can be better satisfied.
Therefore, in the following, we propose an MICF
algorithm to design P OFDM pulses jointly.

For convenience to deal with the PAPR issue, our
proposed MICF algorithm starts with some initial random
constant modular sequences S(p)(0) ∈ C

N×1, for p = 0,1,
. . . , P – 1. Then, at the qth iteration, (L – 1) N zeros are
padded to each sequence S(p) (q) as
[S(p)

0 (q), . . . , S(p)
N−1(q), .01×(L−1)N ]T and we obtain

s̃(p)(q) ∈ C
LN×1 by using LN-point IFFT, as shown in the

block diagram Fig. 2, where s̃(p) denote the time domain
OFDM sequences by L times oversampling of the
continuous waveforms s(p)(t). Since the first ηmax + M – 1
and the last ηmax + M – 2 samples of our desired
sequences s(p) should be equal to zero, we apply the
following time domain filter to the sequences s̃(p)(q):

h(n) =⎧⎪⎨⎪⎩
0, 0 ≤ n ≤ L (ηmax + M − 1) − 1

1, L (ηmax + M−1) ≤ n ≤ L (N − ηmax − M + 2)−1,

0, L (N − ηmax − M + 2) ≤ n ≤ LN − 1

(44)

to obtain new sequences š(p)(q) = [š(p)
0 (q), . . . ,

š(p)
LN−1(q)]T , where š(p)

n (q) = s̃
(p)
n (q)h(n), n = 0,1, . . . , LN

– 1. The time domain clipping [20] is then applied to the
segment of the nonzero elements of the sequence š(p)(q)
with a preset constant lower bound PAPRd as a desired
PAPR, and we obtain the sequence ŝ(p)(q). After the
LN-point FFT and frequency domain filtering, we obtain

the sequences S̃
(p)

(q) and Š(p)(q), respectively. Notice that
the frequency domain filtering is used to constrain the
out-of-band radiation caused by the time domain filtering
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and clipping. To deal with the constant transmitted energy
among N subcarriers of the summation for all the P pulses,
the following frequency domain clipping is used:

S
(p)
k (q + 1) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
Pav(q)(1+Gf )

Pk(q)

�

S
(p)

k (q), if Pk(q) > Pav(q)
(
1 + Gf

)
√

Pav(q)(1−Gf )
Pk(q)

�

S
(p)

k (q) , if Pk (q) < Pav(q)(1 − Gf ),

�

S
(p)
k (q) , otherwise

(45)

where 0 < k < N – 1, we obtain S(p)(q + 1) =
[S(p)

0 (q + 1), S(p)
1 (q + 1), . . . , S(p)

N−1(q + 1)]T , and

Pk (q) =
P−1∑
p=0

∣∣∣ �

S
(p)
k (q)

∣∣∣2
and

Pav (q) = 1

N

N−1∑
k=0

Pk (q)

are, respectively, the transmitted energy of the kth
subcarrier of the summation for all the P pulses and the
average energy of N subcarriers for all the P pulses within
a CPI. Gf is a factor that we use to control the upper and

lower bounds for
P−1∑
p=0

|S(p)
k (q + 1)|2. Thus, the value of

P−1∑
p=0

|S(p)
k (q + 1)|2 is constrained as

P−1∑
p=0

|S(p)
k (q + 1)|2

∈ [Pav(q)(1 − Gf ), Pav(q)(1 + Gf )]. A smaller Gf

denotes that a closer-to-constant value
P−1∑
p=0

|S(p)
k (q + 1)|2

can be obtained.
In Fig. 2, Q is a preset maximum iteration number.

When q = Q, the iteration stops and the N-point IFFT will
be applied to the sequence S(p)(Q) ∈ C

N×1 to obtain
s̃(p) ∈ C

N×1. Then, a time domain filter,

h̃ (n) =
⎧⎨⎩0, 0 ≤ n ≤ ηmax + M − 2

1, ηmax + M − 1 ≤ n ≤ N − ηmax − M + 1
0, N − ηmax − M + 2 ≤ n ≤ N − 1

,

is applied to s̃(p) and we obtain sequence
š(p) = [š(p)

0 , . . . , š
(p)
N−1]T , where š

(p)
n = s̃

(p)
n h̃(n), for n = 0,

1, . . . , N – 1. To normalize the transmitted energy and

make sure
N−1∑
k=0

|S(p)
k |2 = 1

TP
for each pulse, the

normalization is applied to the sequence š(p), i.e.,

s(p)
n =

�

S
(p)
n√√√√TP

N−ηmax−M+1∑
i=ηmax+M−1

∣∣∣�S(p)
i

∣∣∣2
, n = 0, 1, . . . , N − 1,

and we obtain OFDM sequence s(p) that accurately
satisfies the new zero head and tail criterion 2). Finally,

sequence S(p) can be obtained by using the N-point FFT to
s(p). The PAPR of the nonzero part of s(p) can be obtained
from S(p) [20]. The SNR degradation factor ξ in (27) can
also be calculated from S(p), p = 0,1, . . . , P – 1.

A remark to finish this section is that in radar
applications our proposed MIMO OFDM pulse design can
be done off-line and as long as one set of P1 nonzero
OFDM pulses are found with the above desired properties,
it is good enough and the convergence of the above
proposed iterative algorithm is not very important.

V. SIMULATION RESULTS

In this section, we first study the performance of our
proposed MICF OFDM sequence/pulse design by using
Monte Carlo simulations. We then study the performance
of the MIMO OFDM radar detection with our designed
OFDM pulses. From what was studied in the preceding
section, P1 nonzero OFDM pulses need to be designed.

A. Performance of the MICF OFDM Pulse Design

In this subsection, we first see the performance of the
MICF OFDM pulse design algorithm. We set the number
of range cells M = 96, the maximum relative time delays
ηmax = 40, the number of subcarriers N = 302, and the
nonzero pulse length Nt = 33. To achieve a sufficiently
accurate PAPR estimate, we set the oversampling ratio L
= 4 [34, 35]. We evaluate the mean PAPR of the P pulses
and the SNR degradation factor ξ by using the standard
Monte Carlo technique with 2000 independent trials. In
each trial, the kth element of an initial sequence S(p)

a (0) is
set as S

(p)
a,k(0) = 1√

NTP
ej2πϕ

(p)
k , k = 0,1, . . . , N – 1, where

ϕ
(p)
k is uniformly distributed within the interval [0, 2π]. In

Figs. 3–5, we plot the cumulative distribution functions
(cdf) of the mean PAPR and the SNR degradation factor ξ

with P = 4. The curves in Fig. 3 denote that, with the
increase of the maximum iteration number Q, the mean
PAPR decreases and ξ increases. Therefore, better P
OFDM pulses with lower mean PAPR and larger ξ can be
obtained by using a larger iteration number Q. The curves
in Fig. 4 show that, with the increase of PAPRd, the mean
PAPR increases and ξ decreases; in the meantime the
mean PAPR change is more sensitive than the change of ξ

for different PAPRd. Similarly, the curves in Fig. 5 indicate
that the mean PAPR is decreased and the SNR degradation
is increased, when Gf is increased. In summary, the
simulation results of mean PAPR and ξ are better than the
corresponding results for single OFDM pulse design
(corresponding to the case of P = 1) in [20] even though
with a small value of Q as shown in Fig. 6, which is
because the joint design of P OFDM pulses provides more
degrees of freedom for the MICF algorithm. We also plot
the cdfs of mean PAPR and ξ for different pulse numbers
P with Q = 8, PAPRd = 0.1 dB, and Gf = 10% in Fig. 6.
The curves in Fig. 6 show that, with the increase of P, the
mean PAPR and ξ are significantly improved, where one
can see that the single OFDM pulse design, i.e., when P =
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(a)

(b)

Fig. 3. CDFs for different Q with P = 4, PAPRd = 0.1 dB, and Gf =
10%. (a) Mean PAPR. (b) SNR degradation factor.

Fig. 4. CDFs for different PAPRd with P = 4, Q = 8, and Gf = 10%.
(a) Mean PAPR. (b) SNR degradation factor.

Fig. 5. CDFs for different Gf with P = 4, Q = 8, and PAPRd = 0.1 dB.
(a) Mean PAPR. (b) SNR degradation factor.

Fig. 6. CDFs for different P with Q = 8, PAPRd = 0.1 dB, and Gf =
10%. (a) Mean PAPR. (b) SNR degradation factor.
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TABLE I
Numbers of Monte Carlo Trials for ξ ≥ –0.08 dB and Mean PAPR ≤ 2.2

dB with Q = 8, PAPRd = 0.1 dB, and Gf = 10%

P = 4 P = 8 P = 16 P = 32

14 169 680 1282
Total number of trials: 2000

Fig. 7. Our designed OFDM pulses for transmitter α = 1. (a) Real part
of transmitted pulse s

(0)
1 ; (b) Real part of transmitted pulse s

(1)
1 ; (c)

Imaginary part of transmitted pulse s
(0)
1 ; (d) Imaginary part of transmitted

pulse s
(1)
1 .

1, is poor because the small iteration number Q = 8 is
used. It further indicates the benefits of the proposed
MICF algorithm with joint design of P OFDM pulses.

According to the above analysis, the mean PAPR and ξ

are interacting with each other. In practice, it is necessary
to consider the constraints of both mean PAPR and ξ at the
same time. In Table I, we count the numbers of trials
under the conditions of ξ ≥ – 0.08 dB and mean PAPR ≤
2.2 dB within the 2000 Monte Carlo independent trials for
Q = 8, PAPRd = 0.1 dB, and Gf = 10%. The numbers of
trials are increased significantly with the increase of P.
According to our simulations, there are 7 trials that satisfy
the conditions of ξ ≥ –0.04 dB and mean PAPR ≤ 2.1 dB
with P = 32, which are not shown in Table I.

B. Performance of the MIMO OFDM Radar Range
Reconstruction

In this subsection, we investigate the performance of
the MIMO OFDM radar range reconstruction. We set the
bandwidth B = 150 MHz, the carrier frequency fc = 9
GHz, the number of range cells M = 96, the maximum
relative time delay ηmax = 40, the number of subcarriers N
= 309, the length of a nonzero pulse Nt = 40, the number
of transmitters T = 2 and the number of receivers R = 2,

the number of pulses P = 2. We use our designed OFDM
pulses with the degradation factor ξ = –0.07 dB and mean
PAPR = 2.06 dB. Our designed OFDM pulses are shown
in Fig. 7. For convenience, the time delays ηβ ,α are
randomly chosen within the integer interval [0, ηmax] as
η1,1 = 17, η1,2 = 0, η2,1 = 6, η2,2 = 32. Considering a
single range line, the targets (nonzero RCS coefficients)
are included in 10 random range cells located from 10 000
m to 10 096 m. The RCS coefficients gβ ,α ,m within the 10
range cells are independent and obey complex white

Fig. 8. Amplitudes of targets for different transmitter and receiver pairs
after range reconstructions without noise using polyphase waveforms and
our designed OFDM pulses with transmitter and receiver pair. (a) (α,β)

= (1,1). (b) (α,β) = (2,1). (c) (α,β) = (1,2). (d) (α,β) = (2,2).

Fig. 9. Amplitudes of targets for (α,β) = (1,1) after range
reconstructions using polyphase waveforms and our designed OFDM

pulses. (a) With
σ 2
d

σ 2 = 12 dB. (b) With
σ 2
d

σ 2 = 8 dB.

Gaussian distribution with zero-mean and variance σ 2
d , i.e.,

gβ,a,m ∼ CN (0, σ 2
d ) for all receivers β and transmitters α.

For comparison, we also use the first two polyphase
waveforms of the polyphase code set with length 40 in
[13]. The two polyphase waveforms are applied in the two
transmitters, respectively. After pulse compression with
matched filtering and pulse coherent integration, the range
reconstruction results are shown in Figs. 8–9 with red
square marks that are denoted as “MIMO P-Code.” For a
better display, in this and following simulations, the pulse
compression and integration gains of all the range
reconstruction results are normalized.

In Fig. 8, we plot the range reconstruction results of all
the transmitter and receiver pairs with σ 2

d = 1 and without
noise. Comparing with the real target amplitudes (with
blue solid line with asterisk marks), the results show that
the MIMO OFDM range reconstruction is precise for all
the transmitter and receiver pairs. It also indicates that
there is no interference between different transmitters and
the full spatial diversity can be achieved by using our
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Fig. 10. Amplitudes of targets for (α,β) = (1,1) after range
reconstructions using frequency division LFM waveforms and our

designed OFDM pulses. (a) Without noise. (b) With
σ 2
d

σ 2 = 12 dB. (c)

With
σ 2
d

σ 2 = 8 dB.

proposed MIMO OFDM radar. Meanwhile, the benefit of
the IRCI free range reconstruction by using CP-based
OFDM radar still holds. However, because of the nonzero
cross correlation (or nonorthogonality) between the two
polyphase waveforms as well as the range sidelobes of the
autocorrelation functions, some targets cannot be
reconstructed correctly as shown in Fig. 8, and thus, the
spatial diversity cannot be clearly obtained by using the
polyphase waveforms. Moreover, the range reconstruction
results of some range cells without target by using the
polyphase waveforms are much larger than 0. We also
consider the range reconstruction performances for
σ 2

d

σ 2 = 12 dB and 8 dB. Notice that, according to (34) and
the normalized transmitted energy constraint, the SNRs of
the received signals are about –10.04 dB and –14.04 dB for
σ 2

d

σ 2 = 12 dB and 8 dB, respectively. The simulation results
for the transmitter and receiver pair (α, β) = (1,1) are
plotted in Fig. 9. The results show that the performances
of our proposed MIMO OFDM radar are better than that
by using the polyphase waveforms, especially for a larger

SNR, for example, when σ 2
d

σ 2 = 12 dB.
For further comparison, we also consider the

frequency division MIMO radar, in which each
transmitted waveform is assigned an independent and
nonoverlapped frequency band with bandwidth B. Thus,
the orthogonality of the transmitted waveforms is
guaranteed in this radar system despite time delays, but T

times more bandwidth (i.e., TB) is required. By using
LFM waveforms and the above simulation parameters, we
obtain and plot the range reconstruction results in Fig. 10
with red square marks that are denoted as “MIMO
FD-LFM.” By comparing with the true target amplitudes,
the results indicate that the performances of our proposed
MIMO OFDM radar are obviously better than the MIMO

FD-LFM radar for the cases without noise and σ 2
d

σ 2 = 12
dB. It is because the IRCI across the range cells occurs by
using LFM waveforms, even through the cross correlation

can be completely avoided by using frequency division.
The performances of MIMO OFDM and MIMO FD-LFM

are similar to each other for σ 2
d

σ 2 = 8 dB. However, in
MIMO FD-LFM the bandwidth requirement is 300 MHz,
twice more. We believe that the IRCI will be more serious
by using LFM waveforms when more range cells are
included in targets, and the benefit of our proposed MIMO
OFDM radar will be more obvious.

VI. CONCLUSION

In this paper, we proposed a novel frequency-band
shared and sufficient CP-based MIMO OFDM radar range
reconstruction method by using our newly proposed and
designed OFDM pulses that are in the same frequency
band but orthogonal to each other for every subcarrier in
the discrete frequency domain. This range reconstruction
algorithm with the orthogonality of the MIMO OFDM
signals can provide the advantage of avoiding the
interference between different transmitters, even when
there are time delays among the signals from different
transmitters, and achieving the full spatial diversity.
Meanwhile, due to the sufficient CP insertion to each
pulse with the zero head and tail values in the discrete
time domain, the range reconstruction is IRCI free and the
proposed system does not have the energy redundancy.
Our proposed range reconstruction is a joint pulse
compression and pulse coherent integration, after which
the SNR was analyzed. We then proposed four design
criteria for multiple OFDM pulses. To achieve the
orthogonality for every subcarrier in the discrete frequency
domain across multiple transmitters, COD were adopted,
with which only non-zero-valued OFDM pulses for the
first transmitter are needed to be designed. To maximize
the SNR, a closed-form solution was proposed by using
the paraunitary filterbank theory. Considering the trade-off
between the PAPR and the SNR degradation within the
range reconstruction, we also proposed an MICF joint
OFDM pulse design method to obtain OFDM pulses with
low PAPRs and insignificant SNR degradation. We finally
presented some simulations to demonstrate the
performance of the proposed OFDM pulse design method.
By comparing with the frequency-band shared MIMO
radar using polyphase code waveforms and frequency
division MIMO radar using LFM waveforms, we provided
some simulations to illustrate the advantage, such as the
full spatial diversity and free IRCI, after the range
reconstruction, of the proposed MIMO OFDM radar.

This paper provides a framework on frequency-band
shared statistical MIMO OFDM radar with IRCI free and
inter-transmitter-interference (ITI) free range
reconstruction. Some interesting research problems
remain. One of them is how to deal with the trade-off
between the nonzero pulse number P1 and the total pulse
number P in a CPI. The other one would be on how to
search the parameters in the paraunitary matrix to satisfy
the ideal flat spectral power criterion 3) and also have
good PAPR property, i.e., satisfy criterion 4).
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As a final remark, this paper only considers statistical
MIMO radar where multiple OFDM pulses with sufficient
CP are transmitted by each transmitter in a CPI. Colocated
MIMO OFDM radar has been recently considered in [36]
where only one OFDM pulse with sufficient CP is
transmitted in a CPI at each transmitter.
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