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Abstract Some LYM-type inequalities are derived for a class of special antichains called r-antichains,
which has applications in unidirectional error detection codes.
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Let P be a partially ordered set with relation “<”. An antichain is a subset F of
P whose elements are totally unrelated; that is, if x and y are in F then x <y and y¥x.
A chain opposed to an antichain is a subset E of P whose elements are totally related;
that is, if x and y are in E, then either x<y or y<ux.

Example 1. Let P=P,={0, 1}"; that is, each element x in P can be expressed as
x=x,x,"'x, with x,=0 or 1 for i=1, 2,-*, n. The partial order “<” is defined as

x<y if and only if V1<i<n, [x,=1=y,=1], Vx, y€P, m

where x=xx,"-'x, and y=y,y,;-y,. If (1) is satisfied, we also say that x is covered by y
or y covers x. For example, 1100<1101 with n=4.

In what follows, P=P,={0, 1}", elements in P, are called n-vectors denoted by letters,
such as a, b, x, y with components a,;, b, X, y, respectively. To prevent confusion in
understanding, throughout this paper, for an n-vector a€{0, 1}", |a| denotes its weight; that
is, the number of 1’s in @, and for a set FC{0, 1}", |F| denotes its cardinality.

A maximal chain in P, is a sequence of n-vectors: 0=a,<a,<a,<'<a,, where the
weight |a| of a; satisfies |q|=i for each i with 0<<i<n. Then there are exactly n! maximal
chains in P,, and exactly k! (n—k)! maximal chains passing a given n-vector a of weight k.
If Fis an antichain in P,, then each maximal chain contains at most one member of F.
Therefore,

‘EZF la|! (n—|a])! <n!. )

This gives us the following well-known LYM inequality’'™¥ for antichain F:
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If we denote by f, the number of n-vectors in F of weight k, then (3) becomes

<. 3)

y _h o« (4)

" (%)

The LYM inequality was sharpened by Ahlswede and Zhang (see ref. [5]) to the
Ahlswede-Zhang identity as follows. For any subset F of P,, the A-Z identity is

Z We(a)

acP, n
|al
|al

In the definition of W, (a), b, /\ bzéc is defined by c¢,=min {b, ,, b, where
c=cc,y ¢, and b=b, b, ,-b;, for j=1, 2. For example, 11101 A 10110=10100.

517

I, ©)

where Wi(@) =] /\ 4.5 <q ana ser DI

After we have the above well-known results, let us define what t-antichains are. To do
so, we first have some notations.

Let a and b be two n-vectors, then N(a, b) is defined by
N(a, b)2|{1<i<na,=1A b=0}|. (6)
As an example, if a=10010 and »=01011, then N(a, b)=1 and N(b, a)=2. Obviously,
the Hamming distance d,(a, b) =N(a, b) +N(b, a). We now state the definition of
t-antichains.
Definition 1. A subset CCP, is called a t-antichain if
Va, b€C, a#b, [N(a, b)=t+1]. )
Example 2. C={110000, 001100, 000011} is a l-antichain in P,
Obviously, a 0-antichain and an antichain are equivalent. Moreover, if C is a
non-trivial t-antichain, that is, there are at least two n-vectors in C, then
VceC, |=t+1, n—|cf=t+1, and n=>2t+2. 8)

Since a t-antichain C with t>0 is a special antichain, the question is whether the EYM
inequality (3) can be sharpened for C. In this article, this question is answered positively.
We obtain the weak LYM inequality and the strong LYM inequality for t-antichains which
are two improvements of the standard LYM inequality (3). :

There is a strong application background to study t-antichains. Actually, from refs.
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[9] and [10] a t-antichain is a t-error correcting/all unidirectional error-detecting
(tEC/AUED) code. In ref. [11], the weak LYM inequality and the strong LYM inequality
derived in this article have been applied to systematic tEC/AUED codes to obtain new
lower bounds on the redundancies of the codes. For more about tEC/AUED codes, one
can consult references [8 —15].

This paper is organized as follows. In sec. 1, we derive the weak LYM inequality. In
sec. 2, we derive the strong LYM inequality. In sec. 3, we give detailed proofs of the
main lemmas for the main results.

1 Weak LYM inequalities for r-antichains
Let C be a t-antichain in P,={0, 1}". Define
#(c) 2 {x€P:|x|=|c| +1—2i and d,(x, ¢)<t} )
for i=0, 1, 2,---, t and c€C.
For example, if ¢=111000 and #=2, then
#,(111000) ={111110, 111011, 111101}, &,(111000)={001000, 010000, 100000},

#,(111000) ={111000,011100,011010,011001,101100,101010,101001,110100,110010,110001}.

Clearly, from the definition of & (¢) and Theorem 1, we have

Lemma 1. If C is a t-antichain, then for each i with 0<i<t and each c€C,

A@=3 (M) (10)

#(0) ) &(c")=D when c¢#¢’, and &(C)2 U...&(c) is an antichain.

Define
A (m, 1, i)é z‘: ( m+r.—2.i )( n—m7t+2i) _ )

for i=0, 1, 2,>*, t and m=0, 1, 2,:*. We have the following result.
Theorem 1 (Weak LYM inequality for r-antichains). If C is a t-antichain, then for each
I with 0<i<t,

Z M £1. (12)

&t .(|:|)

Proof. By Lemma 1, &(C) is an antichain. From (9) and the LYM inequality (3),
Z [&()l <1
n

cEC

le| +t—2i
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By (10),
S |d n—|c Sl +t—=2i \[ n—|d—t+2i
¥ ;Z})( j )(r—ZHj) _y ,,Zo( t—2i+j )( J ) <. (13)
ceC n ceC n
( le| +1t—2i ) ( €] )
Combining (11) and (13) gives (12). Q.ED.

Since the t-antichain with the n-vectors being the binary complements of the ones in a
t-antichain is also a t-antichain, Theorem 1 implies the following corollary.

Corollary 1. If C is a t-antichain, then for i=0, 1,---, t,

"‘gu(n_|c|" t: I) “_4‘_‘/:1

2
( o )

We now present a property of the coefficients in the weak LYM inequality. From
(11) and (12), we can see that .#(|c|, t, i) depends on |c|, ¢t and i. But when we add them
together for i from 0 to t, the summation turns out to be independent of the n-vector
weight |¢|. This can be stated as the following theorem.

(14)

Theorem 2. The following summation,

‘ R IR m+t—2i n—m—t+2i \A
.-Zﬂ}"‘["(m’ t ‘)_Z‘o ;( (—2it] )( ; )—S(n, 0, (15)

is independent of m when n—t=m=t.

Note. From (8), n—t=m=t is satisfied when m is the weight of an n-vector in a
non-trivial t-antichain and S(n, t)>t+1. The proof of this theorem can be found in section 3.

Corresponding to the basic LYM inequality (3) for antichains we have a stronger result
for t-antichains as follows.

Corollary 2. If C is a non-trivial t-antichain, then

1 t+1
Zé ( . ) < S 1) <1, (16)
|e]

where S(n, t) is defined by (15).

2 Strong LYM inequality for z-antichains

In this section, we improve the inequality (12) by counting the maximal chains passing
through &, (C) more carefully. The weak LYM-inequality is used in the proof of the
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following Lemma 3, which plays a key role in the proof of the following strong LYM
inequality.
For each i€{l, 2,---, t}, define
A m, t, 0)=4(m, 1, 0),
A (m, t, i)y=max{A#,m, t, i—1), #,(m, t, )}, (17)

where m is an arbitrary nonnegative integer.

Theorem 3 (Strong LYM inequality for r-antichains). If C is a t-antichain, then for each
i with 0<i<t,

(e, t, i)

Y —7——
= (u)

Similar to Corollary 1, we have the following Corollary 3.

<1. (18)

Corollary 3. If C is a t-antichain, then for each i with 0<i<t,

'/?n(n_ |C|, L, I)
2

<I.
cEC n
("—ld )

Proof of Theorem 3. For i=0, (18) is just (12). So we only need to prove (18) for
i=1, 2,---, t. To do so, for each i with 1<i<t and each ¢€C, define

(19)

A(¢)={X:X is a maximal chain in P, and Jx€&(c) such that X passes x}.  (20)
Since &(c) is an antichain for each i€{l, 2,---, t}, from Lemma 1 and (9)
4,1 =1,Ol(1dl +t—20)! (n— e —t +2i)! 1)
for i=1, 2,--, t. Moreover,

A 0|= Z |4,(0)]. (22)

Because &(C) is also an antichain for each i by Lemma 1, (22) follows from the fact that
A(c) are disjoint for different ¢€C. In the following we count all maximal chains in

( CLE)C Ai—t(c)) U (t&.}: Ai(c))

for i=1, 2,---, t. Since &,_,(C) U &,(C) is no longer an antichain, generally

(Y a0)u(Y o)

For i=1, 2,---, t, by defining

i~i{€)

+' U 4(0).
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B(O=4 @ UiA4©- U 4. ()}, 23)
we obtain
U B(9)|= ;Cw,-(c)r, (24)

which follows from the fact that B(c) are disjoint for different ¢€C and fixed i. Therefore,
2 |B (o) <n!. (25)
ceC

}

=3, {|A.-_.(c)1 14 —’ U (4@ N4 @)

On the other hand, for each i€{l, 2, t},

2, B@I=2, {|A.-_.(c)1 +|A.-(c) - U@

cEC eeC

by (22)

=X {|A,-_1(c)r+|A.-(c)|—|AJ-(c)ﬂA.-~.(c)|—t‘E;Z:_ #|A.-(cmA.--.(c')|}. 26)

ceEC

To estimate

4©@N4 @l and T 1A@ () A,

+ €

we need the following two lemmas to be proved in section 3.

Lemma 2. For i=1, 2,:*, t and c€C,

( le| +t—2i )( n—ld—t+2i—2 )
14,0 N A (©=I4,_ ()| —nt N TIH] il . 27)

( )
|ct
Lemma 3. For i=1, 2,'”, t and c€C,

( le| +¢—2i )( n—le—t+2i—2 )
Y 1A N A ()< AT il . (28)

celene ( n )
le]

By (21) and (10),
|4, @ =1&()(lel +1=20)! (n— e[ —t+20)!

=Z( l )( n—|d )(|e|+r—20!(n—1€|‘”2")!

=AY t—2i+j
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z‘: ( m+t—2i )( n—m—t+2i )
Ao\ t—2i+j J A (lel, t, i)

=n! =n! (29)
n n
( el ) ( |e] )
From (29), we can see that to prove the theorem we need to prove only
|B,(c)| Zmax{|4;(c)], |4, (o)} (30)

While the inequality |B,(c)|=|4,_,(c)| is obvious from the definition of By(c), the inequality
|B.(¢)| Z|A,(c)| is derived as follows:

[Bi(0)| =|4;_ ()| +|A;(c)| — | 4:i(c) N A (o) — ﬁcz_#c |4;(c) N A ()

+ €

lf+t=2i \[ n—|cd—t+2i—2
t—i+1 i—1

Q (i)

by (28)
- 2 1A NA_ (] = |A@)I (31

c'€C, c"#e

by (27)

= 4 +]A4) = |4 (c)[+n! (

Therefore by (29) and (30) and the definition of .#,(m, t, i),
A,(lel, t, i)
— N <
CEZC » ) 1.
|el

This proves Theorem 3. Q.E.D.

3 Proofs of Theorem 2
In the proof of Theorem 2, we need a lemma.

Lemma 4. For any fixed non-negative integers a and t, the following summation
n—m+ai m—ai
Z( ; )( i ) (32)
is independent of m for n=Zm=at.
Proof. When a=0, (32) is equal to (?) for n2m. So we only need to prove

Lemma 4 for a>0. Let

i=0 1 [—1i

m o)1)
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Fixing a, we use induction on f.

When t=0, f,(n, m, t) =1 for n=2m. So f,(n, m, t) is independent of m when
nZm=at.

Assume that f,(n, m, t') is independent of m when n=Zm=at’ for 0<t’'<t—1; that is,
there exists a function g,(n, t—j) of n and t—j such that

fan, m, t=j)=g,(n, t=—j), (33)
where n2m2a(t—j) and 1<j<t. We now prove that f,(n, m, t) is also independent of m

for nZzm=at. To do so, we use induction on n.

First, when n=at, this is clear because there is only one possible m which is at. For
n=at+1, it is enough to prove that

flat+1, at, )=f(at+1, at+1, t). (34)

In fact,

f(at+1, at, :)=i( I +ai )( at—ai )zZ( I+a=0 )( ‘I_f )=f,,(ar+1, at+1, 1),

i=0 1 r—1 = t—1i

Assume that f,(n’, m, t) is independent of m when n—12n"Zm=at; that is, there ex-
ists a function h,(n’, t) of n" and ¢ such that

[, m, t)y=h,(n', 1), (35)

where n—12n" Z2m=at. We prove that f,(n, m, t) is also independent of m when

n=mz=at.

In the case of n=m=at and n=at+1, this has been proved. So we assume
n>at+1.

(i) When n—2>m>at,

n— m+az m—ai \_ nh—1l—m+ai m—ai
mo (N E )

S n—m+a—1+a(i—1) m—a—a(i—1)
(e ) (i)

=f(n—1, m, t)+f(n—1, m—a, t—1). (36)

By (33) and (35),
fn, m, )=h(n—1, t)+g,(n—1, t—1). (37

(i1) When n2m=at +2,

(e )(moa =g (e ) ()
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+Z( n—m+tai )(": f’ ) —f(n—1, m—1, D+f(n—1, m—1, t—=1).  (38)
i=0 -
By (33) and (395),

fn, m, )=h(n—1, )+g,(n—1, t—1). (39)
Combining (37) and (39), f,(n, m, t)=h,(n—1, t)+g,(n—1, t—1) for n=m=at. This proves
that f,(n, m, t) is independent of m when n=2m=at. By induction, Lemma 4 is
proved. Q.E.D.

Moreover, from (36) and (38),
fn, m, ty=f,(n, )=f(n—1, t)+f(n—1, t—1). (40)

This is a recursive formula for the summation in (32).
Proof of Theorem 2.
Let

Jon, m, t)éi i( m+tl—*2l: )( n— mft+21)

i=0 j=1 J
We use induction on t.

When t=0, J(n, m, t)=1 for all n2m=0. So J(m, n, t) is independent of m when

n=zmz=0.

When t=1, for n—12m=1

J(n, m, r)=( miH )+( n—T+l )=n+2.

So J(n, m, t) is independent of m when n—12m=1.

Assume that J(n, m, t) is independent of m when n—t=m=t. We prove that J(n,
m, t+2) is also independent of m when n—(t+2)=2m=t+2.

Let i"=t—2i. Then,

=g

2 .y =r
m+i n—m-—i
J n, m, t+2 = E oy s .
( ) PE{42, =20, - =2 =0 ( vt )( J )

i’ L

2 .r . 2 .1 . r
ST G |Gl T I Gt (Ll
i'E(t4, —t=2)  j=0 +j J et =2 —t+2, —1}  j=0 i +j ]
" y ( m+i’ )( n—m-—i’ )
PTE{t+2 1, 12, -, —1—2} i+ t—i' +1 t—i’ +1
2 2
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t+2 " _ _ T
=0+J(n, m, t)+;0 ( m-;j_zi!:-z )( e :+2; 2 )

When n—(t+2)2Zm=t+2, we have n—t=2m=2t and n2m+t+222(t+2). Therefore, by the
hypothesis of the induction and Lemma 4 with a:=2, m:=m+t+2, J(n, m, t) and

”Zz m+t—2i+2 n—m—t+2i-2

i=0 I+2_i i
are independent of m when n—(t+2)2m=t+2. So J(n, m, t+2) is independent of m
when n—(t+2)2Zm=t+2. By induction, Theorem 2 is proved. Q.E.D.

In the proofs of Lemma 2 and Lemma 3, we make the following assumptions.

A maximal chain X always means X={a, a, ", a,} with a,<a,<'"*<a, such that
a€P, and |a|=i for i=0, 1,, n.

Without loss of generality, to prove Lemma 2 and Lemma 3 for an n-vector ¢ in C,
we only need to prove them for ¢=11--"1 00---0 with ¢,=¢,==¢, =1 and ¢, .,=¢ >

[S—
el n—|e|

=--=c,=0.
Proof of Lemma 2.

14,() N A_(9l= X |{X:X€A4,(c) and X passes x}|

x&F (0

l=|A,-_,(.':)|— Y |{X:X is a maximal chain in P,, X¢4,(c) and X passes x}|, (41)

x€&,_(0)

where step 1 is because &, (c) is an antichain by Lemma 1. Let us check what is
D(x)A=|{X:X is a maximal chain in P,, X¢A4,(c) and X passes x}|

for x€&_(c).

If a maximal chain X passes x€&,_,(c), then by (9),
a|a|+.t-21'+2=x' (42)

Claim 1. If N(x, ¢y<t—i+1, then D(x)=0.

To prove Claim 1, let X be an arbitrary maximal chain in P, such that X passes x.
Thus (42) is true. We now prove X€A(c). It is enough to show that y=a,.,, , €&, (c).
To prove this, by (9) and |y|=|c| +t—2i we only need to check if d,(y, ¢)<t. By (9) and
(42),

N(e, x)=N(x, ¢)+|d—|x|=N(x, ¢)+|c|—|c|+2i—2—t=N(x, ¢)+2i—2—t. (43)

By N(x, ¢)<t—i,
dy(x, ¢)<2N(x, ¢)+2i—2—t<t—2. (44)
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Since N(x, y)=2 and N(y, x)=0, we have N(c, y)=N(c, x) +N(x, y)=N(c, x)+2, and
N(y, ¢)<N(y, x) +N(x, ¢)=N(x, ¢). By (44), we have d,(y, ¢)=N(p, ¢) +N(c, y) <dy(x,
¢)+2<t. Therefore, any maximal chain X passing x€&,_,(c) passes a vector y€&,(c). This

proves Claim 1 by the definition of A,(c). Q.E.D.
Claim 2. If N(x, ¢)=t—i+1, then
D(x)=( |c|—2i+l )2! (le|+t=2))! (n—|c| —t+2i=2)!. (45)

For simplicity, we assume that

lg—i+1 t—i+1

i—1 n—ld—t+i—1
that is, x=x==x_,=0, X=X, ==X =X =" =Xgon =1L and X4,
=X +-is3= " =X,=0. For other x, the proof is the same.

Let X be an arbitrary maximal chain in P, passing x such that a,=x, where [=|x|
+t—2i+2 and X={a, a, ', a,} with ¢=(a, , a

i 2" aj. n) for J=l? 2!"-5 n.
If a_, ,,=0or a_, ,=0 for some me€{je|+1, |c|+2,":-, |e|+t—i+1}, then a4,_,€&(c) by
(9) because
dy(a_, c)<d,(a, c)—1+1=<t.

If a,_, ,,=0 for an m€{i, i+1,, |} and q,_, , =0 for an m,€{i, i+1,-, |c|} different from
m,, then ajé(ff',.(c) for any j€{0, 1, 2,---, n}. To prove this, we only need to check if
a,_,€&, (c) because the weight of any vector in &(c) is [=2 by (9). Since q,_, , =a,,, =0
for two different m,, me€{i, i+1,--, |},

N(c, a,_))=i—1+2=i+1 and N(a,_,, ¢)=N(a,, c)=t—i+1.
Therefore, d,(c, @_,)=i+1+t—i+1=t+2>t. This proves that a, ,£,(c) by (9).

Combining the above two cases for a,_, and a,_, we see a,_,#& (c) if and only if
A1y, =815 ;=0 for two different m, and m, in {i, i+1,---, |d}. We have

(1)

different pairs {m, m,}C {i, i+1,-, |¢|}. Moreover, for different order of m, and m,,
a,_, is different. Therefore, there are
lel—i+1 .,
Gt

different arrangements for a,_, and a,_,

Other a;’s with jé{I—2, -1, I} can be selected arbitrarily to make {a, a, ", a,} a
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maximal chain in P,. There are (n—|c|—t+2i—2)! different arrangements for {a,, a,,
-, a,}, and (|c|+t—2i)! different arrangements for {a, a, -, a,_,}. Therefore, the total
number of maximal chains passing x€&,_,(c) without passing any y€&(c) is

( ICI—;+1 )25 (Id+t=2)! (n—le| =t +2i=2)!.

This proves Claim 2. Q.E.D.

Noticing that for x€&,_(c) there are only the above two cases in Claim 1 and Claim
2 for N(x, c¢), we have

Y, D(x)= Y ('c|—2f+] )2!(|ci+t—2:)!(n—|c|-r+2i-2)!
XEF _1(0) *€5,_,(d), Nz, d=t—i+1
é( o )( ) )( = )2! (Icl+1—20)! (n—]e| —t +2i—2)!
n—ld—t+2i-2 \( ld+t2i
o i-1 (—itl ) “)

(o)
()

different x such that x€&,_,(¢) and N(x, ¢)=t—i+1. Lemma 2 is implied by (41) and
(46). Q.E.D.

where step 1 is because there are

Proof of Lemma 3.
Let
EQ= U A@N A (@),
and
C(c)é{c':c'EC, ¢'#c and A(c) () A,_(c)#D}.
To prove Lemma 3, we first investigate some properties of E(c) and C(c).
Claim 3. If ¢'€C(c), then N(c, ¢')=t+1.
Proof. Let X€A,(c) () A,_(c") pass an x€&,(c) and a y€&,_ (c"). Then
t+1SN(c, ¢)SN(e, x)+N(x, ) +N@, ¢)<i+t—i+1+N(x, y).

To prove Claim 3, we only need to prove N(x, y)=0. Since X passes x and y, we have
either x<y or y<x. To prove N(x, y)=0, it is enough to exclude the case y<x. If
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y<x, then N(y, ) SN(y, x) +N(x, ¢)=t—i. And y€&,_(c) implies N(¢', y)<i—1. Thus
N(c, ¢)<t—1. This contradicts the fact that N(c, ¢')=t+1. Claim 3 is proved. Q.E.D.

For convenience, we introduce two notations.

For any x€{0, 1}" with x=(x,, x,,*", x,), define X=(x,, x,,"*, x,) and x*=(x,,,""",
x,). Then, x=(x, x). From the assumption at the beginning of this section, ¢=(1, 1,"-,
1) and E=(O, 0,-:-, 0). With this notation, Claim 3 can be rephrased as

Ve'el(e), [e'l=ld—t—1. 47)
Claim 4. If x€E(c) and y€E,_|(c') are passed by some X€A(c) () A,_,(c"), then x<y,
N(e, x)=N(c, X)=i, N(y, ¢)=N(p, ¢)=t—i+1, |X|=|c—i, ¢'<X and X=Y.

The following is an example.

y 000 11--1 11--1 y 111 111 000 000
¢ 000 00-+0 11--1 ¢ 111 11-1 111 000
€ 111 11 111 & 000 000 000 000
X 000 111 11--1 x 111 000 000 000

- Proof. x<y has already been proved in the proof of Claim 3. We now prove the
rest of Claim 4.
Since N(c, x)<i, N(y, ¢')<t—i+1 and N(c, ¢)=t+1, we have
N(c, x)=N(c, x)=i and N(y, ¢)=t—i+1.
By N(y, ¢)<t—i+1, ¥<y and N(c, ¢')=t+1, we have N(y, ¢)=t—i+1. It is clear that
|¥]=|c|—i. Next we prove ¢'<X. If it is not true, that is, N(¢’, ¥)>0, then
N(c, ¢)=N(c, X)+N(y, ¢")—N(c', x)<t+]1.
This contradicts Claim 3. To prove x=y, we see that if ¥#y, then N(y, x) >0. Let
JR{j:5=1 A %=0}. Then, by ¢'<% VjeJ, ¢/=0. Therefore, N ¢)=N( %) +N(,
¢)—N(y, ¥)<t+1. This also contradicts Claim 3. Claim 4 is proved. Q.E.D.

From Claim 4 we have the following consequences.

Let J;é{j: x;=1}. Then, from Claim 4, under the same assumptions, N(x, ¢
=t—i+1; that is, '
[{j€Jzc;=0}|=t—i+1. (48)
For any #€{0, 1}" and j€{0, 1, 2,-, t}, define
E,(u) 2 {ve& (u):d,(u, v)=t},
(see (9) for the definition of &(x)) and
A'j(u)é{XEA,.(u):X passes some vEE(u)},
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(compare this with (20)). Then Claim 4 says that for any ¢'€C(c),
AN A_()=A/(c) ) AL (). (49)
For x<y, define
Alx, y)é{all maximal chains passing x and y}.

Then for any two different pairs {x,, y,} and {x, y,} with x,€E(c) and y,€E _,(c") for
m=1, 2, we have '
Ax,, y) () A(x, y)=2. (50)

This is because for each fixed j, E(c) is an antichain. Moreover,
[AGx, p)|=]x|!(n—=|yD! (¥ —x)! . (51)
To prove Lemma 3, we divide E(c) into a union of some of its subsets. To do so,
we need more notations. For any ¢’ with weight || —t—1, let
C@)2{ee'=(c, &')eC(e)).
Define

Cle, X)2{¢:|¢")=ld—t—1, and ¢'<%),

@2 U C@,

T'eCle ¥)
and for jE J;,

c®E U C@).

Felic 7), 7=0
The following are two more facts needed in the proof of Lemma 3.
Claim 5. If ¢'€C(%), then [{j:E’Eéj(E)}|=r—i+l. |
The proof of this claim is straightforward and therefore omitted.

For integers 0<j<k, let
A _.
Q(k)={x€{0, 1}*|x|=j}. (52)

Claim 6. For each x€Q,_(|c|) and each j€J;, C(X) is an i-antichain.

Proof. For any two different ¢, and ¢] in C,(¥), we need to prove that N(¢), ¢3)
>i+1. Suppose ¢, €C(c.,) with ¢,€C(c, ) for m=1, 2. Then, ¢, =c;,;=0. Alo, by
N(x, ¢!)=t—i+1 and ¢, <X for m=1, 2, we have N(c;, ¢;)<t—i. But, N(c}, ¢;)=>t+1.
Therefore, N(¢|, ¢,)=N(c|, ¢})—N(c|, ¢})=i+1. This proves Claim 6. Q.ED.

Now we are ready to prove (28). By (49),

EQ=_ @A NV U U A )

x€E() ¢'€C(9 yeE,.\(c'), xSy
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2

= U U U U U Alx, y)
e, (ld) €2, (n-ld) TEC(e, ¥) &EC() xSy, N, y)=i-1

= U U U U A, p).

FeQ, () FEC() y<é, N(&, p=i—1 i<y, |d=1-i

Therefore, by Claim 5 and eq. (50)
EJIS Y —— Y ¥ ¥ S A, )

FeQ, (el t—itl jeJz FEC(R)  yEe, N(&, py=i-1  E<j, |fl=t-i

3 1 Z Z Z ( |(?| )( |E'|“i+|)
t—i+1 Feq ) jels et i—1 t—i

 (Je| +t=2i)! (n—|e| —|¢'|+2i—1)! (|| —t + 1)!

$AdH=2L 5SS e =& +i)!

=i+ D! zeo "0 s ec6®

. (n—|d—t+2i-2)(n—|e| —t+2i—3)(n—|c| —t+i)
@i—1n!

n—|c —|¢|+i

_ (d+t=2i)! (n—!djt+2i—2) y ¥ [ Y i ):|-i!(n—|cf)!

(t—i+1)! i—1 TR () €Iz FEGE ( n—|c )
|c'|
5 9l (n—lel)! —lel — P—
$ (|| +1¢ 2;?.1. (n—|e])! [ n |c|' t+2i—2 Y

(t—i+ l)' i—1 e () jei;

1

6 (I +t=2i)il (n=|e)! [ n—le—t+2i=2 \[ I \,,_:
T =i+ ( i—1 )( )(cl )

_pf 1+e=20 \( n—ld—t+2i-2 1
-+l i—1 n

|e]
Step 1 is from Claim 4. Step 2 is because from E(c) ={(¥, x):X€£2, ,(|c) and N(x, ¢)
=t—i}, and ¥=§ by Claim 4, we have {y€E,_():x<p}={(F §):N@ »)=i—1 and £<j},
where 0, _(lc]) is defined by (52). Step 3 is because
|(:5<é and N, j»)=i—l}|=( ilill )

and

Step 4 is because |¢/|=t+1 by N(¢, ¢)=t+1. From Claim 6, (:J}.(I) is an i-antichain, which
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implies

]

Y <1
FeC, (@) ( n—|c )
|¢'|

by Corollary 1 with i and t in (14) replaced by 0 and i respectively. This justifies step 5.

( n—le—|¢| +i

Step 6 is because |!2M_,-(|c|)|=( l?) and |Jz=|e]—i. The latter one is from the fact

N(¢, ¥)=i. This concludes the proof of Lemma 3. Q.ED.
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