
1102 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 3, MARCH 2005
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Abstract—High rate and large diversity product (or coding
advantage, or coding gain, or determinant distance, or minimum
product distance) are two of the most important criteria often used
for good space–time code designs. In recent (linear) lattice-based
space–time code designs, more attention is paid to the high rate
criterion but less to the large diversity product criterion. In this
paper, we consider these two criteria together for multilayer
cyclotomic space–time code designs. In a previous paper, we
recently proposed a systematic cyclotomic diagonal space–time
code design over a general cyclotomic number ring that has
infinitely many designs for a fixed number of transmit antennas,
where diagonal codes correspond to single-layer codes in this
paper. In this paper, we first propose a general multilayer cyclo-
tomic space–time codes. We present a general optimality theorem
for these infinitely many cyclotomic diagonal (or single-layer)
space–time codes over general cyclotomic number rings for a
general number of transmit antennas. We then present optimal
multilayer (full-rate) cyclotomic space–time code designs for two
and three transmit antennas. We also present an optimal two-layer
cyclotomic space–time code design for three and four transmit
antennas. The optimality here is in the sense that, for a fixed mean
transmission signal power, its diversity product is maximized, or
equivalently, for a fixed diversity product, its mean transmission
signal power is minimized. It should be emphasized that all the
optimal multilayer cyclotomic space–time codes presented in this
paper have the nonvanishing determinant property.

Index Terms—Algebraic number theory, cyclotomic number
rings and lattices, diversity product, full rate, multilayer space–
time block codes, nonvanishing determinant.

I. INTRODUCTION

L INEAR lattice based space–time block code designs
from algebraic number rings/fields have recently attracted

much attention, see for example [1]–[14], mainly due to the
possibility of systematic constructions of full diversity and
high rate codes, and their fast sphere decoding/demodulation
[29]–[36]. Lattice-based diagonal space–time codes [4] are con-
structed based on lattices ,
where is the number of transmit antennas, stands for the
transpose, represent complex-valued information symbols,
and is a generating matrix, and are placed as diagonal
elements. This was motivated from the designs of full diver-
sity multidimensional signal constellations for resisting both
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Rayleigh fading and Gaussian additive noises proposed in
[1]–[3]. By properly selecting the generating matrix and the
information signal alphabet of , the diversity product is
guaranteed by a result in algebraic number theory [37], [38].
However, the symbol rate for the above diagonal codes is only

. Orthogonal space–time block codes [22]–[28] are also lat-
tice-based codes but their symbol rates cannot be above [23],
[27], [28]. Higher rate space–time codes have been proposed
earlier in Bell Labs layered space–time (BLAST) architecture
[15], linear dispersion codes [17]–[19], and threaded/multilayer
codes [16]. By employing some algebraic number theory,
lattice-based full-rate and full diversity threaded/multilayer
space–time codes were later proposed in [5], [7], [8], [10], [11],
[13], [12]. In these studies, not much has been discussed on the
diversity product (or the so-called coding advantage, coding
gain, determinant distance, or minimum product distance in the
literature) issue while diversity product plays an important role
in determining the symbol error rates (SER), see, for example,
[20], [21]. Although for diagonal lattice-based space–time
codes, the diversity products are fixed to in the existing de-
signs, their mean transmission signal powers could be different
and the codes with the minimum mean transmission signal
power would be optimal and preferred. In what follows, the
optimality is always in the sense that the diversity product is
maximal when the mean transmission signal power is fixed or
equivalently the mean transmission signal power is minimized
when the diversity product is fixed. Different optimality criteria,
such as the peak-to-average power ratio (PAPR) and receiver
complexity, have been considered in [12].

To address the above optimality, we need to have a broad
class of valid (such as full diversity) codes with the same pa-
rameters including rates and sizes. For the above lattice-based
space–time codes, there are three issues that may affect the
code performance as pointed in [14]: i) where the information
symbols belong to; ii) where the elements of the generating
matrix belong to; and iii) whether the generating matrix is
unitary. In [14], these three issues were considered together in
a general way and a more general cyclotomic space–time code
design was proposed, where information symbols may not
necessarily be in , elements of generating matrix may
not necessarily be integrals of , and generating matrix
may not necessarily be unitary, and information symbols and
elements of generating matrix are from general cyclotomic
field extensions. A systematic construction of cyclotomic
diagonal space–time codes of full diversity was given in [14]
for a general number of transmit antennas, where for a fixed
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number of transmit antennas, there are infinitely many cyclo-
tomic space–time codes/lattices. In [14], the optimality was
converted to a criterion on the lattice generating matrix by
using the lattice packing theory, see, for example, [42]. Based
on the criterion on matrix , some optimal cyclotomic diagonal
space–time codes or lattices were found for some specific
numbers of transmit antennas but a general optimality theorem
for a general number of transmit antennas has remained open.
In [14], we also found that most existing ones in the literature
are not optimal and most of the optimal generating matrices are
not unitary.

In this paper, we first propose a more general multilayer cy-
clotomic space–time code design than the existing ones in the
sense that cyclotomic lattices on different layers can be different
and are of different mean powers. We then present a general
optimality theorem for single-layer (or diagonal) cyclotomic
space–time codes for a general number of transmit antennas,
which solves the open problem that remains in [14]. We then
present optimal multilayer cyclotomic space–time codes of full
rate and full diversity for two and three transmit antennas. We
also present optimal two-layer cyclotomic space–time codes for
three and four transmit antennas. Similar to [14] for single-layer
codes, we find that most of the existing multilayer codes are not
optimal and the optimal generating matrices are usually not uni-
tary. Although the optimal generating matrices are not unitary,
the optimal codes do not have significant “capacity” loss. In ad-
dition, we emphasize that all the optimal multilayer cyclotomic
space–time codes presented in this paper have the nonvanishing
determinant property.

This paper is organized as follows. In Section II, we describe
the problem in more details and briefly introduce the general
cyclotomic lattices and diagonal cyclotomic space–time codes
obtained previously in [14] as it is necessary for this paper to
be self-contained . In Section III, we first introduce a systematic
design of multilayer cyclotomic space–time codes, study the re-
lationships between a generating matrix and its corresponding
lattice, transmission signal mean power, and diversity product.
We then present the optimality results on single-layer and mul-
tilayer cyclotomic space–time codes. In Section IV, we present
some numerical simulation results. All lengthy proofs of the op-
timality theorems are in the Appendix.

The following notations are used throughout this paper: cap-
ital English letters, such as, and , represent matrices and
bold face lower case English letters, such as and , represent
complex symbols (or numbers or points) on two-dimensional
real lattices, lower case English letters, such as , , and , rep-
resent real symbols (or numbers or points) and

: number of transmit antennas.
: natural numbers.
: ring of integers.
: field of rational numbers.
: field of real numbers.
: field of complex numbers.

: Euler number of positive integer .
= .

: ring generated by and .
and : real and complex generating matrices for real

and complex lattices, respectively.
: -dimensional real lattice of real generating ma-

trix .
: -dimensional complex lattice of complex gen-

erating matrix .
: number field generated by the rational field

and .

:
two-dimensional real lattice with generating ma-
trix

: a set of space–time codeword matrices.
: a linear lattice based space–time code structure,

such as the threaded/multilayer structure.
: the extension degree of field over field .

: complex conjugate and transpose.
: Kronecker (or tensor) product.

means .
= .

II. SOME NOTATIONS, COMPLEX LATTICES, AND

CYCLOTOMIC LATTICES

In this section, we first briefly describe some commonly
used criteria, i.e., rank, diversity product, and symbol rate, in
space–time code design, and then briefly review some necessary
concepts on complex lattices and cyclotomic lattices proposed
in [14] that shall be used in this paper. We also generalize some
of these concepts for the purpose of constructing multilayer
space–time codes.

A. Rank, Diversity Product, and Symbol Rate Criteria

Let and be the numbers of transmit and receive
antennas, respectively, and be a space–time code. The
channel is assumed quasi-static. Let be two different
space–time codeword matrices. Then, the pairwise error proba-
bility of the coherent maximum-likelihood (ML)
detection is upper-bounded by ([20], [21])

(1)

where is the rank of the difference matrix , is the
signal-to-noise ratio (SNR) at the receive antennas, and ,

, are the nonzero eigenvalues of
and stands for the Hermitian operation, i.e., complex conju-
gate and transpose.

Rank Criterion: A space–time code is called to achieve
full diversity if the rank of difference matrix is , i.e.,

in (1), for any two different codeword matrices and
in . From (1) one can see that this criterion governs the SER
at high SNR.
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Determinant Criterion: When full diversity is achieved, the
SER depends on the diversity product (or called coding advan-
tage, coding gain, or minimum product distance in other litera-
tures), which is defined by

(2)

From (1) one can see that the larger the diversity product, the
smaller is the upper bound of the SER.

Symbol Rate Criterion: Another criterion is symbol rate
criterion, which is determined by the number of the distinct
codeword matrices in . In a linear space–time block code, the
symbol rate is defined as follows. An information sequence
is first mapped to information symbols , in a
constellation, for example, quadrature amplitude modulation
(QAM), then these information symbols are linearly placed
into a space–time code matrix design of time block size .
The symbol rate is defined by symbols per channel
use (pcu). A space–time code with transmit antennas is
called to achieve full rate if its symbol rate is symbols
pcu.

There have been considerable studies recently on full rate
and full diversity space–time code designs, see, for example,
[5], [7], [8], [10], [11], [13], [12] but not much studies on
space–time code designs of full rate full diversity and large
diversity product. The main emphasis in this paper is on the
designs of full rate full diversity space–time codes with large
(optimal) diversity product. In what follows, we say that a
space–time code is better than another space–time code

if the mean transmission signal power of is smaller
than that of , when their diversity products are the same and
their symbol rates are the same. To do so, we first recall and
generalize some concepts on lattices proposed and used in [14].

B. Real and Complex Lattices

We first define a real lattice.

Definition 1: An -dimensional real lattice is a
subset in

...
... for

where is the ring of all integers, and is an real matrix
of full rank and called the generating matrix of the real lattice

and .

It is clear that is a subgroup of with component-
wise addition. When , every point in a two-
dimensional real lattice belongs to and, therefore,
can be thought of as a complex number in the
complex plane . In this paper, we do not distinguish between
a two-dimensional real point and a complex
number or point ; otherwise, it is specified.

To distinguish it from general two-dimensional real lattices,
for we use to denote the two-dimensional
real lattice with the generating matrix

(3)

where and stand for the real and imaginary parts of a
complex number, respectively. Thus, . It is
easy to check that

and (4)

and is the square lattice.
A complex lattice defined below is a lattice based on a two-

dimensional real lattice.

Definition 2: An -dimensional complex lattice over
a two-dimensional real lattice is a subset of

...
...

(5)
where is an complex matrix of full rank and called
the generating matrix of the complex lattice . The above
complex lattice is called a full diversity lattice if it satisfies

for any nonzero vector

in .

With complex lattice points , a diagonal
lattice-based space–time code can be designed by
placing these components into the diagonal elements as

and thus, its diversity product is

For this diagonal space–time code, one is interested in its signal
mean power of and its diversity product in the sense
that either the signal mean power is minimized when the diver-
sity product is fixed or the diversity product is maximized when
the signal mean power is fixed. To study the signal mean power,
it is important to study the compactness of the lattice. To do so,
the above complex lattice needs to be converted to a real lattice.

In Definition 2, points from a two-dimensional real lattice
have been treated as complex numbers explained previously and
therefore are also complex numbers. On the other hand, if we
treat all complex elements in matrix and and as points
in the two-dimensional real space and two-dimensional real lat-
tices, respectively, the above -dimensional complex lattice can
be also represented as follows.
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Let be an complex matrix

...
...

. . .
...

(6)

with , and be points on a two-
dimensional real lattice with generating matrix . Let

...
... (7)

Then, is a point on the -dimensional complex
lattice over .

We now rewrite with its real part and imaginary part
as and entries of as .
Then, (7) can be rewritten as

...
... . . .

...

(8)
where with

(9)

and is a real matrix, which is from the real and imag-
inary parts of as follows:

...
...

. . .
...

... (10)

Let . Following Definition 1, in order
to show that is a real generating matrix of a -dimen-
sional real lattice, we only need to show it has full rank, i.e.,

. Since is the real generating matrix of a
two-dimensional real lattice , . Thus, we
only need to show that , which is given by the fol-
lowing proposition. Therefore, the -dimensional complex lat-
tice over is represented as a -dimensional real
lattice .

Proposition 1: [14] Let be an complex matrix de-
fined in (6) and be the real matrix defined in (10).
Then, .

Proposition 1 tells us that an -dimensional complex lattice
over can be equivalently represented as a -di-

mensional real lattice . Furthermore, the determinants
of their generating matrices have the following relationship:

(11)

C. Composed Complex Lattices

We now generalize the above complex lattices used in [14] for
diagonal (single-layer) space–time codes to composed complex
lattices to be used later for multilayer space–time codes.

Definition 3: An -dimensional composed complex lattice
over consists of

all points , where each segment
of length belongs to complex lattice

over , i.e.,

...
... for

for

In fact, the above composed complex lattice definition can be
stated in a more general form by simply relaxing from a single
two-dimensional real lattice to several two-dimensional
real lattices in Definition 2. In this paper, we are only
interested in the one in Definition 3 due to the special structure
of multilayer cyclotomic space–time code designs later.

Similarly to a complex lattice, an -dimensional composed
complex lattice can also be represented by a -dimensional
real lattice of generating matrix and the following
determinant relationship holds:

(12)

which determines the packing compactness of the composed
complex lattice as we shall see in the following subsection.
With an -dimensional composed complex lattice, a linear lat-
tice-based space–time code of size can be formed by
placing these complex numbers in where each com-
ponent of is either or and each appears once and only
once (assume ). In this way, the mean transmission signal
power is the same as the composed complex lattice points or
its equivalent real lattice points. When the placing rule in in
terms of is fixed, such as the multilayer or threaded structure
later, a space–time code design becomes a composed complex
lattice design.

D. Packing Density, Mean Signal Power, and
Generating Matrix

For the compactness of a real lattice, the packing density con-
cept has been introduced in, for example, [42] and for more de-
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tails, we refer the reader to [42]. Let be an -dimensional
real lattice. Its sphere packing density is defined by

where is the volume of the -dimensional ball with radius
and is the half minimal distance between the lattice points

called the packing radius. Its center density is defined by

see [42, pp. 10 and 13]. It is mentioned in [42, p. 13] that the
center density of a real lattice is the number of points
of the lattice in every number of unit volumes, i.e., in
average every number of unit volumes of include

lattice points on lattice . Therefore, on av-
erage, there are lattice points of lattice in every
unit volume of . This implies that, the lesser of the value

, the more points of are included in the unit ball of
. In other words, if we want to select a set of lattice

points of a fixed size, i.e., is fixed, such that the mean signal
power of the signal points in is minimized, then, the lower the
value of or, equivalently, the lower the absolute value
of the determinant of its generating matrix, the smaller is the
mean signal power of the signal points in . This is the base for
the following criterion of justifying that one composed complex
lattice is better than the other composed complex lattice.

E. Criterion for Composed Complex Lattices for a Fixed
Space–Time Code Structure

In this subsection, the space–time code matrix structure ,
such as linear diagonal codes or linear threaded codes, is fixed
and as mentioned previously, an -dimensional composed
complex lattice is used to place its compo-
nents into the space–time code matrix and designed one is
denoted as . The purpose of this subsection is
to present a criterion on the design of a composed complex
lattice such that the space–time code with this lattice has
a larger diversity product for a fixed mean signal power or
smaller mean signal power for a fixed diversity product, where
the diversity product is

(13)
From the discussions in the previous subsections, any -di-

mensional composed complex lattice can be converted to a
-dimensional real lattice and their corresponding signal

powers are exactly the same. With the argument in the previous
subsection and (12) we are ready to present a criterion to choose
a composed complex lattice.

Definition 4: Let and
be two -dimensional composed complex lattices over

and , respec-
tively. We say composed complex lattice
is better than composed complex lattice ,
written as

if

when their diversity products are the same, i.e.,

where the diversity products are from (13).

When two diversity products are not the same, the two com-
posed complex lattices can be normalized similar to what is
done in [14] for diagonal codes and the following lemma is not
hard to see.

Lemma 1: Let and be
two -dimensional composed complex lattices over

and , respectively. The
composed complex lattice is better than the
composed complex lattice , if

(14)

These results coincide with the results presented in [14] for
diagonal cyclotomic space–time codes and cyclotomic lattices
when and all lattice components in are placed
in the diagonal elements of , which is, in fact, a single-layer
cyclotomic space–time code as we shall see later.

F. Cyclotomic Lattices and Diagonal/Single-Layer Cyclotomic
Space–Time Codes

In this subsection, we recall cyclotomic lattices and diagonal
cyclotomic space–time codes and some of their fundamental
properties obtained in [14]. For two positive integers and ,
let and

(15)

where and are the Euler numbers1 of and ,
respectively, and corresponds to the number of transmit an-
tennas in a space–time code. Then, there is a total of distinct
integers , , with
such that and are coprime for any (see
for example [39, p. 75]). With these integers, we define

...
...

. . .
...

(16)

where . One can easily check that the above
is unitary when . It is not hard to see that ma-

trix has full rank since it is a Vandermonde matrix and

1The Euler number (or Euler function) �(N) of N is the number of positive
integers that are less thanN and coprime withN . In fact, it can be expressed as

�(N) = �(p )�(p ) � � ��(p )

ifN = p p � � � p for some distinct primes p . In particular, if p is a prime,
�(p ) = p � p , see for example [40]. It also implies that L is always an
integer.



WANG AND XIA: ON OPTIMAL MULTILAYER CYCLOTOMIC SPACE–TIME CODE DESIGNS 1107

for . This means that
matrix is eligible to be a generating matrix of a complex
lattice as we defined in Section II-A. We now define cyclotomic
lattices.

Definition 5: An -dimensional complex lattice
over is called a cyclotomic lattice, where

is defined in (16) and is the two-dimensional real
lattice with the generating matrix defined in (3). Its
minimum product2 is defined by

(17)

A cyclotomic lattice is a complex lattice. The above minimum
product (17) for a complex lattice coincides with the diversity
product defined in (13) when the space–time code structure is
diagonal. With a cyclotomic lattice, a diagonal (or single-layer)
cyclotomic space–time code is defined as follows.

Definition 6: A diagonal cyclotomic space–time code for
transmit antennas is defined by

where for are defined as follows:

(18)

where is defined in (16),

and is a signal constellation for information symbols.

By employing some theory on cyclotomic number
rings/fields, the following result was obtained in [14].

Theorem 1: [14] A cyclotomic lattice is a full diversity lattice
and a diagonal cyclotomic space–time code has full diversity.

The novelty of the above general cyclotomic space–time lat-
tices and codes presented in [14] is that the generating matrix

is concretely found and given for any cyclotomic ring
of any for the full diversity, which has not yet appeared

in the literature in the area where a discrete Fourier transform
matrix that corresponds to the case when in the above

or a Hadamard transform is commonly used.
When , a cyclotomic lattice over is

called a Gaussian cyclotomic lattice, after the name of Gaussian
integers . When or , a cyclotomic
lattice over is called an Eisenstein cyclotomic
lattice, after the name of Eisenstein integers .

2In [4], it is called minimum product diversity. The reason why we use the
minimum product is because we want to distinguish it from the diversity product
of the associated space–time code with this lattice as we shall see later. In [3],
it is called product distance.

For Gaussian cyclotomic lattices and Eisenstein cyclotomic lat-
tices, it was proved in [37], [38] that the minimum products of
Gaussian cyclotomic lattices and Eisenstein cyclotomic lattices
are .

From the above cyclotomic lattices, one can see that, for a
fixed in (15), there are infinite options of integer and thus,
infinite options of cyclotomic number ring or lattices
and also infinitely many options of the generating matrix
in (16). Then, a natural question arises: which one is optimal?
Several small numbers of transmit antennas have been con-
sidered in [14]. In the next section, we present a general opti-
mality theorem for a general , which is cast in the single-layer
cyclotomic space–time code context as a special case of the mul-
tilayer one.

III. MULTILAYER CYCLOTOMIC SPACE–TIME CODE DESIGNS

In this section, we first propose a general structure of mul-
tilayer cyclotomic space–time codes. We then present optimal
single-layer cyclotomic space–time codes for a general number
of transmit antennas. We then present optimal multilayer
cyclotomic space–time codes of full rates for two and three
transmit antennas. We also present optimal two-layer cyclo-
tomic space–time codes for three and four transmit antennas.
After presenting the optimality results, we then propose three
methods of selecting lattice points for a set of codeword
matrices of a space–time code. Since the optimal multilayer
cyclotomic space–time codes we find are not unitary as we shall
see later, in this section we finally discuss the capacity issue.

A. A General Structure of Multilayer Cyclotomic
Space–Time Codes

Following the general structure of threaded space–time codes
in [16], we propose the following general multilayer cyclotomic
space–time codes (i.e., code structure as mentioned previ-
ously) that will be optimized later in terms of the mean trans-
mission signal power and the diversity product.

Definition 7: Let be the number of transmit antennas
and be an -dimensional cyclotomic lattice
as defined in Section II-F, where is defined in (16),
for . Let be fixed com-
plex numbers. Then, a multilayer cyclotomic space–time
code structure is defined by (19) at the bottom of the page,
where is a point in cyclotomic lattice

for . This multilayer cyclotomic
space–time code is denoted by

An -layer cyclotomic space–time code with
is defined as a multilayer cyclotomic space–time code

...
...

...
...

...
(19)
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when for
and denoted by .

We now have the following result on the full diversity prop-
erty for the above multilayer codes.

Theorem 2: For any integer , with , an -layer
cyclotomic space time code

in (19) has full diversity if , , satisfy one
of the following conditions:

i) with and

where are some prime factors of
;

ii) for an algebraic , i.e., is transcen-
dental;

iii) with a proper integer and
with the same as in i);
where , with

for

and stands for the least common multiple.
Proof: It is not hard to see that the determinant of

any nonzero codeword is a nonzero polynomial of of
order less than or equal to with coefficients in

. Thus, the full diversity property is equiva-
lent to stating that is not a root of such a polynomial.

Let us first consider condition i). By the definitions of
and , we know that ,

and the dimension of the vector space over field
is

From [39, p. 75], we know that is
a basis of vector space over field .
Thus, the determinant of any nonzero codeword of -layer
space–time code for transmit antennas can be considered as
a nonzero linear combination of , with
coefficients in , which cannot be zero from
the linear independence of the basis.

For condition ii), its proof is similar to the proofs in [8], [13].
Condition iii) is broad enough that it contains the optimal

multilayer cyclotomic space–time codes that will be found later.
QED

Although the general form (19) of a multilayer cyclotomic
space–time code and the first two conditions in the above the-
orem look similar to those that appeared in [8], [13], there are
several differences as listed in the following.

• Similar to the one mentioned in Section II-F on diagonal
cyclotomic space–time codes, we have presented concrete
forms of generating lattices , which will help us to
find the optimal one later.

• The cyclotomic lattices on different layers may
be different, which differs from the existing ones in the
literature where all these lattices are the same.

• The parameters may not be necessarily on the unit
circle as often required in the current literature for main-
taining the capacity lossless property. As we shall see
later, by relaxing this requirement, cyclotomic space–time
codes with significantly better diversity products can be
achieved while the capacity loss is not significant.

From Theorem 2, we can see that for a given , there are
infinitely many -layer cyclotomic space–time codes with full
diversity. The question then becomes which one is optimal in
the sense that the diversity product is optimal if the mean trans-
mission signal power and the rate are fixed, or equivalently, the
mean transmission power is minimized if the diversity product
and the rate are fixed as mentioned before.

From Sections II-C–II-E, an -layer cyclotomic space–time
code is equivalent to an -dimensional composed complex
lattice as

Therefore, from Lemma 1, the following lemma is obvious.

Lemma 2: An -layer cyclotomic space-time code
is better than another -layer

cyclotomic space-time code , if

(20)

From this lemma, one can see that the problem of finding
the optimal multilayer cyclotomic space–time code becomes a
problem of finding the optimal generating matrices and
parameters , , such that the ratio

is maximized.

B. Optimal Single-Layer Cyclotomic Space–Time Codes

When , an -layer cyclotomic space–time code be-
comes a single layer (or diagonal) cyclotomic space-time code.
For single layer codes, optimal cyclotomic lattices or space-time
codes for some small individual transmit numbers have been
studied case by case in [14]. In this subsection, we present a
general optimality for a general transmit antenna number .
Before presenting this result, let us first state a result obtained
in [14].

Theorem 3: [14] Let or . Let be
an -dimensional Eisenstein cyclotomic lattice and

be another -dimensional cyclotomic lattice
over . If

then, lattice is better than lattice .
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This theorem holds mainly because the minimum product of
an Eisenstein lattice is . From Theorem 3, one can see that,
to compare a cyclotomic lattice over with over

, or with over , it is sufficient to compare the
absolute values of their generating matrix determinants and the
two-dimensional real lattices can be ignored. Similar to
[14], we need the following lemma on Euler numbers.

Lemma 3: For any two integers ,
, then

where are distinct primes,
, and if . Thus,

is a factor of , where is the greatest common
divisor of and .

This lemma is a direct consequence of the definition and the
property of Euler numbers in Footnote 1. The following lemma
on composed cyclotomic lattices plays the key rule in proving
the general optimality result in the Appendix.

Lemma 4: Let , and be positive integers and

and

Then

where , , and are the generating ma-
trices of -, -, and -dimensional cyclotomic lattices

, , and over ,
, and , respectively.

Lemma 4 gives us a relationship between the determinants
, , and , of cyclotomic

lattice generating matrices , , and from
different field extensions

According to the notations in the Introduction, the result of
Lemma 4 can be rewritten as

or

(21)

where is the Kronecker (or tensor) product
of matrices and .

The proof of Lemma 4 is given in the Appendix. From the
proof of Lemma 4, we know that Lemma 4 can be easily ex-
tended to more than two field extension cases, i.e., for any pos-
itive integers and , we
have the following result:

(22)

or, by the notation in the Introduction,

Corollary 1: For any two positive integers and , let

be their prime decompositions, where all , , are distinct
primes, and . Then, the determinant
of the generating matrix of the cyclotomic lattice

satisfies

(23)

where stands for the discrete Fourier transform
matrix

...
...

. . .
...

(24)

is the submatrix of matrix with
the th row and the th column absent, stands for the
Kronecker product of copies of , i.e.,

and . Also,
for any positive integer and for a
prime .

Proof: From (16) it is not hard to see that, for any prime
and any integer

if is a factor of
otherwise.

(25)

Let us consider the field extensions

(26)

where . Then this corollary can be easily proved
by using Lemma 4 or (22), (26), and (25). The last determinant
equalities of and can be obtained directly from
the proof of Lemma 4. QED

By using the notation in the Introduction, (23) can be re-
written as

(27)

We now present a general optimality result for single-layer
cyclotomic space–time codes.

Theorem 4: If the number of transmit antennas has the form

or for some integer (28)

then the optimal single layer -dimensional cyclotomic
space–time code (or lattice) can be achieved by an Eisenstein
cyclotomic lattice, i.e., or , and the minimum
product (or diversity product) of the optimal single-layer cyclo-
tomic space–time code (or lattice) is .

Theorem 4 can be described in another way: the optimal
single-layer cyclotomic space–time code can be achieved by
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an Eisenstein cyclotomic lattice if -dimensional Eisenstein
cyclotomic lattices exist.

A proof of Theorem 4 for numbers of transmit antennas less
than 3080 is given in the Appendix. With more tedious calcula-
tions, the result for more general numbers of transmit antennas
can be similarly proved and we omit the details here. From this
theorem, Lemma 1, and the footnote about Euler numbers, the
following corollary can be obtained.

Corollary 2: If

(29)

where , are distinct primes and different from
, and , are integers, then the op-

timal single-layer -dimensional cyclotomic space–time code
(or lattice) can be achieved by an Eisenstein cyclotomic lattice,
i.e., or , and the minimum product of the optimal
single-layer cyclotomic space–time code (or lattice) is .

Proof: This corollary can be easily proved by letting
, and using Theorem 4, Lemma 1, and the footnote

about Euler numbers. QED

As a remark, in the above corollary means that the
other terms in (29) do not appear. Also, from this
corollary, it is not hard to see that, if for some
integer then for some integer and vice
versa. Thus, in what follows we only consider of the form

for some integer . Although the numbers
of transmit antennas in (29) do not cover all positive integers,
such as primes etc., they cover a broad class of positive
integers, such as

etc. Clearly, for any prime is
covered by (29).

Theorem 4 tells us that, for transmit antennas, if -di-
mensional Eisenstein cyclotomic lattice exists, to find the op-
timal single-layer cyclotomic space–time code (or lattice) we
only need to find the optimal lattice among pairs

instead of all possible candidate pairs . For
a fixed , there are only a few cases of possible

that are not hard to compare individually. Because all the min-
imum products of Eisenstein cyclotomic lattices are and

from Lemma 1, we know that to find the optimal single-layer
cyclotomic space–time code becomes to choose the integer
with the smallest determinant or . For
example, the generating matrices of two-, three-, and four-di-
mensional optimal cyclotomic lattices are or , or

, and or , respectively.

C. Optimal Full Rate (Two-Layer) Cyclotomic Space–Time
Code for Two Transmit Antennas

In this subsection, we consider and find the optimal full rate
full diversity cyclotomic space–time codes for two transmit an-
tennas.

Theorem 5: For two transmit antennas, i.e., , the
optimal full rate (two-layer) cyclotomic space–time code

in (19) is reached by and

, and and . The
diversity product is

(30)

The proof of this theorem is given in the Appendix. The prod-
ucts of the two layers in the above code are shown in Fig. 1. It is
easy to see that a set of codeword matrices of the optimal full rate
cyclotomic space–time code for two transmit antennas contains
the codeword matrices of the optimal single-layer cyclotomic
space–time code as its subset by letting the second layer lattice
points be zero. However, the diversity product of the two-layer
code is not reduced compared to that of the single-layer code,
i.e., . This tells us that adding another layer into the optimal
single-layer code does not decrease the diversity product, i.e.,
has nonvanishing determinant.

The main idea for choosing the above parameter in the
above optimal full rate full diversity cyclotomic space–time
code is as follows. The determinant of a code in (19) is

, where

for

and can be always chosen without loss of generality.
When are Gaussian (Eisenstein) lattices, i.e.,

( or ), from [37], [38], it is known that the
products of the components belong to lattice

and therefore their norms are either or at least
. From Fig. 1, one can see that the set of the products

of all possible for
do not fill lattice completely. Our idea to choose is in
such a way that the set of all products not
only belongs to lattice but also does not intersect with .
Therefore, the determinant is also
on the lattice and not , i.e., its norm is at least and this
means that the diversity product of the code is at least . This
idea also applies to the other optimal multilayer cyclotomic
space–time codes in the following subsections.

From the above idea, another remark we want to make here is
that the two elements and in the second layer
of the optimal code in Theorem 5 can be replaced by

and

where is any real number, is any integer, and be-
longs to according to and the perfor-
mance is the same as the optimal one.

Similar to the optimal code in Theorem 5, the following result
can be obtained for Eisenstein lattices.

Proposition 2: For two transmit antennas, i.e., , the
diversity product of full rate (two-layer) cyclotomic space–time
code in (19) with and

, and and
(or and ) is , i.e.,

Its proof is similar to the proof of Lemma 5 in the proof
of Theorem 5 in the Appendix. Similar to the optimal code in
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Fig. 1. Product distributions of lattice components on different layers in the optimal two-layer cyclotomic space–time code for two transmit antennas: “�” stands
for the first layer; “�” stands for the second layer.

Theorem 5, the diversity product of code
or does not decrease when the signal con-
setallation size increases, i.e., the codes have nonvanishing de-
terminants. Also, the two elements and in the
second layer can be replaced by

and

where is any real number, is any integer, and be-
longs to or according to and
the performance does not change. Comparing the codes in The-
orem 5 and Proposition 2 in terms of the normalized diversity
products in Lemma 2, their normalized diversity products are

and

As a remark, from the previous section and [14] one can see
that, in the single-layer or diagonal code case, cyclotomic codes

over and over (or over )
reach the same optimal normalized diversity product but it is
different in the two-layer code case as shown above.

To quantitatively compare these codes with the existing
ones, let us normalize them as and

(or ). These
normalized codes have a lower mean transmission signal power
than those in [8], [13] but its diversity products are and

, respectively, and larger than those in [8], [13].

D. Optimal Multilayer Cyclotomic Space–Time Codes for
Three and Four Transmit Antennas

We first consider two-layer cyclotomic space–time codes for
three and four transmit antennas.

Theorem 6: For three transmit antennas, i.e.,
, the optimal two-layer cyclotomic space–time code

in (19) is reached by and
, and and (or

and ). The diversity product is

(31)

A proof of this theorem is given in the Appendix. Similar to
the two-antenna case, the three elements , ,
in the second layer of the optimal code in Theorem 6 can be
replaced by

and

where and are any two real numbers, , , and are
any integers, and belongs to or
according to and the performance is the
same as the optimal one.
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Fig. 2. Product distributions of lattice components on different layers in the optimal three-layer cyclotomic space–time code for three transmit antennas: “�”
stands for the first layer; “�” stands for the second layer; “ ” stands for the third layer.

Theorem 7: For four transmit antennas, i.e.,
, the optimal two-layer cyclotomic space–time code

in (19) is reached by
and , and
and (or and ). The
diversity product is

(32)

Its proof is similar to the proofs of the preceding theorems.
We omit the details. Similarly, the four elements ,

, in the second layer of the optimal code in Theorem 7
can be replaced by

and

where , , and are any real numbers, is any integer, and
belongs to or according to

and the performance is the same
as the optimal one.

As a remark, the same idea as presented in [8] can be applied
here to reduce the PAPR for our optimal two-layer cyclotomic

space–time code for four transmit antennas by using the
Hadamard transform. Then, the new code has the form

(33)
We next consider three-layer cyclotomic space–time codes

for three transmit antennas.

Theorem 8: For a three-layer cyclotomic space–time code

or

for three transmit antennas, its determinant is an Eisentein in-
teger, i.e.,

(34)

Furthermore, its diversity product is , i.e.,

(35)

The proof of this theorem is given in the Appendix. The prod-
ucts of the three layers in the above code are shown in Fig. 2.
Now we present optimal full rate cyclotomic space–time code
for three transmit antennas.
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Theorem 9: For three transmit antennas, i.e., , the
optimal full rate (three-layer) cyclotomic space–time code

in (19) is reached by
, , and , and

and (or and
), i.e, (or

).
Proof: From Theorem 8, we know that

and

are full rate full diversity cyclotomic space–time codes with di-
versity product . The proof of the optimality can be obtained
similar to Theorem 6 and the detailed proof is omitted. QED

Similar to the two transmit antenna case, the codeword
matrices in the optimal two-layer space–time codes for both
three and four transmit antennas and the optimal three-layer
space–time codes for three transmit antennas contain those of
the optimal single-layer codes as their subsets but their diversity
products are the same as those of the optimal single-layer codes.
In other words, adding other layers to the optimal single-layer
code does not decrease the diversity product in the above cases,
i.e., has the nonvanishing determinant.

E. Codeword Matrix (or Lattice Point) Selections

After an optimal -layer cyclotomic space–time code struc-
ture for antennas is determined as in the previous subsec-
tions, to design a space–time code for a practical system with
a fixed throughput (bits pcu), one needs to select lattice points on
the corresponding composed complex lattice as , where

and are -dimensional complex vectors. From the results
presented in the previous subsections, the diversity product is

for the optimal multilayer cyclotomic space–time codes no
matter what the code size is. Then, the codeword matrix
or lattice point selection problem becomes a problem to select
the points such that their mean power is minimized, which does
not apply to the existing full rate and full diversity cyclotomic
space–time codes in, for example, [8], [13], where there is no
lower bound for the diversity product and the diversity product
depends on the size of . Let be the throughput (bits pcu).
Then, . Similar to what is done for diagonal code
designs in [14], we now present three methods as follows.

Method I: Component-Wise Independent Selection: In this
case, all information symbol components of are independently
selected. A signal constellation of size needs to be se-
lected on the two-dimensional real lattice such that its total
energy is minimized

for

and

Method II: Layer-Wise Independent Selection: In this case,
different layers are independently selected and points

on the cyclotomic lattice need to be selected such
that the total energy is minimized

and

Method III: Joint Layer Selection: In this case, different
layers are selected jointly and lattice points on the com-
posed complex lattice need to be se-
lected such that the total energy is minimized

and

After the minimization is done, all composed complex lattice
points (or codeword matrices) are shifted such that the mean
is at the center , i.e.,

F. Multilayer Space–Time Coded Channel “Capacity”

A space–time coded multiple-input multiple-output (MIMO)
relationship is

(36)

where , , , and are the space–time
coded signal matrix, the received signal matrix, the channel ma-
trix, and the additive noise matrix, respectively. By stacking
these matrices into column vectors column-wise, we have

(37)

where

(38)

If the transmitted signal is generated by
a full rate ( -layer) cyclotomic space–time code

in (19), we have and
can be written as in (39) at the bottom of the page,

where are the information symbols. Let

After the transmission power is normalized, the capacity of the
space–time coded channel can be written as

(40)

where is the SNR.

(39)
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Fig. 3. Original and space–time coded channel capacities with the optimal full rate cyclotomic space–time code for two transmit and two receive antennas.

When all the generating matrices are unitary matrices,
the above capacity (40) becomes

(41)

which equals the original channel capacity of channel
when all satisfy . In this case, the cyclotomic

space–time code is called capacity lossless [18], [17], [5], [8],
[13].

Although in our optimal multilayer space–time codes pre-
sented in the previous subsections, for two antennas and

and for three antennas are unitary, these codes are
not capacity lossless because for some . However,
the “capacities” of our optimal full rate cyclotomic space–time
coded systems for two transmit two receive antennas and three
transmit three receive antennas are calculated and only about
0.1- to 0.6-dB capacity loss as shown in Figs. 3 and 4, respec-
tively, where “capacities” are the capacities of channels but
not of the original channel .

IV. SIMULATION RESULTS

In this section, we present some simulation results for two
transmit and two receive antennas. The channel is assumed
quasi-static fading. The entries of the channel matrix are inde-

pendently identically complex Gaussian distributed with mean
zero and variance .

Two multilayer cyclotomic space–time codes are compared.
One is the full rate full diversity code in [5] with

where are independently chosen from an
-QAM, and . The other is the optimal

full rate (two-layer) full diversity cyclotomic space–time code
where the lattice points are selected

based on the layer joint selection method, i.e., Method III, in
Section III-E. The reason why the four information symbols
in code are independently rather than jointly selected is
because this code does not have a fixed diversity product lower
bound that code has and the diversity
product depends on selected lattice points and therefore it is not
easy to do the joint selection. Two different throughputs,
4 and 6 bits pcu, are simulated and the simulation results of
symbol error rates versus SNR are shown in Figs. 5 and 6, re-
spectively, where SNR is the SNR at each receive antenna. One
can clearly see the performance improvement of the optimal
cyclotomic codes over the nonoptimal ones in the literature.

V. CONCLUSION

In this paper, a systematic and general multilayer cyclotomic
space–time code design has been proposed and several optimal
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Fig. 4. Original and space–time coded channel capacities with the optimal full rate cyclotomic space–time code for three transmit and three receive antennas.

Fig. 5. Symbol error rates of full rate cyclotomic space–time codes with 4 bits pcu for two transmit and two receive antennas.
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Fig. 6. Symbol error rates of full rate cyclotomic space-time codes with 6 bits pcu for two transmit and two receive antennas.

multilayer cyclotomic space–time codes and code families have
been obtained, where the optimality is in the sense that the
mean transmission signal power is minimized when the diver-
sity product is fixed. In particular, optimal single-layer (diag-
onal) cyclotomic space–time codes have been found for a gen-
eral number of transmit antennas as long as can be rep-
resented as for some that covers a broad
family of , where is the Euler number of . The op-
timal full rate cyclotomic space–time codes for two and three
transmit antennas have been obtained. Optimal two-layer cyclo-
tomic space–time codes have been obtained for three and four
transmit antennas. We want to emphasize here that all the op-
timal multilayer cyclotomic space–time codes obtained in this
paper have the nonvanishing determinant property.

As a remark, after we submitted this paper in November of
2003, we have come across recent works [43]–[48] on various
constructions of nonvanishing determinant full rate space–time
codes. It is not hard to check that the optimal full rate (two-layer)
cyclotomic code for two transmit antennas presented in The-
orem 5 in this paper has slightly better lattice (packing) com-
paction than the Golden code [45] does.

APPENDIX

A. Proof of Lemma 4

We first consider three special cases.
Case I: and Divides for

: In this case, from Lemma 3, we have

Let . From (16), can be rewritten as (42)
at the bottom of the page. Let

...
...

. . .
...

(43)

...
...

. . .
...

. . .
(42)
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It is not hard to check that

...
...

. . .
...

...
(44)

Thus, . Therefore,

(45)

This implies

(46)

For , let be the embeddings
of the field into that fixes and

for some integer , see [39, p. 75]. Then, we obtain

(47)
From (47), we know that the relative norm

of is [41]

(48)

By the Theorem of Relative Discriminants in Tower [41], we
have

(49)

where

(50)

(51)

and

(52)

From (48)–(52), we have

(53)

Using (46) again, we have

(54)

which proves the lemma.
Case II: is a Prime Number and Coprime With : In

this case, from Lemma 3 we have

From (16)

...
...

. . .
...

. . .
(55)

where , , , are distinct
integers in such that and are
coprime. Let

...
...

. . .
...

(56)

Let be the integer that is not taken by in ,
i.e., but for . By mul-
tiplying the th column of by for
and then reordering the matrix row-wisely, can be changed
into

...
...

. . .
...

(57)

and

(58)

If , then is an odd number and
, , and . Thus, this is a

trivial case. We next assume .
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By [41, Theorem 2.32 , p. 84] and since is a prime, we
have

(59)

Thus,

(60)

and

(61)

which is similar to (46) in Case I. Then, this case can be similarly
proved by using the same arguments as in (47)–(54) in Case I.

Case III: , , and are Coprime: In this case,
we consider the tower of field extensions

From Case II, we know that

(62)

and from Case I, we have

(63)

By combining (62) and (63), we have

(64)

From Case I again, we have

(65)

By combining (64) and (65), we finally have

(66)

which proves the lemma.
General Case: In general, can be written as

where , , are distinct primes and
none of these primes divides , and all the prime factors
of divide . One can see that is similar to Case I while

are similar to Case III. Consider the field extensions

By using the results of Case I and Case III, repeatedly, the
lemma can then be proved. QED

B. Proof of Theorem 4

Our basic idea to prove this theorem is: for any given
-dimensional cyclotomic lattice over with

generating matrix , we find an Eisenstein cyclotomic
lattice or over such that

or over is better than .
Let and be integers of prime decompositions

, , and
, where are distinct primes and ,

and may be . Let with distinct primes
and such that . We
next want to prove this theorem in two different cases: one is
when and have no common prime factors greater than
and the other, when and have some common prime factors
greater than . In the first case, under most situations, we can
show that the determinant (or ) is
less than or equal to and then by Theorem 3, we
know that or is better than ,
where we do not need to consider the minimum products (or
diversity products) and .
In the second case and one situation of the first case, we need
to consider the minimum products and

in addition to the determinants
and , i.e., we need to compare the following ratios:

and

Case 1: are or , i.e., and Have No Other
Common Factor Than or : Let us consider the first sub-
case.

Subcase 1.1: is not a factor of .
When is not a common factor of and , we choose

. Then

and

When is a common factor of and , .
Choose . Then

By using Lemma 4 and , we have

In either situation, we have . By
Theorem 3, we have proved the theorem in this subcase.

Subcase 1.2: 3 is a factor of .
The proof of the theorem in this subcase is given under two

different situations: is a factor of , and is not a factor of .
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Subcase 1.2.1: 3 is a common factor of and .
In this subcase, we first consider when is not a common

factor of and . In this case, with
and

Choose . Then, since are distinct prime num-
bers and different from

By using Lemma 4

i.e.,

We then consider the case when is a common factor of
and . Similar to Subcase 1.1, we can also choose and

by using Lemma 4 and .
Thus, the theorem is proved in this subcase.

Subcase 1.2.2: 3 is a factor of but not a factor of .
When is not a common factor of and ,

, and

(67)

i.e.,

(68)

where

(69)

Let , and we have

and

(70)

i.e.,

(71)

When is a common factor of and ,
, and

(72)

i.e.,

(73)

where

(74)

Let , and we have

and by noticing

(75)

i.e.,

(76)

We next prove

(77)
When , is an Eisenstein cyclotomic lattice
itself. So, we may assume or .

Subcase 1.2.2.1: 3 is a factor of and .
In this subcase

and

From (67) and (70), or (72) and (75), we have

Thus, we have

(78)
which proves (77).
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Subcase 1.2.2.2: 3 is a factor of but not a factor of ,
and .

We first estimate the minimum product .
To do so, we divide the problem into two situations: is an
even number or both and are odd number; and is an odd
number but is an even number.

i) is an even number or both and are odd numbers.
In this situation, has the form of and

(79)

where when and are both odd numbers. Let

and (80)

Then,

(81)

and

(82)

From the definition of generating matrix of cyclotomic
lattice , we know that the element of at
the th row and the th column is , where is an
embedding from to that fixes and

, such that , and is coprime
with .

Since in (79) are distinct primes greater than , it is not
hard to show that when

(83)

the following inequality holds:

(84)

i.e.,

(85)

Now we can define an -dimensional vector

with , when ; , when
; otherwise, . Thus,

and

(86)

Since , . Then we
have

(87)

by using the definition of Relative Norm [41].
ii) is an odd number but is an even number.
In this situation, . And

(88)

Let

and
(89)

Then

(90)

and

(91)

Since the inequality (84) also holds here, we have

(92)

Similar to the previous situation, we define an -dimensional
vector

with , when ; , when
; otherwise, . We then have

(93)

and

(94)

In both situations, (87) and (94) can be rewritten as

(95)

where in (87) and in (94). We next want to
further estimate the right-hand side of (95).

Since
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from the Relative Norm Theorem [41], we have

(96)

We now consider the field extension . Since
is not a factor of and may occur only when

is odd, , from [39, p. 75], there are two embeddings
and from to that fix , with

, , where , when ,
for some integer ; , when , for some
integer . Therefore, (95) can be rewritten as

(97)

where

(98)
if
if .

(99)

Thus, from (97) and (68) we have

(100)

We next consider the cyclotomic lattice . Since
the minimum product of lattice is

and the determinant of is , from (70), we
have

(101)

where second equation is because

By comparing (101) with (100), to prove the theorem, we only
need to prove

In fact, if we let

(102)

it is easy to check that is a decreasing function of , and
for . As a remark, when

does not satisfy (83), the above estimation can be refined in a
tedious manner with more cases and is omitted here, while in a
practical system the number of transmit antennas may always
satisfy (83).

Case 2: There is Some , i.e., and Have Common
Prime Factors Greater Than : By the assumption of the the-
orem, there is an integer such that

Let us assume , with and ,
are distinct primes. Hence, we have

(103)

We next estimate , , , and
then show

(104)

i) Estimate
From Lemma 4, we have

(105)

Since for any integer , and

(106)

Equation (106) can be rewritten as

(107)

Thus, (105) can be rewritten as

(108)

where

From Lemma 1, we have for any prime
. For notational convenience, we use to denote an

matrix with determinant

(109)
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for any integer even if is not a prime. One can check that,
for any two integers and greater than

(110)

Then, (108) can be rewritten as

(111)

where .
For any two integers and except in the cases

when and , one can check that

(112)

which means

(113)

By the assumption of Case 2, there is some prime number
, and is a factor of some or some for some

. Thus, or in (111).
Since , by combining (111) and (113) and
repeatedly using (110) we have

(114)

ii) Estimate
Without loss of generality, we may assume

If and , then and

By using (114), we have

(115)

By using Theorem 3, Theorem 4 is proved.
In the case when and , similar to Subcase

1.2.2.2, we may use . Thus, without loss of
generality, we may assume . Let

(116)
Then

(117)

and

(118)

From the assumption of Case 2, there is a , thus, we have
. Similar to (84), when we have

(119)

i.e.,

(120)

and when we have

(121)

i.e.,

(122)

and when we have

(123)

i.e.,

(124)

Similar to Subcase 1.2.2.2, we define an -dimensional
vector as , ,
where are constants defined in two cases: a) ,

, and for other , when ; b) ,
, , and for other , when

.
Let . Similar

to (86) and (93), we have

(125)

where

From the Relative Norm Theorem [41], we have

(126)

Define

(127)

which is

(128)
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where

when
when

and is the generating matrix of cyclo-
tomic lattice over : When , we have

, , where . When
, we have

where , and such that
are coprime with for .

Therefore,

(129)

and

(130)

For , we can also define another -dimensional
vector as , ,

, , , , and
for other .

Let . Similar
to the derivation of above, we can get

(131)

where

(132)

and is the generating matrix of cy-
clotomic lattice over and

where , and such that
are coprime with for .

So, when

(133)

Let

when

when . (134)

Combining (134), (133), and (130), we have

(135)

iii) Estimate
From Lemma 4 and (103) and (116) we have

(136)

and . Since

(137)

is also a generating matrix of an -dimensional cyclo-
tomic lattice over and

(138)

i.e.,

(139)

Since , it is not hard to check that

(140)

where we get (141) at the bottom of the page, and

when
when

(142)

for (143)

and is the generating matrix of -dimensional cy-
clotomic lattice over .

In fact, , .
Thus,

(144)

is a decreasing function of . By the definition of
, and some numerical calculations, we find

that

when

when
(141)
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is also a decreasing function of for any given prime . Then

(145)

From (135) to (142) we have

(146)

iv) Prove inequality (104)
From (114) and (146), we can obtain (104) if we can show

(147)

Taking logarithms of both sides of (147), we have

(148)

i.e., we need to prove

(149)

due to

and , and

Define the following function of integer variables:

(150)

where

are odd numbers, and , and , and is
from its definition (141).

Comparing (149) with (150), we can find that (149) can also
be represented as

(151)

with , , and . In (149), it is an expression
for primes and and is hard to handle. However, (150) or
(151) is for any integers, which is easier to understand. Equation
(151) can be numerically proved when

a) or or;
b) or;
c) , and or;
d) , and , .

So, when , (147)
and therefore Theorem 4 is proved. For , we need
to re-estimate the value , we omit the lengthy
details. QED

C. Proof of Theorem 5

Before proving the theorem, we need the following lemma.

Lemma 5: For any , if

then .
Proof: Since is a basis of over , for

any , it can be expressed by with
. From the definition of relative algebraic norm,

, where and are the em-
bedding of to with for any

and , . Thus,

(152)

Similarly, for any with and
, we have

(153)

Since is an ideal of ring , for the above
, there is an integer such that

and (154)

where , and

If , from
(152)–(154), we have

(155)

where
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Since the term on the right-hand side of (155) belongs to ,
the term on the left-hand side of (155) also belongs to ,
i.e.,

(156)

Checking (156) with

we find that (156) holds only when . In this
case, (155) becomes

(157)

i.e.,

(158)

where

Similar to the proof for in (156), we can get
.

Similarly, we can prove that , and then
, and so on. Finally, we can get . QED

Now, we are ready to prove Theorem 5.
Let . We first prove that the diversity product

of two-layer cyclotomic space–time code
is , i.e., , and then

prove that is optimal.
For any nonzero two-layer cyclotomic space–time code

, i.e.,

(159)

where , from a
result in algebraic number theory [37], [38], it is known that

, . Furthermore

(160)

which means that the determinant value of in (159)
belongs to , i.e., . Therefore, either

, or . We next show .
By the definition of cyclotomic lattice over , we

have

(161)

(162)

where . It is easy to find that

where , .
From Lemma 5, we know that

except , i.e., codeword , which is also il-
lustrated in Fig. 1. In Fig. 1, the product of the first

layer of is marked by “ , ”and the product of
the second layer of is marked by ” .” They do not overlape
unless , i.e., .

This proves that the diversity product
Thus, we have

(163)

since , , and .
We next prove that for any two-layer cyclotomic space–time

code , with diversity product
, the following inequality holds:

(164)

which therefore proves that the code is op-
timal based on Lemma 2.

Without loss of generality, we may assume that one of and
is , and the norm of the other is greater than or equal to

since a scaling factor does not affect the ratio at the left-hand
side in (164). Since the symmetry of and , we
may also assume

(165)

For to be a cyclotomic generating matrix, has to be not
less than . Thus, . Under the assumption (165), for
parameters and we have the following cases:
and ; and ; and

; and .
If , then

and therefore,

(166)

If , then

and therefore,

(167)
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From the above proof, one can see the left-hand side of (164)
is always upper-bounded by

for (168)

In the above discussions, both for have
. Thus,

i) , when and is an
even number; or when and is an odd number;

ii) , when and
; or when and .

We now prove (164) in different cases in terms of values of
. When , for different , we may need different

estimation methods of the left-hand side of (164) and therefore
they are listed into separate cases. When , we may find
a common estimation method of the left-hand side of (164) that
is listed as the final case.

Case 1: or : We consider this case in two sub-
cases.

Subcase 1.1: or 6 but .
In this case, . Let and be the following

two sets in :

It is not hard to check that for any , there is some
such that ; and for any

, there is some and some
such that .

Without loss of generality, we assume , other-
wise, the proof is similar due to the above similar forms of the
above values of and . In this case,

By the assumption (165) and , when
, the left-hand side of (164) is upper-bounded by

(169)

which proves (164).
Next, we will prove the case of .

Subcase 1.1.1: , or .
In this subcase, at least one of and is or

(170)

where and are or , and at least one of and is
. From i) and ii), it is not hard to see that, since are

or , we have

Thus, the left-hand side of (164) becomes

(171)

where the last inequality is because

for

(172)
which proves (164).

Subcase 1.1.2: , and .
In this subcase, by computer search, we find that for any

Subcase 1.2: or , and .
In this case, or .

Subcase 1.2.1: or , , .
In this subcase, choose

where , and

From (168), and in
i) and ii), the left-hand side of (164) is upper-bounded by

which proves (164).
Subcase 1.2.2: or , , .

In this subcase, choose

where , with

(173)

By using i) and ii), we have .
From (168) and i), the left-hand side of (164) is upper-bounded
by

(174)

which proves (164).
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Subcase 1.2.3: or , , .
By using i) and ii), we have .

In this subcase, choose

where

(175)

Without loss of generality, we assume .
When ,

(176)

When , similar to Subcase 1.1

where and are or , and is the same as the one
in Subcase 1.1 but is taken from the set of all products of
components on the lattice as

where

Thus,

(177)

which proves (164).
Case 2: : In this case, or .

Subcase 2.1: , or .
Subcase 2.1.1: , .

In this subcase, similar to Subcase 1.2.1, we have

and from (166) and (167), the left-hand side of (164) is upper-
bounded by

(178)

which proves (164).
Subcase 2.1.2: , .

This subcase can be proved similarly to Subcase 1.2.3.
Subcase 2.2: , .

In this subcase, similarly to Subcase 1.2.2, we have

By assumption (165), we have or . By i), we have
.

Subcase 2.2.1: , ; .
In this subcase, by i) and ii), we have

From (168), the left-hand side of (164) is upper-bounded by

(179)

which proves (164).
Subcase 2.2.2: , ; , or
.

In this subcase

and . From (168), the left-hand side of (164) is
upper-bounded by

(180)

which proves (164).
Subcase 2.2.3: , ; , .

By (168), the left-hand side of (164) is upper-bounded by

(181)

which proves (164).
Case 3: : In this case, or

Subcase 3.1: , .
In this subcase, let
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, where

(182)

It is easy to calculate that

Thus,

By (166) and (167) and in i) and ii), the
left-hand side of (164) is upper-bounded by

(183)

which proves (164).
Subcase 3.2: , or .

In this subcase, choose ,
, where

(184)

It is easy to check that

Since

and (168), the left-hand side of (164) is upper-bounded by

(185)

which proves (164).
Case 4: : In this case, , or .

Subcase 4.1: , .
In this subcase, let

, where

(186)

It is easy to calculate that

and

By the assumption

in (165), (168), the left-hand side of (164) is upper-bounded by

(187)

which proves (164).
Subcase 4.2: , .

In this subcase, let ,

, where

(188)

It is easy to calculate that

and

Since the assumption

in (165), has to be an integer in the range .
Subcase 4.2.1: , ; or 6.

In these subcase

By (168), the left-hand side of (164) is upper-bounded by

(189)

which proves (164).
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Subcase 4.2.2: , ; , .
In this subcase

. By (168), the left-hand side of (164)
is upper-bounded by

(190)

which proves (164).
Subcase 4.2.3: , ; , , or
.

In this subcase, we have

By (168), the left-hand side of (164) is upper-bounded by

(191)

which proves (164).
Subcase 4.2.4: , ; , .

In this subcase, from Subcase 3.1, we have

Similarly to Subcase 4.2.3, the left-hand side of (164) is upper-
bounded by

(192)

which proves (164).
Subcase 4.2.5: , ; , .

In this subcase, from Subcase 3.2, we have

Similarly to Subcase 4.2.3, the left-hand side of (164) is upper-
bounded by

(193)

which proves (164).
Subcase 4.2.6: , ; , .

This subcase is the same as Subcase 4.1.

Subcase 4.2.7: , ; , .
In this subcase, and we may

assume , otherwise, the proof is the same. Thus,

When , the left hand side of (164) becomes

(194)

which proves (164).
When , let be a subset of

with

with

One can check that for with
or , we have . This

means . Therefore, the left-hand side
of (164) becomes

(195)

which proves (164).
Case 5: : In this case or .

Subcase 5.1: , but , or .
Let

where

(196)

and when is an even number; when is an
odd number. It is easy to calculate that

Thus,

(197)

Therefore, when and

(198)

which proves (164).
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Subcase 5.2: , or .
In this subcase, is not a factor of , and, therefore,

. Let

where

(199)

From (166) and (167), the left-hand side of (164) is upper-
bounded by

which proves (164).
Subcase 5.3: , .

In this subcase, we prove this theorem under two different
situations: and . Note that when , we
have since .

Subcase 5.3.1: , , ,
In this subcase, from i) we have

Since (197) does not require a specific condition on and ,
it applies here too. Thus, from (197) we have

(200)

Therefore,

(201)

which proves (164).
Subcase 5.3.2: , , .

In this subcase

Therefore, from (200) we have

(202)

which proves (164). QED

D. Proof of Theorem 6

Before proving the theorem, we need the following lemma.

Lemma 6: For any (or ),
if (or

), then .
Proof: The proof of this lemma is similar to the proof of

Lemma 5. We only prove the case for and the case
for can be proved similarly.

Since is a basis of over , and
can be written as and

, with , . In
the meantime

where , , are the three embeddings of to
such that is fixed with and .

Therefore,

(203)

(204)

Since is an ideal of ring , for the above
, , there exists an integer such that

(205)

where

; . Thus,

(206)

where .
When , from (204)

and (206), we have

(207)
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Since , the right-hand side of (207)
belongs to . Thus,

(208)

From (205), we know that

(209)

Checking (208) with , we can find that (208)
holds only when . Then, in this case

, where , and

(210)

i.e.,

(211)

Similarly, we can show , and then
, and so on. Finally, we have .

QED
Now, we are ready to prove Theorem 6.
The basic idea to prove this theorem is similar to the one

to prove Theorem 5. By the definition of cyclotomic lattice
, for any two

for

there are , ,
with , such that , ,
where , , are the three embeddings of
to and fix , and . From a result in al-
gebraic number theory [37], [38], it is known that the product

. Then, we have

By the definition of relative norm, we have

and

From Lemma 6, we have

unless , i.e., the codeword .
This proves that the diversity product of is

, i.e., .
Since the two-layer cyclotomic space–time code

has the following property:

(212)

based on Lemma 2, to prove the optimality of the code
we need to prove that any two-layer cy-

clotomic space–time code of three
transmitters satisfies (213) (at the bottom of the page).

Without loss of generality, we assume one of and is
and the absolute value of the other is not less than and

(214)

If , then

and we have (215), at the bottom of the page. If
, then,

and we get (216) at the bottom of the next page.
When , it is not hard to see that and

or , and

(217)

for all the generating matrix of the three-dimensional
cyclotomic lattice . Thus, and for three
transmit antenna and the two-layer cyclotomic space–time code

(213)

(215)
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. We next prove this theorem in two
cases in terms of .

Case 1: : In this case, . We only consider the
case and the case is similar. Let ,

, where

(218)

Clearly, .
Define

for (219)

It is not hard to check that is a decreasing function of ,
and . From (215) and (216), the left-hand side of
(213) is upper-bounded by

(220)

Case 2: or : In this case, by the assumption
(214), or . Thus, we may assume that

, otherwise the proof is similar. When , we
get (221) at the bottom of the page, which proves (213).

Consider the case when . Let

From Fig. 2, is a subset of the set of points marked by “ ” and
thus, for any point , there exist
and such that .
Therefore, we have

Because of the symmetry structure of , to consider we only
need to consider of the form , where

. Let , , ,
, , and . Then,

i.e.,

(222)

Thus, it is not hard to find that . Therefore, we
have (223) at the bottom of the page, which proves (213). QED

(216)

(221)

(223)
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E. Proof of Theorem 8

We only consider

and is similar. The code

is expressed as

(224)

where , , ,
, , , are the three embeedings of

to that are fixed on and , and

with .
We first prove . It is not hard to see that

(225)

Since

and

what we need to do is to prove

By the definitions of , , and , ,
in (225)

can be rewritten as

(226)

When can be divided by

We next prove that a term in the summation in the right-hand
side of (226) when its indices is .

It is not hard to see that , when can
not be divided by , where is the set of triplets shown in (227)
at the bottom of the page. One can easily see that

when . Thus, we have proved that

i.e., .
To show that its diversity product is , we only need to show

that when . Similarly to the proof of Lemma
6, for a given , i.e., , ,

, , there exists an integer such that

(228)

with

(229)
where

(230)

From (225), can be rewritten as follows:

(231)

with

(232)

(227)
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(233)

(234)

When

(235)

Combining (231)–(235), we have

(236)

where

By the definition of and , , we have

And from the previous proof we know that

so the term on the right-hand side of (236) belongs to .
Thus, the term on the left-hand side of (236) also belongs to

, i.e.,

(237)

Similarly to the proof in (208), we can obtain
. Then , where

Thus, ,
, . Then, (235) be-

comes

(238)

Similarly, we can prove , and
, , and so on. Finally,

we can prove , i.e, .
The above proved result is also illustrated in Fig. 2. In Fig. 2,

the product of the first layer of is marked
by “ ,” the product of the second layer of

is marked by ” ,” and the product of the
third layer of is marked by ” .” They do not overlape unless

, i.e., for , , or .
QED
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