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Undesired Cross Terms

This lecture note briefly describes two 
examples in mathematics on how and 
why cross terms are disliked: orthog-

onal space-time block code (OSTBC) 
from orthogonal designs and free prob-
ability theory. The first example shows 
that the elimination of cross terms can 
significantly simplify the optimization 
that has many practical applications in, 
for instance, multiple antenna systems 
in wireless communications. The second 
example gives an intuitive and/or funda-
mental understanding of free probability 
theory, which has important applications 
in random matrix theory. 

In signal processing, optimization is 
always an important—if not the most 
important—task that has applications in 
nearly all areas. Current active applica-
tions include data analytics, artificial 
intelligence, and wireless communica-
tions. Any methods that help reduce 
the complexity in optimization are 
critically important. The elimination 
of cross terms is a way to simplify the 
optimization and therefore, it has criti-
cal applications in many areas, includ-
ing signal processing.

Large-size random matrices play an 
important role in not only data analyt-
ics but also current and future wire-
less communications, known as massive 
multiple-input, multiple-output (MIMO) 

systems. Free probability theory is an 
important tool used to study large-size 
random matrices. As explained later in 
this article, the viewpoint of vanishing 
cross terms provides an intuitive and/
or fundamental understanding of free 
probability theory.

Prerequisites
This lecture note requires some basic 
knowledge of probability theory, such 
as moments, distribution functions, 
and probability density functions. 
It also requires some basic understand-
ing of algebra and digital communica-
tions theory.

Problem statement and solution
Crossings have made this world rich 
and nonsimple. People often hear the 
word multidisciplinary, in particu-
lar, in the research community, which 
means that different disciplines come 
together to share their ideas to spark 
new ideas. Today, multidisciplinary in 
most, if not all, research funding agen-
cies means creative and big. Not many 
people have the ongoing patience for 
small items or small ideas anymore. 
These kinds of crossings are for cre-
ative ideas.

It is known that the crossings of the 
two simplest digits, 0 and 1, have cre-
ated all the digital products in use today, 
including computers, cellphones, and 
so forth. This is now making people 

all over the world crazy about creating 
everything by machine or crossings 
between 0 and 1, called artificial intel-
ligence. These kinds of crossings are for 
creative products.

Although crossings bring many joys 
and surprises, mathematically, math-
ematicians do not like crossings much 
and sometimes even dislike them. This 
is mainly because crossings may also 
bring a lot of inconvenience and annoy-
ance to mathematicians. Crossings 
cause cross terms as follows. Let x1  and 
x2  be two variables. Then, some of their 
cross terms are ( ) ( ),p x p x1 1 2 2  where 

( )p x1 1  and ( )p x2 2  are two nonconstant 
polynomials of x1  and ,x2  respectively, 
while a general cross term of these two 
variables is a multivariate polynomial 
of the two variables. The simplest cross 
term of x1  and x2  is .x x1 2  When the 
number of variables is not two, their 
cross terms become more complicated. 
For example, for three variables, ,x1  ,x2  
and ,x3  one of their simplest cross terms 
is .x x x x x x1 2 2 3 1 3+ +

The nth power of the sum of sev-
eral variables can be expanded using 
the cross terms of these variables, but  
its expansion becomes tedious when 
n is not small. However, if all of 
the cross terms of the variables are 
gone, that is, the variables do not 
cross, then the nth power of their sum 
would be the sum of their nth powers: 
( ) .x x x xp

n n
p
n

1 1g g+ + = + +
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What a simple formula this would be!
The aforementioned formula is, if cor-
rect, not only simple for the expansion, 
but also very useful in many applica-
tions. For example, say you want to 
optimize an objective function with the 
p variables mentioned in the previous 
section. If you can be sure that the p 
variables in this objective function have 
no cross terms, that is, you can decom-
pose this objective function into a sum 
of p independent subobjective functions, 
then the joint optimization of the objec-
tive function of the p variables can be 
converted into separate optimizations 
of the p subobjective functions, and 
each of the p subobjective functions has 
only one variable. In this way, the joint 
optimization of p variables becomes p 
many individual optimization problems 
of a single variable. This greatly reduces 
the optimization complexity and will 
change an infeasible solution to a fea-
sible solution in many cases.

Orthogonal space-time block codes 
from orthogonal designs
An example pertains to the topic of 
multiantenna space-time modulation 
and demodulation in wireless commu-
nications around the year 2000. If m 
transmit antennas transmit p variables 
(or symbols), these p variables must be 
solved at the receiver. In general, their 
optimal solution is to jointly search 
for the values of the p variables. When 
p is not small, the complexity may 
be prohibitively high. However, if 
an appropriate space-time coding is 
performed at the transmitter, then at 
the receiver, the cross terms of the p 
variables can be eliminated, that is, 
there is no cross term. At this time, as 
explained previously, their demodula-
tion is equivalent to the demodulation 
of each of the p variables separately, 
and the demodulation complexity is 
thus only linear in terms of the num-
ber p of the variables.

The first such design was given by 
Siavash Alamouti at AT&T for two 
transmit antennas in 1998. It is named 
the Alamouti code in the research com-
munity. In the case of an arbitrary num-
ber of transmit antennas, such a code is 
called an OSTBC [1], which means that 

all of the variables will have no cross 
terms at the receiver after some simple 
operations without losing any informa-
tion. It was later discovered [1] that the 
design of OSTBC, in a general case, 
can be traced back to the oldest math-
ematics—namely, numbers—and was a 
core problem in mathematics. They are 
equivalent to the generalizations of the 
complex number field, called number 
domains, and further generalizations 
are norm identities and compositions of 
quadratic forms [2].

For example, for the Alamouti code 
of two transmit antennas, it sends two 
symbols with carried information in 
two time slots. When both symbols 
are real valued, the Alamouti code 
is equivalent to a complex number. 
However, in wireless communica-
tions, it is not energy efficient to trans-
mit only real-valued symbols. When 
the two symbols are complex valued, 
the Alamouti code is equivalent to a 
quaternion number. Along this direc-
tion, we obtained some results in the 
2000s on general orthogonal designs 
for complex variables of an arbitrary 
size, which include some rate upper 
bounds and an inductive design for 
all the numbers of transmit antennas. 
Interested readers are referred to my 
homepage [3] on the University of Del-
aware’s website. 

Free probability theory
Another example where mathematicians 
do not like cross terms is the free prob-
ability theory that appeared in the 1980s. 
The theory of probability, as we all 
know, is for real variables, and it can be 
generalized to complex variables. The 
multiplication of these variables is com-
mutative, for example, .x x x x x x1 2 1 2 1

2
2
2=  

If we take its expectation, we have 
( ) ( ) ,E x x x x E x x 01 2 1 2 1

2
2
2 $=  which is 

not equal to 0, unless x x1 2  is 0. This 
means that the cross terms of x1  and x2  
exist, even after taking the expectation. 
In the 1980s, Dan-Virgil Voiculescu 
invented the theory of free probability 
to study a von Neumann conjecture of 
1967. The random variables he studied 
were not real nor complex valued, but 
their multiplications are not commuta-
tive, such as random matrices. In fact, 

abstract noncommutative elements can 
often be represented by matrices in 
mathematics. Then, the troubling prob-
lem is how to define distribution func-
tions for these random variables. One 
knows that random variables in the con-
ventional probability theory often have 
moments that are based on the expecta-
tion E, and the moments of a random 
variable form an infinite series. In many 
cases, this series of moments is equiva-
lent to the characteristic function of the 
random variable, and the characteristic 
function and the distribution function 
of a random variable are Fourier trans-
form pairs. Therefore, in many cases, 
the moment series of a random variable 
uniquely determines the distribution 
function of the random variable. 

Note that the relationship between 
a series of moments and a character-
istic function is similar to the Laurent 
expansion of a complex-variable func-
tion. When a moment series uniquely 
determines a characteristic function 
is related to when a complex-valued 
function exists for Laurent expansion, 
which, in turn, is related to complex 
analysis. From this observation, Voi-
culescu used moments to describe non-
commutative random variables, which 
leads to free probability theory, where 
expectation E is replaced by a linear 
functional E on a set (or an algebra) 
of noncommutative elements (or ran-
dom variables) with ,E e 1=^ h  with e 
as the identity element.

The most important theorem in 
undergraduate probability theory is the 
central limit theorem. It is a theorem 
about where the sum of  independent ran-
dom variables goes to when the number 
of random variables in the sum goes to 
infinity. The theorem says that, as long 
as these independent random variables 
are properly normalized, their sum con-
verges to a Gaussian random variable. In 
free probability theory, Voiculescu also 
cared about the limit of the sum of mul-
tiple noncommutative random variables. 
However, for noncommutative ran-
dom variables, we only deal with their 
moments, not the traditional distribution 
functions. For multiple random vari-
ables, the high-order moments of their 
sum are the expectations of high-order 
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multivariate polynomials of the random 
variables. After the expansion, it is very 
complicated and difficult to continue 
any fruitful investigation, particularly 
when these random variables are not 
commutative. To deal with this prob-
lem, Voiculescu observed that, if the 
cross terms of these multiple random 
variables disappear or most of them dis-
appear after the expectation, the sum-
mation would become much simpler 
to study, similar to what was discussed 
in the previous section. Therefore, Voi-
culescu defines that if these random 
variables have such properties, i.e., the 
expectations of their cross terms or 
most of their cross terms are 0, when the 
expectations of these random variables 
by themselves are 0, they are called free 
random variables, or free.

Freeness definition
Random variables , ,x xp1 g  are called 
free random variables or free, if for any 
m polynomials ( ), , ( ), ,p x p x m 2m1 g $

( ( ) ( ) ( ))E p x p x p x 0i i m i1 2 m1 2 g =

when ( ( ))E p x 0k ik =  for all ,k k1 #  
,m#  and any two neighboring indi-

ces il  and il 1+  are not equal, i.e., 
.i i i p1 m1 2 g! ! !# #

For example, random variables x1  
and x2  are free random variables (or 
free), one condition is as follows. By tak-
ing ( ) ( ) ( ) ( )p x p x p x p x x1 2 3 4= = = =  
and m 4=  in the aforementioned 
d e f i n i t i o n ,  ( )E x x x x 01 2 1 2 =  when  

( ) ( ) ,E x E x 01 2= =  where ,i i 11 3= =

.i i 22 4= =  This is different from the 
conventional commutative random vari-
ables mentioned earlier. Two nonzero, 
independent conventional real-valued 
random variables x1  and x2  of 0 mean 
can never be free because ( )E x x x x1 2 1 2

( ) ( ) ( ) .E x x E x E x 01
2

2
2

1
2

1
2 2= =

From this freeness definition of 
random variables, one can see that 
Voiculescu wanted to make as many 
cross terms as possible disappear, 
while one can also see that not all cross 
terms disappear [4]. For more details 
about free random variables, we refer 
the reader to the work of Mingo and 
Speicher [4] or to my simplified intro-
ductory article [5].

In fact, this freeness of noncommu-
tative random variables corresponds to 
(but are not identical to, as seen earlier) 
the independence of commutative ran-
dom variables. Consider the likelihood 
function ( , , )log f x xp1 g  of p conven-
tional random variables , , ,x xp1 g  with 
their individual probability density 
functions (pdfs) ( )f xi i  and joint pdf 

( , , ) .f x xp1 g  Then, these p random 
variables are independent if and only 
if ( , , ) ( )log logf x x f xp1 1 1g g= + +

( ) .log f xp p

This means that the cross terms of 
the random variables also disappear 
in their joint likelihood function. Let 
us also use moments to see the con-
ventional independence of random 
variables. For any m polynomials, 

( ), , ( ), ,p x p x m p2m1 g # #  such that 
( ( )) ,E p x 0i i =  then, if ,x xp1g  are 

independent, we have

( ( ) ( ) ( ))

( ( )) ( ( )) ( ( ))

E p x p x p x

E p x E p x E p x

0

m m

m m

1 1 2 2

1 1 2 2

g

g=

= (1)

which implies that the cross terms van-
ish. Thus, from the vanishing cross-
term viewpoint, the freeness and the 
independence of random variables cor-
respond to each other. Note that a key 
difference between the independence 
of commutative random variables and 
the freeness of noncommutative ran-
dom variables exists in the fact that for 
the conventional commutative random 
variables, their product, as a crossing 
of these variables, can be sorted into a 
product of single-variable polynomials 
as shown in (1), which does not apply to 
noncommutative random variables.

Using the aforementioned defini-
tion, Voiculescu also came up with a 
theorem called the free central limit 
theorem for free random variables 
similar to the central limit theorem for 
independent random variables. He said 
that the sum of multiple free random 
variables after a proper normalization 
converges to a random variable with 
semicircle distribution. This semicircle 
distribution is similar to the Gaussian 
distribution in the conventional prob-
ability theory. In fact, Eugene Wigner 
first found that the distribution of 
eigenvalues of random matrices with 

independent and identically distributed 
Gaussian components goes to a random 
variable with semicircle distribution 
when the dimension of the matrices 
tends to infinity—this is called Wign-
er’s semicircle law.

Voiculescu’s free probability theory 
was naturally applied to large-size ran-
dom matrices and has become an active 
research topic in recent years. As the 
size/dimension of matrices becomes 
larger and larger, if all the elements in 
the matrices are independent of each 
other and have 0 mean, then their cross 
terms are getting closer to 0 mean. So, 
the expectations of the cross terms of the 
matrices are getting closer to 0 as well. 
In other words, large-size random matri-
ces are approximately free. With this 
in mind, free probability theory can be 
applied to study large-size random matri-
ces with applications in, for example, 
big data and massive MIMO systems. 
One such application is the asymptotic 
eigenvalue analysis of large-size random 
matrices, which may be used to deter-
mine the performance limit of a massive 
MIMO communications system. For 
more details, see [4] and [5].

What we have learned
In this note, it was briefly explained that 
cross terms are sometimes troublesome 
for mathematicians. Although only 
two examples were mentioned, namely, 
orthogonal designs and free probability 
theory, where mathematicians do not 
like cross terms, there should be many 
other examples. After saying so, cross 
terms exist more often, as in the expan-
sion of the nth power of a sum of multiple 
variables, as mentioned in the beginning 
of this note, or for nonindependent con-
ventional random variables. No matter 
whether mathematicians (or we) like 
them or not, we have to deal with them.

Author
Xiang-Gen Xia (xxia@ee.udel.edu) 
received his Ph.D. degree in electrical 
engineering from the University of 
Southern California in 1992 and is cur-
rently the Charles Black Evans Professor 
of Electrical and Computer Engineering 
at the University of Delaware. He is 
the author of Modulated Coding for 

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 31,2020 at 13:56:57 UTC from IEEE Xplore.  Restrictions apply. 



195IEEE SIGNAL PROCESSING MAGAZINE   |   November 2020   |

Intersymbol Interference Channels. He 
received the National Science Foundation 
CAREER Award in 1997, the Office of 
Naval Research Young Investigator Award 
in 1998, and the Information Theory 
Outstanding Overseas Chinese Scientist 
Award in 2019. His research interests 
include multiple-input, multiple-output 

systems and radar signal processing. He is 
a Fellow of IEEE.

References
[1] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, 
“Space-time block codes from orthogonal designs,” 
IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1456–
1467, July 1999. doi: 10.1109/18.771146.

[2] D. B. Shapiro, Compositions of Quadratic Forms. 
New York: De Gruyter, 2000.

[3] X.-G. Xia, “Mathematics and electrical engineer-
ing,”  Nankai Univ., Tianjin, China, June 28, 2018. 
[Onl ine]. Available: ht tps://www.eecis.udel 
.edu/~xxia/Math_EE.pdf

[4] J. A. Mingo and R. Speicher, Free Probability and 
Random Matrices. New York: Springer-Verlag, 2017.

[5] X.-G. Xia, “A simple introduction to free proba-
bility theory and its application to random matrices,” 
Math. Res. Rev., vol. 1, no. 2, Art no. 22, pp. 1–22, 
Nov. 2019. [Online]. Available: https://www.prior 
-sci-pub.com/mrr2019_iss2_art22.pdf

The Gaussian Maximum-Likelihood Estimator Versus  
the Optimally Weighted Least-Squares Estimator 

In this lecture note, we derive and com-
pare the asymptotic covariance matri-
ces of two parametric estimators: the 

Gaussian maximum-likelihood estimator 
(MLE) and the optimally weighted least-
squares estimator (LSE). We assume a 
general model parameterization where 
the model’s mean and variance are joint-
ly parameterized and consider Gaussian 
and non-Gaussian data distributions.

Relevance
In system identification and estimation 
theory, asymptotic covariance matrices 
are usually used to compare the accuracy 
of consistent and asymptotically normal 
parametric estimators for sufficiently 
large data records. If the data distribu-
tion is Gaussian and its mean and vari-
ance are independently parameterized, a 
well-known result is that the asymptotic 
covariance matrices of the Gaussian 
MLE and the optimally weighted LSE 
are equal and coincide with the asymp-
totic Cramér–Rao lower bound (CRLB). 
In the non-Gaussian case however, as we 
show in this note, the accuracy of these 
two estimators may differ. They depend 
on the parameterization and the shape of 
the data distribution in terms of the first 
four moments. The results are particu-
larly useful when estimating parameters 
in general semiparametric models.

Prerequisites
This lecture note can be used in courses 
on system identification, statistical sig-
nal processing, or estimation theory. 
The necessary background that has 
been assumed is similar to the intersec-
tion of the prerequisites of those cours-
es. In particular, an exposure to basic 
probability, stochastic process, and lin-
ear algebra is required.

Problem statement and solution
The problem is to analyze and compare 
the asymptotic covariance matrices of 
the Gaussian MLE and the optimally 
weighted LSE for general semiparamet-
ric models.

The model
Suppose that the model is given by

( ) ( ), , , , ,y e t N1 2t t t fi in= + =

where { }y Rt 1  is a sequence of ob -
served data; N denotes the number of 
available data samples; Rd!i  with a 
finite positive integer d is the unknown 
parameter vector to be estimated; 
{ ( )}t in  is a sequence of known real-
valued functions of ;i  and { ( )}et i  is 
an unobserved sequence of zero-mean, 
independent real-valued random vari-
ables with known parameter-dependent 
variances denoted as ( );t im  i.e., for 
all i  and ,t  it holds that [ ( )]e 0E t i =  
and [ ( )] ( ) .eE t t

2 i im=  Notice that the 

model does not specify the full distri-
bution of the data. Therefore, the model 
is semiparametric where the parameter 
vector i  jointly parameterizes the mean 
and variance of the data. Let us denote 
the true parameter as .i%

Two estimators
We now consider two estimation meth-
ods given as special cases of the gen-
eral framework described in [1, Ch. 7]. 
The Gaussian MLE, denoted as ,1it  is 
defined as

 ( ),argmin V1 1i i=
i

t  (1)

where

 
( )

( )
( ( ))

( ) .log

V
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2
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i

m

n

m

=
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+

=
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The optimally weighted LSE, denot-
ed as ,2it  is defined as

 ( ),argmin V22i i=
i

t  (3)

where

 ( )
( )

( ( ))
.V

N
y1

2 t

t t

t

N

2

2

1

i
i

i

m

n
=

-

%=

/  (4)

These two estimators are instances 
of the general family of prediction-
error-method estimators (see [1, Sec. 
7.2]), defined as minimizers of crite-
rion functions

Mohamed Rasheed-Hilmy Abdalmoaty, Håkan Hjalmarsson, and Bo Wahlberg

Digital Object Identifier 10.1109/MSP.2020.3019236 
Date of current version: 28 October 2020

1053-5888/20©2020IEEE

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 31,2020 at 13:56:57 UTC from IEEE Xplore.  Restrictions apply. 

Xiang-Gen Xia
Text Box




