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Series Introduction

Over the past 50 years, digital signal processing has evolved as a
major engineering discipline. The fields of signal processing have
grown from the origin of fast Fourier transform and digital filter
design to statistical spectral analysis and array processing, and
image, audio, and multimedia processing, and shaped developments
in high-performance VLSI signal processor design. Indeed, there are
few fields that enjoy so many applications—signal processing is
everywhere in our lives.

When one uses a cellular phone, the voice is compressed, coded,
and modulated using signal processing techniques. As a cruise missile
winds along hillsides searching for the target, the signal processor is
busy processing the images taken along the way. When we are
watching a movie in HDTV, millions of audio and video data are
being sent to our homes and received with unbelievable fidelity.
When scientists compare DNA samples, fast pattern recognition
techniques are being used. On and on, one can see the impact of
signal processing in almost every engineering and scientific
discipline. ’

Because of the immense importance of signal processing and the
fast-growing demands of business and industry, this series on signal
processing serves to report up-to-date developments and advances in
the field. The topics of interest include but are not limited to the
following:

Signal theory and analysis

Statistical signal processing

Speech and audio processing

Image and video processing

Multimedia signal processing and technology
Signal processing for communications

Signal processing architectures and VLSI design
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I hope this series will provide the interested audience with high-
quality, state-of-the-art signal processing literature through research
monographs, edited books, and rigorously written textbooks by
experts in their fields.

K. J. Ray Liu



Preface

Intersymbol interference (ISI) mitigation has been an active research area
for the last several decades and has played an important role in improving
the performance of communication systems. There are mainly two classes of
ISI mitigation methods, namely post equalization methods and transmitter
assisted equalization methods. The method introduced in this book belongs
to the second class. The goal of this book is to introduce modulated codes
(MC) for ISI mitigation, recently proposed by the author.

The most results in this book were obtained by my research group in the
last few years at the Communications Laboratory, Department of Electrical
and Computer Engineering, University of Delaware. The following people
in the group have contributed to the resuits: Pingyi Fan, Weifeng Su,
Genyuan Wang, Kai Xiao, Qian Xie, Yong-Jun Alan Zhang, and Guangcai
Zhou. Some of the results in this book were also summarized from my joint
work with Professor Hui Liu at the Department of Electrical Engineering,
University of Washington.

MC encoding and decoding are of three different types: case (i) both
encoding and decoding have the ISI channel information; case (ii) neither
of the encoding nor decoding has the ISI channel information; and case (iii)
encoding does not have the ISI channel information but decoding has the ISI
channel information. Case (i) is further split into two subcases: case (i.1)
encoding depends on the input information signal constellation; case (i.2)
encoding does not depend on the input information signal constellation.
All these cases are addressed in this book and organized as follows.

In Chapter 1, we briefly introduce the current ISI mitigation methods,
in particular, the methods in the second class as previously mentioned. We
also formulate the capacity and the information rates of an ISI channel.

vii
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In Chapter 2, we introduce MC and some basic concepts similar to the
conventional convolutional codes defined on finite fields. We describe the
combination of an MC and an ISI channel. We also introduce and study
the coding gain of an MC in an ISI channel compared to the uncoded
additive white Gaussian noise (AWGN) channel. Some coding gain results
are presented. The results in this chapter are for case (i.1), where the
channel information and the input signal constellation are used.

In Chapter 3, we introduce the joint maximum-likelihood sequence es-
timation (MLSE) encoding and decoding of an MC coded ISI channel. For
the MC performance analysis, we introduce the error-pattern trellis and
present a spectrum distance calculation algorithm by extending the known
bidirectional searching algorithm. We also present an algorithm to search
for the optimal MC given an ISI channel. The results in this chapter are
also for case (i.1).

In Chapter 4, we introduce some suboptimal MC design results given
an ISI channel, which are of case (i.2), i.e., the signal constellation is not
needed. The advantage over the design in Chapter 3 is its simplicity. In
particular, we introduce MC coded ZF-DFE and MMSE-DFE and their
corresponding optimal MC designs. Another suboptimal MC design is also
introduced to optimally convert an ISI channel with AWGN into an ISI-free
AWGN channel.

In Chapter 5, we study the capacity and information rates of an MC
coded ISI channel with AWGN. We show that for any finite tap ISI channel
there exist MC such that the MC coded ISI channel has higher information
rates than the original ISI channel does at low channel signal-to-noise ratio
(SNR). This implies that the achievable transmission data rates of the MC
coded ISI channel may be higher than those of the original ISI channel. We
introduce a joint turbo and MC encoding and decoding for an ISI channel,
which may achieve performance above the AWGN channel capacity at low
channel SNR.

In Chapter 6, we extend the MC results to space-time MC encoding and
decoding for multiple transmit and multiple receive antenna systems.

In Chapter 7, we study a channel-independent MC coded orthogonal
frequency division multiplexing (OFDM) system, which belongs to case
(iii), i.e., the MC encoding does not need the ISI channel information while
the decoding needs to know the ISI channel. We show that the MC coded
OFDM channels may be robust to spectral null and frequency-selective
multipath fading channels. We also introduce vector OFDM systems that
can be used to reduce the cyclic prefix length over conventional OFDM
systems.
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In Chapter 8, we study polynomial ambiguity resistant MC (PARMC),
which belongs to case (ii), i.e., neither the MC encoding nor the MC de-
coding needs to know the ISI channel. It is proved that it is necessary
and sufficient for an MC to be PARMC for the blind identifiability at the
receiver. A block MC is not a PARMC. In this chapter, we also introduce
an algebraic blind identification algorithm. Note that PARMC applies to
both single antenna and multiple antenna systems. For multiple antenna
systems, PARMC may be used as space-time coding.

In Chapter 9, we characterize and construct PARMC by providing the
canonical forms.

In Chapter 10, we introduce an optimal criterion for the PARMC design.
Although in theory any PARMC is sufficient for canceling an ISI channel,
it may have a performance difference when there is additive noise. The
optimality studied in this chapter is for the resistance of channel additive
noise.

In the last chapter, Chapter 11, we present some conclusions and pro-
pose a few important open problems on MC for ISI channels.
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Chapter 1

Introduction

Intersymbol interference (ISI) may occur in wireline systems, such as tele-
phone systems; storage systems , such as magnetic recording systems; and
wireless systems , such as cellular systems . To improve the performance
of a communication system, ISI mitigation is one of the most important
tasks, which has been an active research area for several decades. An ISI
channel is usually described as

Ya(t) =D 3al(t — n)h(n) + 1a(t), (1.0.1)

where z,(t) and y,(t) are transmitted and received signals, respectively,
h(n) is the ISI channel impulse response, and 7,(t) is the additive noise.
For a band-limited channel with bandwidth W, the above continuous-time
ISI channel can be rewritten as the following discrete linear time invariant
(LTT) system

y(k) = a(k — n)h(n) + n(k), (1.0.2)

n

where z(n) = z,(nTs), y(n) = y.(nTs), and n(n) = n,(nTs) and T, <
1/(2W). Throughout this book, we adopt the ISI channel model (1.0.2)
with additive white Gaussian noise (AWGN) 7(n). The goal of ISI mit-
igation is to recover the transmitted signal z(n) from the received signal
y(n). All IST mitigation techniques can be categorized into two classes:
post equalizations and transmitter assisted equalizations.

1
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1.1 Post Equalizations

In post equalizations, the transmitter does not do anything for the ISI chan-
nel and the equalization is purely implemented at the receiver and therefore,
one advantage of the post equalization technique is that the transmitter
does not need to have the ISI channel information. There have been many
post equalization techniques. They are mainly linear equalizers, such as
zero-forcing (ZF) equalizers [93] and minimum mean square error (MMSE)
equalizers; nonlinear equalizers, such as decision feedback equalizers (DFE)
[10, 12, 107); maximum-likelihood sequence estimation (MLSE) [68]; frac-
tionally spaced equalizers {20, 137, 54]; and blind equalizations/blind sys-
tem identification [117, 55, 120, 58, 52, 34, 33, 134, 135, 90, 180, 128, 136,
35, 79, 80, 83, 82, 63, 1, 64, 147, 81, 98, 123, 101, 183, 92, 36, 161]. The
linear equalizers may enhance the noise and therefore do not perform well
for the ISI channels with spectral nulls while the DFE have much better
performance but present the difficulty in combining with the existing for-
ward error correction coding. Since this class of equalizations is not the
focus of this book, we refer the reader to [76, 108, 127] for more detailed
studies on these equalizers.

1.2 Transmitter Assisted Equalizations

In transmitter assisted equalizations, the transmitter does do something
to help ISI mitigation, where the transmitter may or may not need the
complete ISI channel information. There also have been many transmitter
assisted equalization techniques, such as joint convolutional/trellis coded
equalization, [11, 7, 187, 22, 182, 28, 29]; Tomlinson-Harashima (TH) pre-
coding [133, 57}; trellis precoding [41, 69]; vector coding [72, 5, 30], and
other precoding techniques [74, 155]; prefiltering [48] and partial response
signaling (PRS), such as [159, 114, 115]; and OFDM systems [27, 24, 18, 25].
Modulated coding in this book belongs to this class of equalization tech-
niques. Although in OFDM systems the transmitter does not need the ISI
channel information, the other transmitter assisted techniques do need the
complete ISI channel information. In the joint convolutional/trellis coded
equalization, such as [7, 187], and also trellis precoding [41, 69], the cod-
ing part is over a finite field and hard to combine with an arbitrary ISI
channel although some optimality is possible for some special ISI channels,
such as partial response channels in magnetic recording systems. Since TH
precoding is one of the earliest and accepted precoding techniques, we next
examine it in more detail.
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1.2.1 TH Precoding

TH precoding basically erases the ISI channel at the transmitter by using
finite information symbol characteristics. A block diagram is shown in
Fig.1.1, where H(z) is the z-transform of the ISI channel and the pulse
amplitude modulation (PAM) with M symbols is used for the binary-to-
complex mapping at the transmitter. The input data symbols s(k) take the
symbols of —-M +1,-M +3,...,—-1,1,3,..., M — 1. The precoded symbol
z(k) for the transmission is a real value in the interval (—M, M]:

z(k) = s(k) — v(k) + 2Mi(k), (1.2.1)

where i(k) is an integer such that —M < z(k) < M. From (1.2.1), the
received signal y(k) with its z-transform Y (z) is

Y(2) = S(z) + 2MI(2) + n(z), (1.2.2)

where S(z) and I(z) are the z-transforms of s(n) and i(n), respectively.
After the 2M modulo operation at the receiver, the ambiguity part 2M I(z)
in the received signal is removed but the additive noise (k) is folded by the
modulo operation. The final decoded signal is the M PAM demodulated
one from a(k) + nar(k) where nar(k) = n(k)mod 2M. In other words, the
AWGN after the TH precoding and the decoding is folded into (—M, M],
which may affect the decoding performance when M is not large. Therefore,
when the channel signal-to-noise (SNR) ratio is low and small PAM is used,
the TH precoding may not perform well, although the TH precoding and
the DFE techniques may approach the ISI capacity at high channel SNR
[107].

_ x(k

S(k‘r?CA » mod 2M iv H (Z) >$ d g&zggﬁg —
R kiam) "

"IHPrecoding

Figure 1.1: TH precoding.

The TH precoding and other prefiltering do not introduce redundancy
to transmitted signals, except in the case of vector coding [72, 5] where zeros
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are inserted between the blocks of the information symbols such that there
is no ISI between blocks. What we want to especially point out here is that
the PRS and the prefiltering [159, 114, 115, 48], which has no redundancy
introduced, are LTI filtering over the complex field.

1.2.2 Modulated Coding and Vector Coding

Modulated coding (MC) recently studied in [165, 164, 170, 178, 167, 168, 45,
166, 44, 176, 179, 185, 89, 88, 171, 186, 163, 172] is an error correction coding
(ECC), in particular a convolutional coding, defined on the real/complex
field. In comparison with the current coded modulation scheme for ECC
over a finite field, an MC has the encoding scheme shown in Fig.1.2 over the
complex field. Since the arithmetic operations of an ISI channel are also over
the complex field, an MC can be naturally combined with an ISI channel.
The combination provides convenience in the MC design. Different from
the TH precoding, an MC adds redundancy at the transmitter and it does
not have the modulo operation. MC is a generalization of the PRS and the
prefiltering by adding redundancy to the transmitter and a generalization of
the vector coding studied by Kasturia, Aslanis, and Cioffi in {72] and Cioffi
and Forney [30] and the block-based transmission studied by Al-Dhahir
and Cioffi in [5] and the OFDM by considering general convolutional codes
rather than only the block codes. Furthermore, the vector coding and
block based transmission are designed independently with the input signal
constellation, which only belongs to case (i.2) of the MC of this book as
mentioned in the Preface. We will show that some small size MC with
simple structure over an ISI channel may provide a better performance
than the uncoded ISI-free AWGN channel, in other words, the achievable
data rates may be better than the capacity of the ISI-free AWGN channel
at low channel SNR. Note that in the vector coding and the block based
transmission studied, for example, in {72, 5, 30], the water-pouring input
signal spectrum and the infinite block size are needed to achieve the ISI
channel capacity, which may be complicated in practical implementations,
in particular, when the channel SNR is not fixed and further conventional
ECC, such as turbo codes, are used before the vector coding. The MC
designs introduced in this book do not depend on the channel SNR. More
comparisons between the block-based approach and the MC approach are
given in Section 4.3.

There are two main different families of MC. One family of MC consists
of MC that are designed when an ISI channel is known at the transmitter
and the receiver [165, 164, 170, 178, 167, 168, 45, 166, 44, 176, 179, 185]. For
this family of MC, the coding performance is the key. For this family MC,
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Figure 1.2: Modulated coding vs. coded modulation.

there are two main types of MC designs. One kind of optimal MC design
is the optimal MC design that depends on the input signal constellations
[178, 170, 166, 44] and the other is the MC design that is independent of the
input signal constellations 72, 5, 167, 168, 176, 179, 185]. The other family
of MC consists of MC that are designed when an ISI channel is not known
at the transmitter or the receiver, which are called polynomial ambiguity
resistant MC (PARMC) [89, 88, 171, 186, 163, 172]. Using PARMC the
receiver is able to blindly identify the transmitted signal. For this family of
MC, the unknown channel information is the key. We shall see later that
PARMC is necessary and sufficient for an MC at the transmitter for the
blind identification.

In some literature, see for example (165, 89, 88, 171, 163, 172, 53, 118,
77, 97], instead of using “MC” the name “filterbank precoding” is used,.

1.3 Information Rates and Capacity of an ISI
Channel with AWGN

We now describe the information rates and the capacity of the ISI channel
(1.0.2) with AWGN. Using the water-pouring method, the capacity, C(E,),
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of channel (1.0.2), see for example [59, 21], is

" K,|H(e7)[?
0B =supl(,9) = g [ max {0,108, | 2L han, 2y

where

E, = ~1~/ max {0, K, - &|H(ef")r2} de, (1.3.2)
2 2

—T

where I(z,y) is the mutual information of the channel (1.0.2) with input z,
K, > 0 is a constant parameter and H(z) is the z transform of h(k). Note
that in the above capacity formula, the input £ may have any distribution.
When the input z is restricted to an ii.d. source, the maximum mutual
information is called the information rate, see for example [59, 21, 122, 121].
The information rate, C; ;4 (Es), of channel (1.0.2), see [59], is

Ciia. = sup I(z,y) = —1—/ log, [1 + Q%lH(eﬂ’)!2 dg, (1.3.3)
™ 0

i.i.d. © 4 -

which is achieved when the input z is an i.i.d. Gaussian process. The above
information rate determines an achievable reliable information rate when
the standard random coding technique, such as the existing ECC defined
on finite fields, is used. The information rate is also called, for example in
[121], information capacity. Although the capacity (1.3.1) can be achieved
by the standard water-pouring method, the implementation of the filter to
shape the optimal water-pouring spectrum is not simple.

When the ISI channel H(z) = 1, i.e., ISI-free, the above information
rate and capacity formulas are the same, i.e., the capacity of the AWGN
channel:

(1.3.4)

1 2F;
Cawan(Es) = = ] )

1 1
20g2[+N0

As an example, let us consider the ISI channel with h(0) = h(1) =
0.7071. The capacity and the information rates of this channel are plotted in
Fig.1.3 and the details are described in the following chapters, in particular
Chapters 4 and 5. One can see that the achievable data rate of the MC
for this channel is even better than the capacity of the AWGN channel at
channel SNR, E, /Ny = —1.15dB, where E; is the energy per bit. As we
shall see later, the MC used in Fig.1.3 is simple and has small size, which
means that it does not have the practical implementation problem.
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Figure 1.3: ISI channel capacity and information rates.

1.4 Some Notations

Throughout this book, the following notations are used. We use bold-
faced capital English letters, X(z), Y(z), ..., to denote polynomial matri-
ces/vectors, italic capital English letters, X (n), Y (n),..., to denote constant

matrices and vectors that are formed from the scalar sequences z(n), y(n), ..

after the serial to parallel conversion unless specified otherwise, and lower-
case italic English letters to denote scalar values, z(n), y(n), .... Since we
deal with error correction codes defined over the complex field, instead of
using D we use 2! as the delay variable. The D transforms become the z

transforms.

|||l  indicates the Frobenius norm of a matrix, i.e. ||Allp = 1/3_,; |a,-,-|2,

where A = (a;;). Here, the Frobenius norm of the polynomial matrix in z,
for instance ||G(z)||, is defined as the square root of the summation of the

1/2
Frobenius norms squared of all the coefficient matrices, i.e. (Z, ||G,||i~) ’

where G(z) = 3, Gz 7"

il
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The symbol Af denotes the complex-conjugate transpose of a matrix or
vector A and AT denotes the transpose of A.
flg means f divides g, and

Qz) = \/% /oo e~ 12t



Chapter 2

Modulated Codes:

Fundamentals and
Coding Gain

In this chapter, we introduce modulated codes (MC) and some of their
properties. We also introduce their coding gain concepts in AWGN and
ISI channels compared to the uncoded AWGN channel. We show that
an MC does not have any coding gain in an AWGN channel and for any
finite tap ISI channel there exists an MC with coding gain compared to the
uncoded AWGN channel. The results in this chapter are summarized from
[165, 164, 170, 178, 166, 44)].

2.1 Modulated Codes

An (N, K) modulated code (MC) encoder or generator matrix is an N by
K polynomial matrix

gu(z) - qik(?) Q¢ ~
G(z) = : : : = Gz, (2.1.1)
gn1(z) -+ gnk(2) =0
where g,x(z) is a polynomial of 27! with complex-valued coefficients, G(1)

is an N x K constant matrix with complex entries, and Q¢ is a non-negative
integer. The rate of the MC is K/N. The constraint length v of an (N, K)

9
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MC is defined the same as the conventional convolutional codes, i.e.,
v=uv +-+ g, (2.1.2)

where v is the highest degree of polynomials g1x(z2), ..., gne(2) of 27! for
each fixed k with k¥ = 1,2,..., K. If an MC generator matrix G(z) is a
constant matrix, it is called a block MC.

Let s(n) be a binary information sequence and z(n) be the complex
symbol sequence after the binary-to-complex symbol mapping of s(n). Let
X(n) be the K by 1 vector sequence of z(n) after the serial to parallel
conversion. Their z transforms are x(z) and X(z), respectively. Then the
encoding of an MC is

Y(z) = G(2)X(2), (2.1.3)

where Y (2) is the z transform of the encoded N by 1 vector sequence Y (n).
Similar to convolutional codes over a finite field, see for example [86], there
is a trellis diagram associated with an MC encoding in (2.1.3). Let M
denote the number of the complex symbols of the complex information
sequence z(n). Then the trellis diagram has MY states and there are M¥
branches entering each state and M X branches leaving each state. Notice
that the PRS studied in {159, 114, 115, 113] and the prefiltering studied in
[48] corresponds to the special case of MC when K = N =1 in (2.1.1).

The decoding of an MC at the receiver can be achieved either by the
maximum likelthood (ML) decoding, such as the Viterbi algorithm, or other
suboptimal decoding algorithms, such as the joint MMSE [77] decoding or
the joint DFE decoding that we shall see later.

Since, in the encoding of an MC, the coded signal mean power may be
different from the information signal mean power. For convenience, an MC
is normalized such that the mean power of the encoded signal y(n) is the
same as the one of the information sequence z(n). This can be achieved
by normalizing the magnitude squared sum of all the coeflicients of all the
polynomials gn1(2), gn2(2),..., gnk(2) in G(z) as follows. Let

gk(2) =S gz, 1<n<N,1<k<K.  (214)
l

Then,

M=

K .
3> gk = N. (2.1.5)
!

k=1

Il
-

n

If an MC G(z) satisfies (2.1.5), it is called a normalized MC.
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A special MC encoding is the spreading in the spread spectrum system,
which corresponds to a block (N,1) MC G = (g1, ,9n)T with g; €
{1,—1} and N is the spreading length. Such a case was also studied in [160]
using the “wavelet” terminology. A coherent code division multiple access
(CDMA) system of K users corresponds to a block (N, K) MC G = (gs;)
with g;; € {1,-1}.

Another special MC encoding is the encoding of the OFDM systems, as
we shall see in Section 7.1, which corresponds to a block (N +T',N) MC
G = [G1,G2]T where G, is the N-point DFT matrix, G, is the submatrix
of the first I' columns of G, and T is the cyclic prefix length. The vector
precoding studied in [72, 30] is also the block MC coding here.

Since the arithmetic operations of the MC encoding and an ISI channel
are the same, an MC can be easily combined with an ISI channel, as we shall
see later, which is the main motivation of the study of this book. Before
going to the ISI channel, we first study an MC in an AWGN channel.

2.2 Coding Gain in AWGN Channel

For a normalized MC G(z), its free distance is defined as the minimum Eu-
clidean distance between two different encoded sequences y;(n) and y2(n)
in (2.1.3). Therefore, compared with an uncoded system in an AWGN
channel, the coding gain of a rate K/N MC with its free distance d¢ree in
an AWGN channel is

d K

= e (2.2.1)

Y

where d,,,;» is the minimum distance between the complex symbols of the
information sequence z(n). When binary phase shift key (BPSK) {1, -1}
signaling is used in the binary-to-complex symbol mapping, the coding gain
in (2.2.1) becomes

_ Dfree

&2 K
TETUN

(2.2.2)

Lemma 2.1 A modulated code does not have any coding gain in an AWGN
channel.

Proof. For a general quadrature amplitude modulation (QAM) signal
constellation, we may pick up two signal points with the shortest distance,
i.e., dmin, which is reduced to the BPSK case. Therefore, we only need to
prove the case when the BPSK symbols {1, -1}, i.e., z(n) € {1,—1}, and
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a normalized MC G(z) are used. In this case, we only need to prove that
the free distance dy,... of G(z) satisfies

4N
oo < —-
ree — K
Let X;(n) and X2(n) be two K by 1 information vector sequences with all

components either 1 or —1, and Y;(n) and Y5(n) be their corresponding
encoded NV by 1 vector sequences, i.e.,

Y:(z) = G(2)X;(z), i =1,2.
Let U(n) = X1(n) ~ X2(n) and W(n) = Yi(n) — Ya(n). Then
W(z) = G(2)U(z2). (2.2.4)

By doing so, the distance between any pair of the MC encoded sequences
Y (n) becomes the norm of the corresponding W(n). This implies that the
free distance dgre. is the minimum norm of all possible non-zero vectors
W(n). The minimum norm of all possible non-zero vectors W(n) corre-
sponding to all possible U(n) is always less than or equal to the minimum
one of any subset S of the set A of all the possible non-zero vectors W (n).
Therefore, the free distance dy.... is always less than or equal to the mean
norm of all vectors in any subset S of 4. In the following, we want to
construct a special subset S such that the mean norm of all the vectors in
S is exactly 4N/ K, which, therefore, proves the lemma.

Since X;(n) may take any value in {1, -1}, the sequence U(n) may take
any value in the set {0,2,~2}. Let W(z2) = (w1(2), w2(2), -+ ,wn(2))T
and U(z) = (u1(2),uz(2), - ,uk(2))”. Then, ' :

(2.2.3)

K
Wn (z) = Z Ink (Z)uk (z)
k=1

Let I, be positive integers such that each two polynomials gn, (z)z~**1 and
Gnky(2)z %2 for k1 # kg do not have any common terms of z~! for any
1<n<N.Forl<k<K,let

_ [ £2z7%, with probability %,
u(2) = { 0, with probability % (2.2.5)

We now let the subset S consist of all vectors W(n) corresponding to all
the above input vectors U(n) in (2.2.5). Then, the mean norm of all the
vectors in § can be calculated as '

K
E (Z |wn(l)|2) = 3 o O B P) = -
1

k=1 1
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Thus, the mean norm is

N
2 (Z > Iwn(l>12> -%
n=1 1[

This proves the lemma. =

As a remark, when there is no data rate expansion (LTI filtering) and
N = K =1 in an MC, the result in the above lemma was obtained in
[159, 115, 113]. When we only consider the ISI channel without coding
at the transmitter, the following corollary is implied from Lemma 2.1 by
treating a normalized ISI channel H(z) as a normalized (1,1) MC.

Corollary 2.1 The free distance of the received signals through a normal-
ized IST channel is always upper bounded by d,in .

From the proof of Lemma 2.1, the following corollary for a general MC
is not hard to see.

Corollary 2.2 For an (N,K) MC G(z), let P, be the mean power of the
coded sequence y(n). The free distance of the encoded sequences is upper
bounded by

d2 < d?nznPyN
ree — K

Although an MC does not provide any coding gain in an AWGN channel,
it may be different in an ISI channel.

2.3 MC Combined with an ISI Channel

Let H(z) be the z transform of an ISI channel with finite taps A(n) and
Yo Ihm)P =1, (2.3.1)

and G(z) be a normalized MC used at the transmitter. Then, the combi-
nation shown in Fig.2.1 of the MC G(z) and the ISI channel H(z) becomes
another MC C(z):

C(z) = H(2)G(z2), (2.3.2)
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where H(z) is the following N by N pseudo-circulant polynomial matrix
(see [100, 142]):

Ho(z) 27 'Hn_1(2) -+ 27 Hy(2)
Hl(z) Ho(z) s Z_IHQ(Z)
HE=| : ; s (233
Hyn_2 (z) HN_3(Z) e Z_1HN._1(Z)
Hy_1(2) Hy_»(2) .. Hy(z)
where H,(z) is the nth polyphase component of H(z)
Hn(2) =Y h(Nl+n)z™', 0<n< N -1, (2.3.4)
l
and
N-1
H(z) = z Hp(zN)z™m. (2.3.5)
n=0

Let Y(n) be the received N by 1 vector sequence with its z transform Y (z).
Then,

Y (z) = C(2)X(z) = H(2)G(2)X(2). (2.3.6)

transmitted signal

Combined MC C(z)

Figure 2.1: The combined MC.

When the ISI channel H(z) is known, the combined MC C(z) is known.
The simplest equalizer at the receiver is the inverse of the combined C(z).
Then, a natural question is when there is an FIR inverse of the combined
MC C(z), i.e., when there is a polynomial matrix D(z) = (d;;(z)) with all
FIR components d;;(z) such that D(2)C(z) = Ix. The following results
[165] answer this question.

Let Wy be the N x N DFT matrix, i.e., Wy 2 (WiF)o<j x<n_1, where
Wn = e 27V=I/N_ Let A(2) be the diagonal matrix

A(z) = diag (1,271, -~ ,z"N'H) .
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From (2.3.3)-(2.3.5), it is not hard to see
(H(Z)’ Z-IH(Z)) o :Z_N+1H(z)) = (1, Z—la ot 7Z—N+1)H(ZN)‘

Replacing z by z2W}, for I = 0,1,..., N — 1 in the above equality, we have
the following N x N matrix multiplications

H(z) = WiA(z)H(zV), (2.3.7)
where
H(z) 2z YH(z)
H(zWpy) YW H(2WN)

H(z) 2

H(WH™) z“lwl(\,"l)(N_l)H(zWI{,V’l)

2 N+ H(2)
2 NHWINHLH (W)
: (2.3.8)
z—N+1W1£,‘N+1>£N‘1)H(zW,’VV 1)
Let V(2) be the following diagonal matrix
V(z) £ diag(H (2), H(zWN), -+ , HzZWN ™). (2.3.9)

Then the matrix I:I(z) in (2.3.8) can be rewritten as
H(z) = V(2)WiA(z).
This completes the following diagonalization of H(z"V) by combining (2.3.7):
H(zN) = (WrA(2)) I V(2)WiEA(2). (2.3.10)
" Since the combined MC C(z) = H(2)G(z) has an FIR inverse is equiv-
alent to C(z) = H(zV)G(z") has an FIR inverse, we, thus, consider
H(zV)G(zV). By (2.3.10),
H(M)G(EY) = (WHA(2) IV (2)WiA(2)G (V). (2.3.11)
It is clear that (WiA(2))™! = A(z"1)Wx. Let

G(z) & WiA(2)G(N).



16 CHAPTER 2. MC: FUNDAMENTALS AND CODING GAIN

Then, H(2)G(z) has an FIR inverse is equivalent to V(z)G(z) has an FIR
inverse. Notice that the size of the matrix V(2)G(z) is N x K.

On the other hand, V(z)G(z) has an FIR inverse is equivalent to the
greatest common divisor (gcd) of all determinants of all K x K submatrices
of the N x K matrix V(2)G(z) is cz~¢ for a non-zero constant ¢ and an
integer d, see, for example, [71, 142]. Since V(z) is diagonal and of the
form (2.3.9), the above condition can be simplified further as follows.

Without loss of the generality, we assume

-1
H(z) = Y h(k)z7%,
k=0

where h(0) # 0, h(I' = 1) # 0 and I’ > 1. Let S denote the set of all zeros

of the polynomial H(z) of z7!: § £ {z1, 22, ..., zr—1} with H(z) = 0 where
z1, 1 <1 < T -1, may not be necessarily distinct. For a constant ¢, let

A .
¢S = {cz1,cza,...,c2r-1}, a rotated version of S.

Theorem 2.1 There exists an (N,K) MC such that the combined MC
C(z) has an FIR inverse if and only if

(S, US,U---US,) =9, (2.3.12)
03[1<12<‘--<lKSN—1

where S;, = W}\}“S, k=12,. K.

Theorem 2.1 tells us that there exists an MC such that the combined
MC has an FIR ideal linear equalization if and only if the intersection of
the unions of any K sets of all NV rotated ones of the zero set S with angles
2r/N,1=0,1,...,N —1, of the ISI transfer function H(2) is empty. When
K = N, the intersection in (2.3.12) contains at least S which is not empty.
This implies that, when K = N the combined MC C(z) for an MC does not
have an FIR inverse. This is not surprising because an MC with N = K
does not add any redundancy in the transmission.

Proof. We first prove the “necessary part.” Assume the set

m (S, USL U---USy) # ¢

0<hi<la< - <lg<N-1

This implies that the polynomials ]'[f=1 H (Wf\}“ z) for all possible 0 <3 <
ly < -+ < lg < N —1 have at least a common zero zg. In another
words, they have a common factor 27! — z5. By the form of V(2)G(z)

and the diagonality of V(z), the polynomial Hle H(Wk2) is a factor of
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A

the determinant of the submatrix of V(2)G(z) at the rows ly,l2, ..., k.
When [;,1s,...,lx run over all possible 0 < I; <l < --- <lg < N -1,
the corresponding submatrices run over all possible K x K submatrices

A~

of V(2)G(z). Therefore, all determinants of all K x K submatrices of
V(2)G(z) have at least a common factor 2~} — z5* no matter what G(z)
is. This proves that V(z)G(z) does not have an FIR inverse.

Let us prove the “sufficient part.” Assume (2.3.12) is true. We construct

G(z) = [ O(Nf’;)xk ] , (2.3.13)

where O(n_k)xx is the all zero (N — K) x K matrix. Then,
G(2) = WiA(2)G(z") = Widiag(1,27), -, 27 <+1)

- (z‘ijij)

It is not hard to see that the determinant of the I, ls, ..., [k row submatrix
of V(2)G(z) is

0<j<N—-1,0<k<K—1

K
Cytg-tye [[ H W)z~ 001D, (23.14)

=1

where 0 < Ij <y < -+ <lg < N —1 and ¢1,...1) is the Vandermonde’s
determinant of a K x K submatrix of the following N x K matrix

(W) ,
0<j<N—-1,0<k<K~1

which is a non-zero constant. By (2.3.12), the greatest common divisor of
all polynomials in (2.3.14) is cz™¢ for a nonzero constant ¢ and an integer
d. This proves that the matrix V(z)G(z) has an FIR inverse and therefore
completes the proof. m

By the fact that

(511 U 512 U---u Slx—1)

0<li<la< - <lg—1<N-—-1

c ﬂ (Sllusl2u"'USlK)a
0<ly<la<---<Ig <N—-1

we have the following immediate corollary.
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Corollary 2.3 If there exists an (N, K) MC such that the combined MC
C(z) has an FIR inverse, then there also exists an (N, K — 1) MC such
that the combined MC C(z) has an FIR inverse.

Corollary 2.3 is not surprising. It is because, if an MC with less redun-
dancy can be used to eliminate an ISI, then an MC with more redundancy
can be used to eliminate the ISI too. The proof of Theorem 2.1 also sug-
gests a way to construct an MC to eliminate H(z). When H(z) satisfies
the condition in Theorem 2.1, the MC in (2.3.13) can be used to eliminate
the ISI. This MC basically adds N — K zeroes for each set of K consec-
utive symbols (or samples). It is certainly not necessary, as long as the
N x K polynomial matrix V(z)G(z) has an FIR inverse. Using this MC
the combined MC becomes

A~

H(2)G(z) = Fg(2)

>

[ Ho(z) 27 'Hy_1(z) -+ 2z 'Hy_g41(2) ]
Hi(z) Ho(z) -+ 2z 'Hn-k+2(2)
HK_.l(z) HK_'z(Z) Hg.(z) (2.3.15)
i HN_.l(Z) HN_.Q(Z) HN—.K(Z)

By the proof of Theorem 2.1, when the condition (2.3.12) on H(z) is satis-
fied, polynomial matrix Fg(z) in (2.3.15) has an FIR inverse.
Using Theorem 2.1 and Corollary 2.3, we have

Corollary 2.4 The N x K matriz Fg(z) in (2.3.15) with 0 < K < N has
an FIR inverse if and only if the condition (2.3.12) is satisfied. If F(z)
has an FIR inverse, then Fg_1(2) has an FIR inverse too for K > 1.

We now consider two special cases. The first case is when K = 1. In
this case, the condition (2.3.12) becomes

N Si=¢ (2.3.16)

0<I<N-1

By Theorem 2.1 and Corollary 2.4, we have the following result.
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Corollary 2.5 There exists an (N,1) MC such that the combined MC has
an FIR inverse if and only if

ged{H (2), H(ZWnN), ... HGWY 1)} = c127%,
if and only if
ged{Ho(2), Hy(2), ..., Hn—1(2)} = ca2™ %,
where ¢ and ¢y are two non-zero constants, and dy and dy are two integers.

The result in Corollary 2.5 coincides with the known result for frac-
tionally spaced equalizers or multiple receive antenna systems [134, 135],
i.e., there are no zeros of H(z) equispaced on a circle with angle 27 /N
separated one zero from another. From Theorem 2.1 and Corollary 2.5, we
immediately have the following consequence.

Corollary 2.6 For any finite tap ISI transfer function H(2), not identi-
cally zero, there always exists an (N,K) MC such that the combined MC
has an FIR inverse, where N and K may not be fized.

An (N, K) MC at the transmitter expands the data rate by N/K times.
For a given N, the smallest data rate expansion is N/(N — 1), i.e.,, K =
N — 1. We next want to study this case.

Theorem 2.2 There ezists an (N, N — 1) MC such that the combined MC
with a finite tape ISI channel H(z) has an FIR inverse if and only if S5iN
Sk, = ¢, i.e., polynomials H(zW}) and H(zWE) are coprime, for 0 <1 #
k<N-1.

Proof. This theorem can be proved by the following set equation:

N-1
ﬂ (UkN=_115[k) = m (U,ﬂOS,) = U (81N Sk).
0<li<la< <y _1<N -1 lo=0 Ik
. .

Let us consider the case when the ISI transfer function H(z) = a+ 271
with |a| = 1, i.e., the first order case. In this case, the zero set S = {-1/a}.
For a general N, S; = {-W},/a},1=0,1,...,N — 1. Clearly, SiN Sk = ¢
since W} # WF when 0 <1 # k < N — 1. By Theorem 2.2 and Corollary
2.3, we proved the following result. '

Corollary 2.7 Assume the ISI transfer function H(z) = a + 27! with
la| = 1. Then, for any integers 0 < K < N and the (N,K) MC in (2.5.13)
the combined MC always has an FIR inverse, i.e., the MC coded system
has an ideal FIR linear equalizer.
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Corollary 2.7 implies that any e (> 0) amount of data rate increasing
in the MC coding may eliminate the ISI generated from any first order ISI
channel. This is because for any € > 0 there exists a positive integer N such
that 0 < 1 — (N — 1)/N < e. We then use the (N, N — 1) MC in (2.3.13).
The results in this section were summarized from [165].

2.4 Coding Gain in ISI Channels

The previous section tells us when the combined MC has an FIR linear
equalizer without considering the input symbol characteristics. However,
in a communication system, what is more important is the distance property
of the combined MC given a certain set of input symbols, such as BPSK
symbols. To do so, we introduce the coding gain concept of the combined
MC.

Although the encoding at the transmitter is based on the normalized
MC G(z), the decoding is based on the combined MC C(z) in (2.3.2), where
G(z) is in the ISI channel while C(z) is in the AWGN channel. We assume
that the joint maximum-likelihood decoding of the channel decoding and
the equalization is used, i.e., the Viterbi decoding algorithm is used for the
MC C(z) at the receiver. For the Viterbi algorithm, we referred the reader
to [119]. The coding gain yrsy of the MC G(z) at the transmitter in the
IST channel is defined as the coding gain of the combined MC C(z) in the
AWGN channel, i.e.,

— d%ree,C 5
YyIsI E. N

min

(2.4.1)

where djye., ¢ is the free distance of the combined MC C(z). When the ISI
channel is fixed, the ML decoding performance of the uncoded ISI channel
is always not as good as the one of the uncoded AWGN channel, which
is from Lemma 2.1 and Corollary 2.1. This implies that the above coding
gain 7ysy is a portion of the real coding gain compared to the uncoded ISI
channel, i.e., the real coding gain is the sum of v;s; (dB) and the difference
(dB) between the uncoded ISI and AWGN channels, as shown in Fig.2.2.

By normalization, the mean power of the transmitted signal y(n) is the
same as the one of the information signal z(n). An important observation
is that the mean power of the received signal g(n) may be different. It turns
out that, by properly choosing an MC G(z), the mean power of the received
signal g(n) after the ISI channel may be greater than the information signal
mean power. The following lemma gives an upper bound on the mean power
of the received signal after an ISI channel.
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E/N,

v

Bit Error Rate

Figure 2.2: Coding gain definition of an MC in an ISI channel.

Lemma 2.2 Let H(z) be an ISI channel with T' non-zero taps. Then, the
mean power P, of the received signal g(n) through an MC coded ISI channel

is upper bounded by
P, <TP,, (2.4.2)

where P, is the mean power of the information sequence z(n).

Proof. Let y(n) be the encoded sequence of the normalized MC. With-
out loss of generality, we assume that h(n), n = 0,1,...,I' — 1, are the T’
non-zeros taps of the ISI channel. Then,

2

r—1 r-1
<Y @)Y Elyk—n)?

n=0 n=0

r-i
> h(n)y(k - n)

n=0

P,=E

r—1
=Y Elz(k—n)]* =TP,.
n=0
]
From Corollary 2.2 and Lemma 2.2, the following upper bounds for the
free distance of the received sequences and the coding gain are straightfor-

ward.
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Corollary 2.8 Let H(z) be an ISI channel with I non-zero taps. Let G(z)
be a normalized (N,K) MC. Then, the free distance of ‘the received se-
quences after the ISI channel is upper bounded by

d2,.,,IN
@G reec < e, (2.4.3)

and therefore, the coding gain yrs; is upper bounded by ', i.e., yrsr <T.

From the above lemma, we may see that, although an MC does not have
any coding gain in an AWGN channel, it may have a coding gain in an ISI
channel. It is because of the possibility of the increase of the free distance
after an ISI channel due to the possibility of the increase of the mean power
after an ISI channel when a normalized MC is properly designed. However,
it should be pointed out that the mean power increase is not sufficient for
the free distarice increase. In our recent work [166], it has been proved that
for any given ISI channel with finite taps, there always exists an MC such
that the coding gain exists compared to the uncoded AWGN channel.

Theorem 2.3 For any ISI channel h(n), 0 < n <T'—1, withT > 1 and
h(0) # 0, h(I' — 1) # 0, there exists a normalized modulated code G(z)
that has a coding gain in the ISI channel compared to the uncoded AWGN
channel, i.e., vrsy > 1.

Proof. Since the MC encoding is a linear matrix and vector multiplica-
tion over the complex domain, without loss of generality, we only consider
BPSK signal constellation, i.e., z(n) = =1, and all the ISI channel co-
efficients and MC code coefficients are real-valued. The complex-valued
coefficients can be treated similarly. Consider a rate 1/T', i.e., K =1 and
N =T, normalized block modulated code, i.e.,

9o

g
Gx=| " |, and gn==1, n=0,1,..,[ - 1. (2.4.4)

gr-1
In this case, .
h(0) R =1)z"t .- h(1)z7?
h(1) h(0) < h(2)271!

b

MT—1) ”T-2) -  h0)
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and the combined MC is

€o,0 C1,0
Co,1 C11 1
C(z) = . + . 27,
Co,r—1 €1,r-1
where
k
cok = Zh —i)gi, k=0,1,.., T~ 1
’L
r—2—k
Clk = Z L —1- ) gk+1+4, £=0,1,...,T =2
j=
ar-1 = 0.

By considering the input difference sequences z;(n) — z2(n) as (0, +2) and

(£2,0), it is not hard to see that the free distance, dfree,c, for the MC
C(z) is

r—

df'ree C ~— 42 (ICO,k|2 + !Cl,klz) .

k=0
In order to prove that there exists an MC G(z) in (2.4.4) such that the
coding gain yrsy > 1 for the combined MC C(z), from (2.4.1) and dyin = 2
in this case we only need to show that there exists an MC G(z) in (2.4.4)
such that the free distance d%,,, ¢ > 4N = 4I'. From g, = %1, we have

[a

d%,eec = 4T + 8d,

where

k k
d £ I:Z_: Z - 'Ll i2)gi19i2

F—-2—-k I'-2-k
+ Y > A =1-j)A(T =1 - jo)gkt145 Gk +14ss | -

71=0 ja=j1+1

By rearranging the above summation, we have

r—2 r—1—i r—1—j
d=Y gi| Y, g+i », hRG+E)|-
i=0 =1 k=0
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To prove d?free,c > 4T for a proper choice of g,, we only need to show d > 0
for a proper choice of g,. Let

L-1~-j5
'roémin{j: 0<j<T-land Y h(k)h(j+k);éo}.

k=0

Since h(0)A(I'— 1) # 0, we have 1 < 7o < ' — 1. Let

F—1—i r—1—j
di= Y girs Y MK +k).
j=1 k=0
Then,
F-1-19
dr-1-r, = gr-1 E h(k)h(ro + k) # 0.
k=0

Let gr—1 =1 and for 0 < < T - 2 define g; for the index i from I" — 2 to

0 as follows
_ { sign(di), if d; 75 0,

gi = 1, if d; = 0.
Thus,
r-2
d= Zgidi > |d.,—0| > 0.
=0

This proves the theorem. m

This result is contrary to the one obtained in Said [113] and Wong
and Anderson [159], where they showed that any PRS, i.e., an MC with
N = K =1 (no data rate expansion), does not provide any coding/distance
gain compared to the uncoded AWGN channel no matter whether it is
in an ISI or ISI-free channel. It should be pointed out that the goal in
[159, 115, 113] was the bandwidth efficiency while they wanted to have the
distance loosing as less as possible, which is different from the one here.
Although the purpose of the study in [48] is the same as the one of MC
here, it corresponds only to the case when K = N = 1 and there is no
coding gain compared to the uncoded AWGN channel. From Lemma 2.1
and Corollary 2.2, it is not hard to see that the coding gain implies the
SNR gain at the receiver.

The above proof is a constructive proof. We next present another proof
that is helpful in the next section.

Proof. We only need to prove that there exists a normalized G(z) such
that the squared free distance of the combined MC C(z) is greater than
4T,



2.4. CODING GAIN IN ISI CHANNELS 25

Let H(z) be a I" by T" pseudo-circulant polynomial matrix as defined in
(2.3.3) and the normalized MC G(z) be a I" by 1 constant matrix. In this
case, the matrices H(z) and G(z) can be written as

h(0) 0 0 o0 0
h(1) h(0) 0 e 0 0
H(z) = : E : Do E
MI'—2) AT -3) KT -4) - h0) O
ML —1) ([ -2) WL -3) --- h(1) h(0)
0 WIT-1) AT-2) --- h(2) A1)
0 0 ML =1) - h(3) h(2)
+271 | : : : : : , (2.4.5)
0 0 0 <+ 0 AI-1
0 0 0 e 0 0

and

G(z) =G =g g -gr-1)", (2.4.6)

where T denotes the matrix transpose.
The squared free distance of the received signal sequence after the ISI
channel can be written as:

2 2

dgree gl : -
L =Y | Do hRgik| +| Y AT - |- (247)
i=0 \ |k=0 Jj=i+1

We now only choose values of ¢;,0 < ¢ < T' — 1, in the set {1,-1}
independently. Assume the probabilities of g; choosing symbols 1 and -1
are 1/2. Then, for fixed variables gy and gr_i, the conditional mean of
% ce,cc 8iven go and gr_; is obtained as follows:

d2
free,C
E{ Sreec

90, gF—l} =TI+ 2h(0)A(T — 1)gogr—1, (2.4.8)

where the means of other products g;g;, ¢ # j, are zero due to their sym-
metry properties around zero. It is easy to show that, when we choose go
and gr_; as

sign(gogr-1) = sign(hohr-1), (2.4.9)
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the corresponding conditional mean of d3,,, ¢ is greater than 4. This
indicates that there exists an MC G with entries of {—1,1} such that the
d%,cc.c Of the MC C(z) is greater than 4T. m

2.5 More Results on Coding Gain

In this section, we investigate the existence of rate 2/I' MC having coding
gain over a given ISI channel with ' taps. We also study some upper and
lower bounds of the coding gain. The results in this section are summarized

from [44].

2.5.1 Existence of Rate 2/I' MC with Coding Gain

We first present some results on the MC existence of rate 2/T" with coding
gain for an ISI channel h,, = h(n), where the new notation h, is used to
simplify the equations.

Theorem 2.4 Let H(z) be an ISI channel with T’ > 1 taps and the BPSK
be used for the information sequence z(n). If 0 < |hohr—1] < 1/2, then,
there exists a rate 2/T" block MC G(z) with coding gain compared to the
uncoded AWGN channel.

Proof. We only need to prove that there exists a normalized G(z)
such that the squared free distance of the combined MC C(z) after the ISI
channel is greater than 2T".

Consider the following rate 2/T' MC

G(Z) = (GO’Gl)a
GoT = (90 g1 gr—1),
GT = (Gogr -+ gr-1)-

By using the trellis diagram, the free distance of the received signal
sequences after the ISI channel is as follows

d>
f%ec min{Al,Az,Ag,A4},



2.5. MORE RESULTS ON CODING GAIN

where

JAVY

Aj

Aj

Ay

r-1 1 2 r—-1 2
S egion] +| D2 hryi-igs| |
1= k=0 Jj=i+1
r-1 i 2 r-1 2
> hiGick| +| D breioigs| |
i=0 k=0 F=i+1
r-1 i 2
Z Z hi(gi—k + gi—k)
= k=0
2
r-1
+| > hrrisi(ei+35)| |
j=itl
r—1 i 2
Z Z hi(gi—k — Gi—t)
1=0 k=0

2

r-1
+| D hraimj(95 — 35)

=i+l

27

(2.5.1)

(2.5.2)

(2.5.3)

(2.5.4)

In order to simplify our analysis, we select the parameters g;,§;,0 <
i < I' — 1, as zeros and go, o, gr—1,gr—1 as real numbers with mean zero.
Furthermore, consider the following normalized MC:

r
gg +glg‘—1 = 5:
o _ r
gg +912"—-1 =

2
and the corresponding formulas (2.5.1)-(2.5.4) become

Ay

A
As

Ay

T
= 3 + 2hghr_1909r-1,

r _
= 3 + 2hghr_1Gogr-1,

= (go+50)* + (gr—1 + gr-1)?

+2hohr-1(go + go)(g9r-1 + gr-1),
= (go— 90)* + (gr—1 — gr—1)’
+2hohr_1(go = 90)(gr-1 — gr-1)-

(2.5.5)

(2.5.6)

(2.5.7)

(2.5.8)
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By (2.5.5)-(2.5.6), it is easy to obtain that, if we choose
sign(gogr—1) = sign(Jogr-1) = sign(hohr_1),

then we have

T r
A = 5+ 2|hohr-190gr-1| > Dk

T r
Ay = 5+ 2|hohr-1g0gr—1{ > 3

In the following, our main focus is on the proof of Az > g and A4 > % for
the same values of gg, go,9r—1,gr-1- First, let us consider the case when
Sign(hohr_l) > 0.

l\-'>|'—_I
ON

MI"TJ
| =

e

If sign(hohr—1) > 0, we choose go > 0,go < 0, then (2.5.7) and (2.5.8)
Az = —290\/ - g%_, +2gr
+2hohr_ 1( -—\/ - g2 1) (\/
+2hohr_1 (go + \/ - §%_1> = —g¢- §F—1> .
As go — +0,gr—-1 — —0, and combining with the assumption |hohr_;| <

can be rewritten as follows
-g3+ §r—1> ,
A4 = F+290”_—g1" 1 2g1‘ 1
1/2, we have

- l
o

| =

Az — T(1 — hohp—y) >

V| H | M

Ay — T(1 + hohr—y) >

Thus, there exist some values of go > 0,go < 0,9r—1 > 0,gr-1 < 0 such
that A; > T for i=1,2,3,4.

The case when sign(hohr—;) < 0 can be similarly proved. =

Theorem 2.4 indicates that there exists a rate 2/T" MC code having
coding gain over ISI channels except the worst case when |hohr—1| = 1/2
and h2="'=h[‘_2=0.

Theorem 2.5 Let H(z) = hg + hiz71 +---hrz~T be an ISI channel with
I' +1 taps, ' > 0 and the BPSK be used for the information sequence
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z(n). If 0 < |hohr| < 1/2, then, there exists a rate 1/T' normalized MC
G(z) = Go + G127 ! with coding gain compared to the uncoded AWGN
channel, where Go,G1 are constant I" X 1 vectors.

Proof. It is easy to obtain that
H(z) = Hy + Z_lHl,

where Hy, Hy are the following I" by I" constant matrices

hg 0 0 .- 0 0
hi ho o -~ 0 0
Hy = : : : : S (2.5.9)
hr—2 hr_z hr_a -+ ho O
hr—1 hr—2 hr_z -+ h ho
and
hr hF—l hr_z h2 hl
0 hr  hr_i hg hs
H = : : : : : : . (2.5.10)
0 0 0 hr hr_i
0 0 0 0 hr

Thus, the combination of the MC G(z) and the ISI channel H(z) becomes
C(2) = H(2)G(2) = HoGo + (HoG1 + H1Go)z ™! + H1Gy1z7%.  (2.5.11)

By observing the trellis diagram of C(z), if we choose the all zero path as
the reference, we find that there are only three different error paths which
may reach the free distance. The squared free distance between the received
signal sequences is

d2
22 = min{Ao, Ay, Ao},
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where Ag, A1, and A, are the squared distances between the three paths
and the all zero path, respectively. They can be calculated as

2

r-1 i 2 i r-1
Ao = Z Z hegi—x| + Z hgi—x + Z hrii-jg;
i=0 \ [k=0 k=0 =i

2

r-1i
+1) hraiesgi| |
j=t

r-1 i 2 i r-1 2
Ay = D Do hkgick] + D helgick +Fick) + D hryioig;
=0 \ |k=0 k=0 j=i
2 2
i r-1 r-1
+ Z hegi-r + E hryi-j(g; + ;)| + Z hryi-;3i| |
k=0 j=1i =t
r-1 i 2 i r-1 2
Ay = Y AU hagick| + D halgick = Gick) = O hryicigs| -
=0 k=0 k=0 J=1i

2

r—1
+ Z hryi-;g;
=

i r-1 2
Z hk@i—r + Z hryi-i(g; — 95)| +
k=0 j=i

Similar to the previous proof, the conditional means of A; for 7 = 0,1,2
given go and go are as follows

E{Aol90,50} = T + 2hohrgodo,
E{A1lg0,90} = 2I'(1— hohr) + 2(1 + 2hohr)gogo,
E{Aglgo,go} = 2F(1 + hoh[‘) + 2(—1 + 2h0h1")90§0.

If we choose gy, §o such that the following conditions are satisfied:
sign(gogo) = sign(hohr),

and

go — O or g — 0.
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By combining with the assumption |hohr| < I, we have

E{lolgo, o} > T,
E{Atlgo, g0} > T,
E{A3lgo,g0} > T.
This indicates E{d%,,.|90, g0} > 4. Theorem 2.5 is then proved. m
When {hohr_1| = 1/2, by the normalization condition (2.3.1) it is not
hard to see that hg = £1/v/2, hr_; = £1/v/2, and hy = --- = hp_» = 0.
The following theorems deal with two tap ISI channels.

Theorem 2.6 Let H(z) = ho+hr—12=CT=1Y e the ISI channel withT > 1.
There does not ezist a rate 1/(I'— i), [' > i > 1, block MC G(z) = G with
coding gain compared to the uncoded AWGN channel.

Proof. It is easy to show that for any ¢,I' — 1 > ¢ > 1, there exist two
integers S and P satisfying I’ -1 =P(I' -+ S, I'=1> P > 1 and
['—i> S >0. By using the definition of d%,,, ¢, we have

2
d ree,C S 4A0’
where
F—i—1 r—i—S-1 r—i—1
, 2 2 2 2
No=he > gi+hi, > gi+hi, > gt
k=0 k=0 j=I'—i-S§

By the normalizations of G(z) and the ISI channel h(n), we have
A% pee,c < 400 = 4T —i).

Theorem 2.6 is proved. m

Theorem 2.6 tells that when the ISI channel pulse response has two
taps, there does not exist rate 1/(I' — ), 1 <4 < T — 1, block MC G with
coding gain compared to the uncoded ISI channel. The following theorem
gives an answer on the existence of rate 2/(I' + 1) MC.

Theorem 2.7 Let H(z) = ho + hp_127 7% be the ISI channel with T > 1.
There exists a rate 2/(T'+1) block MC G(z) = G with coding gain compared
to the uncoded AWGN channel.

Proof. Let the normalized MC G(z) be a I' + 1 by 2 constant matrix:
G(z) = (Go,Gh),

G3 = (g0 91 gr),
G{ = (gog1 -+ Jr),
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such that . -
_ r+1
Z lg:|* = Z |g:* = T
1=0 =0
The squared free distance of the received signal sequences after the ISI
channel is

d2
1708 — min{Ay, As, Az, Ag},

4
where
r
Ay = (h§+hiy) ng + 2hohr—1(gogr-1 + g19r),
=0
r
By = (h§+hP_y) ) g + 2hohr—1(Jogr-1 + G1dr),
1=0
r
As = (B§+hp_)d (9:+d)
i=0
+2hohr_1 ((90 + o)(gr-1 + gr—1) + (g1 + §1)(gr + r)) ,
r
Ay = (B+HE_)D (9 - )
=0

+2hohr -1 ((90 — go)(gr—1 — gr-1) + (91 — §1)(gr — gr)) -
Given go,g9r_1, 01, r, the conditional means of A;,i =1,2,3,4 are
r+1

E{A1lgo,9r—-1,G1,9r} = — 7t 2hohr_1909r-1,

o '+1 o
E{As3|go,9r-1.51,9r} = — + 2hohr_1413r,
E{As|g0,9y-1,31,9r} = T+ 14 2hohr_1(gogr-1 + §19r),
E{A4|g0,9r-1,51,9r} = T 41+ 2hohr_1(gogr—1+ g:1dr)-

If we choose g9, gr—-1, g1, gr with
sign(gogr—1) = sign(g1gr) = sign(hohr-1),

we have

E{Ai|go,9r-1,01,9r} > —5

E{As|g0,9r-1,61,9r} > —5

E{As|go,gr-1,51,9r} > T +1,
E{A4|go,9r-1,51,9v} > T+1
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This indicates that under the same conditions, the conditional mean
given go,gr-1, g1, gr satisfies

d2
E free,C
1Ty

'+1

90,91“—17571,@1“} > 5

Theorem 2.7 is then proved. =

Theorem 2.4 tells us the existence of rate 2/T"' MC with coding gain for all
ISI channels except the case when |hohr_1| = 1/2. When |hohr—1]| = 1/2,
Theorem 2.7 says that there exists a rate 2/(I" + 1) MC with coding gain,
where the rate is slightly decreased. In next section, we study higher rate
MC.

2.5.2 Some Sufficient Conditions on the Existence of
Higher Rate Block MC with Coding Gain

One can see from Theorein 2.6 that, for a two tap ISI channel, there does
not exist a rate 1/N with N =T — 4,7 > 1, normalized block MC G having
coding gain over the ISI channel. Based on this result, in what follows we
choose N > I in the rate K/N MC G(z). Let h,, = h(n) be the ISI channel
impulse response, where k., has only at most I" non-zero taps hg, b1, ..., Ar—1
with hg # 0 and hr—1 # 0. When N > T, the ISI channel pseudo-circulant
matrix H(z) in (2.3.3) becomes H(z) = Hy + H1z~1, where

ho 0 0 6 0
hy ho 0 0 O
Ho=| : ST (2.5.12)
hy—s hn-3 hy_s -+ ho O
hn_1 hn_2 hny_z -+ hi ho
and
0 hy—1 hy—o -+ hy M
0 0 hn_i1 -+ ha ha
Hy=|: : : Lo : . (2.5.13)
0 0 0 -« 0 hy_1
0 0 0 - 0 0

Clearly Hy is invertible. This proves the following lemma.

Lemma 2.3 Let H(z) be an ISI channel with T > 1 taps. If N > T', then
H(z) = Ho + 27 'H;, and
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1 R1 R2 R3 M RN—I
R, 1 Ri Ry -+ Rn—2
— , (2_5,14)
Ry_o Ryn-s -+ R 1 R,
Ry_1 BEn—2 BRny—3 -+ Ry 1
where, 1 <1 < N -1,
N—1-i
Ri= ) hphity. (2.5.15)
p=0

Furthermore, matriz Ry is positive definite.

From (2.5.15), when I' < N, it is clear that R; = 0 for ¢« = I',T' +
1,---,N — 1. We first study rate 3/N MC.

Theorem 2.8 Let H(z) be an ISI channel with I' taps, I' > 3, and the
BPSK be used for the information sequence z(n). If0 < |Rij < 3 (1 <i<
[ — 1), there ezists a rate 3/N block MC with N =T + 1 such that it has
coding gain compared to the uncoded AWGN channel.

Proof. If we choose a normalized MC G(z) as an N by K constant
matrix G(z) = G = (gnx)Nxk = (Go,G1," -+ ,Gk—1), where G; is the i-th
column vector of G, then the squared free distance d}ree can be obtained
as follows

d?reeC . t t
——4—’ = gl;é%{(HoGU) (HoGU) + (H1GU) (H:GU)}

min {(GU)T(HJHO + H} Hl)(GU)}

- f,gi% {(GU)'Ru(GU)}, (2.5.16)

where U = (ug,u1, -+ ,ux—1)T is a K by 1 vector, whose elements are in
the set {—1,0,+1}.

When N = I't+iand K = 3, we select go 0, 9r—1,0, 90,1, Jr—1,1, 95,2, gr+i—1,2
as non-zero real random variables with mean zero, and other elements of G
as zeroes. Furthermore, we consider the following normalized MC block G,

N T+

Got 10 = 3="3 (2.5.17)
N T+1

Gor+9ra = T3 (2.5.18)
N T+

gir+ Gbpic1y = 3T 3 (2.5.19)
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In this case, we have

(GU) Ry (GU)

T+i L+
= (—-3— + 2Rr-1go,ogr—1,o) ug + (-—3~ + 2Rr—190,1gr—1,1) uj

3
+2gr—1,0u0(Rr-190,1u1 + Rr—i_1gi2us + gr—1,1u1 + Rigr+i—1,2u2)

'+
+ ( + 2Rr_1gi,2gr+i—1,2) uj

+2g0,1¢1(go,0u0 + Rigi2uz) + 2g; 2u2(Rigoouo + Rr—i—19r—1,141)
+2Rr_190,09r-1,1%0u1 + 2Rigr_1,19r+i—1,2u1u2.
Let

sign(go,09r-1,0) = sign(go,19r—1,1) = sign(g; 29r+i—1,2) = sign(Rr_1),

and
lgr—1,0 = |g0,1] = |g:,2| = 0.

In this case, (2.5.16) can be rewritten as

(GU)' Ry (GU)

T+ [+
~ ( 3 +2er_1go,ogr—1,ol) ug + ( 3t 2|RF—190,1gr—1,1|) ui

'+
+ (—-3— + 2|Rp_1gi,2gr+i—1,2|) u%

+2Rr-190,09r—1,1%0%1 + 2Rigr—1,19r+i—1,2U1U2.

The assumption 0 < |R;| implies that there exists an h; # 0 for some j
with 0 < § < T' — 1. Thus, by (2.3.1) and (2.5.15), we have

h2 + h 1
|Rr_1| = |hohr—1| < —% <3 (2.5.20)

Therefore, when |gr_1,0], |g0,1|, and |gi 2] are small enough, by (2.3.1),
(2.5.17)-(2.5.19) and (2.5.20) and the assumption |R;| < 1/2, we have

(GU)'Ru(GU)
'+ '+
> ( 3 + 2|Rr—1go,ogr—1,0|) ul + ( 3 ‘4 2|RF—1yo,1gI‘—1,1|) u?
T'+1 T+

[u0u1| - |u1u2|.

'+
+ (T + ZIRF—Igi,29F+i—1,2!) uj —
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From the above inequality, it is easy to show that for any U # 0,

I'+:4
3 )

(GUY Ry (QU) >

which implies

d%ree,c > '+
4 3

This proves Theorem 2.8. m
We next study rate 4/N MC.

Theorem 2.9 Let H(z) be an ISI channel with ' taps, T > 4, and the
BPSK be used for the information sequence z(n). If max(|R;|,|Rr—i|) < 3
for some i > 2, then there exists a rate 4/N block MC with N =T +i+1
such that it has coding gain compared to the uncoded AWGN channel.

Proof. Let G be an N by 4 constant matrix. By using (2.5.16), we have

dz _
722 = min {(GU)' Ru (GU)}
where UT = (up,u;,u2,u3) and u;,i = 0,1,2,3, are in the set {—1,0,1}.

Select go,0,9r-1,0,91,1,9r,1,9i,2, g +i—1,2, §i+1,3, gr+i,3 as non-zero real
numbers with mean zero and other elements of G as zeroes. Furthermore,

the following normalized MC G are considered,

, N T+i+l
900 t9r—10 = T- 1
. N T+i+l
gl,l + gI‘,l = Z = _4__’
s N T+i+l
Gio t9r4i12 = T 1
, , N T+i+l
9iv13 T 9rviz = 2 1
Let
sign(go,0g9r-1,0) = sign(g1,19r1)
= sign(g; 29r+i-1,2) = sign(gi+1,39r+i,3) = sign(Rr-1),
and
lgr—1,0] = |91,1] = l9r4iz2| = |gi+1,3| = 0.
We have

(GUY'Ry(GU)
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_(T+i+1
- 4

T+i+1
" <___4_ + 2|Rp_1gl,1gr,1|) uf

+ 2|Rr_1yo,ogr—1,ol) up

+ F'+i+1
4

'+:+1
+ <——4— + 2|Rr-1gi+1,3gl“+i,3|) u§

+ 2|RF—1gi,29F+i—l,2l) uj

+2R;:g0,09:2uoU2 + 2Rr_ig; 29r—1,1u1u2 + 2R;gr 1 9r+i,3%1U3.

From the assumption max(|R;|, |Rr—i|) < 3, similar to the proof of Theo-
rem 2.8 we have

(GU) Ry (GU)
I+i+1 C+i+1
> (——4—— + 2|Rr—190,ogr—1,0|) ug + (——4—— + 2|RI‘—191,19F,1|) ui
F+i+1
+ (—T + 2|Rr_1gi,2gr+i—1,2|) uj
F+:¢+1
+ (—21—— + 2|RI‘—lgi+l,39I‘+i,3l) U§
_F+i+1|u el F+i+1,u o] I‘+i+1|u |
——.-_4 oU2 1 1U9 4 143,
and for any U # 0,

r+i+1

(GUY Ry (GU) > 1

This proves Theorem 2.9. =

By using the above two theorems, the following corollary. is straightfor-
ward.

Corollary 2.9 (i) IfI' = 3 and 0 < |Ry| < %, then there ezists a rate
3/5 normalized MC with coding gain compared to the uncoded AWGN
channel.

(i) If T = 4 and |Ry| < %, then there exists a rate 4/7 normalized MC
with coding gain compared to the uncoded AWGN channel.

The next result is for two tap ISI channels.
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Theorem 2.10 Let H(z) = ho + hp_12 Tt with T > 1. Let the BPSK
be used for the information sequence z(n). There exists a rate I'/N with
N = 2T — 1 block MC with coding gain compared to the uncoded AWGN

channel.

Proof. Let G be an N by I' constant matrix with N = 2I' — 1. By
using (2.5.16), we have

d? -
free,C — i t
N et gl;r&{(GU) Ru(GU)},

4
where UT = (ug,uy, -~ ,ur—1) and u;,i = 0,1, ,T' = 1, are in the set
{-1,0,1}.
We select
90,0,9r-1,0,91,1,9T,15 " " * 1 94,5, gr+i—1,4," " ,9r—-1,I'=1,92r-2,r—1

as non-zero real numbers with mean zero and other elements of G as zeroes.
Furthermore, we consider the following normalized MC G: for0 <7 < T'—1,

N
2 2 _
9ii ¥ Oti-1: = T
Let
sign(gi,igr+i-1,:) = sign(Rr-1),
and
lgr-1,0l = [gr—1,0-1] = O.
Then,

r-1
- N
(GU)'Ry(GU) ~ E (f" + 2|R1"—lgi,igl‘+i—1,iluz?) .

1=0

Similar to before, for any U # 0, we have

(@U) Ru(GU) > .
This proves Theorem 2.10. =

This theorem tells us that when the ISI channel length is 2, there exists
a rate 2/3 normalized block MC having coding gain. When T is large,
there exists a rate higher than 1/2 normalized block MC with coding gain
compared to the uncoded AWGN channel.
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2.5.3 A Method on the Rate Estimation of MC
with Coding Gain

In this section, we want to estimate a rate r given an ISI channel such that
there exists a rate r MC with coding gain compared to the uncoded AWGN
channel. To do so, let us first see two lemmas.

Lemma 2.4 For Ry defined in (2.5.14), its mazimum eigenvalue Amax
satisfies Amax > 1.

Proof. From Lemma 1, we know that Ry is a positive definite matrix.
This means that all the eigenvalues of Ry are positive. By using the matrix
trace result, we have

N
> A=N. (2.5.21)
i=1

Assume the maximum eigenvalue of Ry is not greater than 1. Then (2.5.21)
implies that A; = 1 for 1 <4 < N, i.e,, Ry = Iy. This implies Rr_; =
hohr_1 = 0, which contradicts with the assumption hy # 0 and hr_; # 0.
The lemma is proved. m

Lemma 2.5 If py,ps,--- ,pn are N positive numbers, and satisfy

N
Sn=n
=1
then,

1
1 D

N
We now have the following sufficient condition in terms of the eigenval-

ues of the matrix Ry in (2.5.14).

Theorem 2.11 For Ry defined in (2.5.14), let its eigenvalues be arranged
in the decreasing order, A\ > Ag > --- > Ay > 0. If

is satisfied for a positive integer p, then there exists a rate p/N block MC
with coding gain compared to the uncoded AWGN channel.



40 CHAPTER 2. MC: FUNDAMENTALS AND CODING GAIN

Proof. Since Ry is a positive definite matrix, there exists an N by N

unitary matrix V such that

VIRV = A = diag(A\1, Az, , AN).

Define
W = VG = (wij)Nxp-

Clearly,

Z wi; = Z s

i 3]
and,

(GU)'Ry(GU) = (WU)IA(WU).

If the matrix W is selected as W7 = (diag(w1,1, w22, - ,Wpp),

the above formula becomes
B P
(CUY Ry (GU) = (WUYIAWU) = Y Aw? 2.
Fori=1,2,...,p, let
1 N
2 ==46] =
w; ; ( X + ) py
where §; > 0 is chosen to satisfy the following condition
P P
1
2N
The equalities (2.5.22), (2.5.24) and (2.5.25) ensure that

Z gz2,_1 = Na
%3

(2.5.22)

Opx(N-p))

(2.5.23)

(2.5.24)

(2.5.25)

i.e., the MC @ is normalized. From (2.5.23) and (2.5.24), it is not hard to

see that )
d _ N
free,C — mi t
s &%(GU) Ry (GU) > P

This proves Theorem 2.11. m

From the above proof, we can similarly prove the following result.
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Theorem 2.12 For Ry defined in (2.5.14), let its eigenvalues be arranged
in the decreasing order, \y > Ay > --- 2> Ay > 0. If

LI TP

SV N P
is satisfied for a positive integer p, then there exists a rate 1/N,2/N,--- |p/N
block MC with coding gain compared to the uncoded AWGN channel.

Using Lemma 2.4 and Theorem 2.11 we can see that, when N = T,
there always exists a rate 1/I' MC having coding gain over the ISI channel,
which coincides with the one in Theorem 2.3.

Let us consider an application of Theorem 2.11 to two tap ISI channels.

Corollary 2.10 Let H(z) = hg + hr_12~ T+ with T > 1. There erists a
rate (' — 1)/T" block MC with coding gain compared to the uncoded AWGN
channel.

Proof. When N =T, the eigenvalues of Ry are A\; = 1+ |hohr-1],
A2 =---=Ay_1 =1, and Ay =1 — |hohr—1|. By using Theorem 2.11 and
take p = N — 1, Corollary 2.10 is proved. =

We next want to use the results in Theorems 2.11-2.12 to simulate the
probabilities of the existence of rate r block MC with coding gain for a
given ISI channel for different r. The ISI channels are assumed to have
independent real coefficients and the same Gaussian distributions.

The following two tables show the existence probabilities for two differ-
ent cases on the rates of MC having coding gain. In Table 2.1, the length
of ISI channel is chosen to be the same as the row number of the block MC
G(z) = G, i.e., N = I'. In Table 2.2, the row number of the block MC
G(z) = G is chosen as N = 2T — 1.

Since the conditions in Theorems 2.11-2.12 are only sufficient conditions
on the existence, the simulation results presented in Tables 2.1-2.2 are the
lower bounds on the existence probabilities of a block MC. By observing
the results in Tables 2.1-2.2; we find that there exists a rate higher than
1/2 MC having coding gain for most of the ISI channels with finite lengths.
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Table 2.1: Lower bounds of the existence probabilities of MC with coding
gain compared to the uncoded AWGN channel, where N =T

N=4 Rate 1/4 24 3/4
Existence Prob. 1O 1.0 0.638515
N=5 Rate /s 25 3/5 4/5
Existence Prob. LO L0 0.98775 | 0.40855
N=6 Rate 1/6 26 36 46 5l6
Existence Prob. 1.0 10 1.0 0.9749 03156
N=7 Rate 17 U7 317 417 51 617
Existence Prob. 1.0 1.0 1.0 09975 0.9269 0.3389
N=8 Rate 178 28 38 4/R 5/8 6/8 718
Existence  Prob. 1.0 1.0 1.0 0.9997 0.9942 09125 0.3798
N=9 Rate 79 2/9 319 4/9 59 69 m 89
Existence Prob. 1.0 1.0 1.0 0.999955 | 0.9995 0.9910 0.8665 0.4155
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Table 2.2: Lower bounds of the existence probabilities of MC with coding
gain compared to the uncoded AWGN channel, where N = 2T" — 1.

N=7 T Rate 1 n I 3n 417 sn 611
[
Existence Prob, Lo 10 10 0.999 0.9478 0.31145
T 5
N=9 Rate w 0 k) 4m 59 oY m 89
Existence Prob. Lo Lo 1.0 1o 0.9968 0.9837 0.8347 0.37155
N=11 l7 Rate i U1 am /11 S/ 6/11 m 811 911 /11
Existence Prob. 10 Lo 1.0 Lo 1.0 0.9993 0.9945 0.9582 0.7682 0.3509
N=l]—17 Rate n3 213 3 413 513 6/13
Existence Prob. Lo Lo Lo Lo 10 0.9999
N=I3—17 Rate m3 813 F 93 1013 113 1213
Existence Prob, 09997 0.9987 ’7().‘)%9 0.9308 0.6972 0.32355
N-:[7 Rate 15 15 ’7 15 4ns 5Nns 6/15 s
Existence Prob, 1.0 1o Lo 10 1] 0.99995 | 0.99995
N=15 ’ Rate 815 915 wns 11s 21s 1315 14115
Existence Prob. 0.99995 | 0.9995 0.9966 0.9819 0.8999 0.6388 0.293
N= 7—’7 Rate mn7 wni nz 4an7 517 617 mi 8/17
Existence Prob. 1o 1.0 1.0 Lo 1K) 1.0 1o 1.0
N=17 Rate w7 1017 nn7 1217 1317 14/17 15117 16/17
Existence Prob, Lo 01,9999 0.9989 0.9938 09713 0.8598 0.5902 0.21195
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2.5.4 Lower and Upper Bounds on the Coding Gain

In Corollary 2.8, an upper bound of the coding gain of an MC over a given
ISI channel has been given, which is the length of the ISI channel and
independent of the coefficients of the ISI channel. The upper bound may
not be tight enough in some cases. In this section, we first present some
new upper bounds of the coding gain of some special MC. In particular, we
discuss the case of the ISI channel with two taps. We then present a lower
bound of the coding gain of the optimal rate 1/T' MC, where T is the length
of the ISI channel and the optimality means the maximal free distance.

Theorem 2.13 Let H(z) = Ho+2"'H; be an ISI channel with Hy and H;
as in (2.5.9)-(2.5.10) and the BPSK be used for the information sequence
z(n). Let G(z) = Go+27*G1++--+2"FGp, where G, forp=10,1,--- , P
are N by K constant matrices, be a rate K/N normalized MC with N =T.
Then, the coding gain yrsy of the MC G(z) compared to the uncoded AWGN
channel is upper bounded by:

V1s1 < Amax(H{ Ho + H{ Hy), if G(z) = Go;

vrsr < max{Amax(2H{ Ho + HY Hy), Anax (HY Ho + 2H] Hy)}, if G(2) =
Go + 27 1Gy;

Y11 < 2\max (HL Ho + HI H1), otherwise,
where t denotes the complex conjugate transpose, and Amaq(A) denotes the
mazimum eigenvalue of matriz A.

Proof. According to the trellis diagram and the randomness of the
information vector sequence, we choose the correct path as all-zero path,
and the input signal vector sequence with length P +2 as (1,1,1,---,1)T,
(,1,1,--- . DT, ... (1,1,1,---,1)T | the corresponding error path as
(1,0,0,---,0) = (0,1,0,---,0) = (0,0,1,0,--- ,0) = ---, = (0,0,0,--- ,0,1)
and the other input signal vector sequence as (1,1,--+,~1,---,1)7 (note
that the signal vector has only one entry of —1 in its k-th component) ,
(1,1,1, ---, D7, .-+, (1,1,1,--- ,1)T. In this case, we know that the dis-
tance A, between the two input signal vector sequences is equal to 4 and
the corresponding distance between the combined MC output sequences is
as follows:

Ap = GEHIHGE+

P
> {HoGE + HiGy_ Y {HoGY + HiG)_,} + G HI H, G5,

p=1

where G} denotes the k-th column vector of matrix G,. As we know, the
free distance of the combined MC should be equal to or less than A, for
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all k =1,2,--- ) K. Thus, we have

ZkK:]. Ak

First, let us consider the case of G(z) = Gy. In this case, (2.5.26) becomes

2
dfree,C

< mkin Ay < (2.5.26)

K
direec _ Yimy Go {HHo + H{H,}G§
4 = K
By the normalization property of G(z) it is easy to see that

d2reeC N
‘f—4—’ < )\max(HgHo + HIHI)‘I?-

By using the coding gain definition in (2.4.1), the conclusion is obtained.
When G(z) = Gy + 271Gy, by using the triangular inequality, we have
Breec iy Go (2HJ Ho + HIH\}GE + Gy {H] Ho + 2H] H1)GY
4 K '
Using the same method, the above formula becomes

d2 K kt ~k

Zfree,C < )\max(QHgHO +H1"H1)—Z£E9ﬁ
4 K
ZkKZI GifG%

+/\max(HgHO+2HIH1) K

< max { Amax(2H Ho + H} H1), Amax (H} Ho + 2H] )}
T, (G'Gh + 6Gh
| K
t t t tr L N
< max { Amax(2HS Ho + HIHy), Amax (HS Ho + 2H] Hl)} =

The last part of Theorem 2.13 can be similarly proved. =
By using the above result, the following corollary can be obtained di-
rectly.

Corollary 2.11 let H(z) = ho + hr_12~T~1) be the ISI channel with T >
1, and the BPSK be used for the information sequence x(n). Then, the
coding gain yrsr of a rate K/T' MC G(z) is upper bounded by

1+ |h0h1"_1, S 15, Zf G(Z) = Go,
yrsr < 4 SReHVU-RIATIEG 98 if Gz) = Gy + 271G,
2{1 + |hohr-1[} < 3, otherwise,

(2.5.27)
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and the coding gain v of a rate K/(I' — 1) MC G(z) is upper bounded by

11 1’f G( ) GO;

vyrsr < max{l-i—h%,l-i—h%_l} < 2, 1,fG(Z) = G0+Z—1G1,
2, otherwise.

N (2.5.28)

This corollary shows that, when the ISI channel has two taps hy and
hr_i: if I' = 2, then the new upper bound is looser than the one, 2, in
Corollary 2.8; if I' = 3, the new upper bound is the same as the one in
Corollary 2.8; if ' > 3, the new upper bound is tighter than the one in
Corollary 2.8.

As an application of Corollary 2.11, we let H(z) = hg + hr_12~ T~
be the ISI channel with I' > 1, and the BPSK be used for the information
sequence z(n). The coding gain of rate 1/(I' — 1) MC is upper bounded by
(2.5.28), which implies that there does not exist rate 1/(T" — 1) block MC
having coding gain over the above ISI channel, which coincides with the
result in Theorem 2.6.

In the following, we will present a lower bound of the coding gain of the
optimal MC over a given ISI channel.

Theorem 2.14 Let H(z) be an ISI channel with T’ taps with I’ > 1, and
ho # 0 and hr—y # 0, and the BPSK be used for the information sequence
z(n). Then, the coding gain vyrsyopt of the optimal rate 1/T MC over the
ISI channel is lower bounded by

—s-1

Z h ht-}—s

Proof. Let G(z) be I" by 1 constant matrix. The free distance of the
received signal sequence after the ISI channel is given by

d i -1 .
el = Z Y gk Y hraiojgi

i=0 k=0 =i+l

YISI,opt > = m {1 -+ (2529)

2

Then it is not hard to see that

d2 o T—s—1
E { ——"Ze’ go,gs} =I'+2 ( Z h"h’“) ogs-

=0
Without loss of generality, we only consider normalized MC G(z). In
this case,

r-i

Y g=T

=0
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Choose gy and g, satisfying the following conditions

T—s—1
. r
o= (5 ). -

=0
d2
E { —Jiz—c Y hihigs ) .

Thus,
I'-s-—1

gO,gs} =T (1 +
=0

This indicates that, for all I' — 1 > s > 1, the free distance of the optimal
normalized MC over the given ISI channel satisfies

By using the coding gain definition in (2.4.1), (2.5.29) is proved. =
We next want to see some examples.
Example 1: Let the ISI channel be

F-s—-1

> hihigs

=0

dfree C
4

>I' max (1 +

s=1,2,---,I'—1

opt

1 1
h = [—,——=]
[\/5 \/il
In this case, the lower bound of the coding gain in (2.5.29) of the optimal

rate 1/2 MC is 1.5. The upper bounds of the coding gain in Corollary 1
and I of the rate K/T" MC in Theorem 2.3 are

1.5, if G(z) = Go,
1.5 < y1s1,0pt < { 2,  otherwise.

Example 2: Let the ISI channel be
h = [0.5,-0.5,0.5,—0.5).

In this case, the lower and upper bounds of the coding gain of the optimal
rate 1/4 MC code are

2.7748, if G(z) = Go,

L.75 < vrs1,0pt < { 4, otherwise.

Example 3: Let the ISI channel be N taps, and the channel response

be
1

ho= 1 1 ]
In this case, the lower bound of h dmg gain of the optimal rate 1/N
MC code is

N-1
YISI,opt Z 1+T “)2:3dB, as N — oo






Chapter 3

Joint
Maximum-Likelihood
Encoding and Decoding

In this chapter, we study the maximum-likelihood MC encoding and de-
coding combined with an ISI channel. We first present the performance
analysis by using the union bound, which is determined by the distance
spectrum of the combined MC. We then present an algorithm to calculate
the distance spectrum by introducing the error-pattern trellis due to the
simple MC encoding operations. We also present an algorithm to find the
optimal MC given an ISI channel such that the free distance of the combined
MC is the maximal. In this chapter, the results in [178] are summarized.

3.1 Performance Analysis of MC

We now present the performance analysis of MC coded ISI channel using
the maximum-likelihood sequence estimation (MLSE) when the ISI channel
is known at the receiver. Since the combination of an MC and an ISI
channel is an MC in the AWGN channel, to study the performance, we
only need to study it in the AWGN channel. The encoder for an MC is a
finite state machine (FSM), whose transitions are determined by the input
data sequence. The decoder attempts to retrace the path, i.e., the state
sequence, which the encoder has taken. An error will be made if the decoder
follows a path that does not coincide with the one taken by the encoder.
An important performance measure is the error event probability, which is

49
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similar to the one for trellis codes, for example [119].

Let us first review the performance bounds for trellis codes. Fig.3.1
shows a correct path (solid line) and a set of possible error paths (dotted
lines) in a trellis. The code length is [ (! time units), and the code is always
assumed to start at the all-zero state and terminate also at the all-zero
state. The error event probability, P., is an averaged probability of error
paths per time unit. The average is taken over all possible correct paths.

Thus, P, is bounded by the following union bound

P, < Zp(c)P (U edc) (3.1.1)

where p(c) is the probability that the encoder chooses path ¢, and e; is the
ith error path departing from the correct path c in a time unit.

length |/

30 O V---------- £3) O O

Figure 3.1: The correct path and a set of possible error paths.

The upper bound of the error probability is evaluated in [119, 17]. Let
D denote the set of all possible squared Euclidean distances between the
signals on two different paths in the trellis code. We count how often each
of the distances d occurs, and denote A,z the average number of times the
distance d occurs, which is named the average multiplicity of d. The error
probability is upper bounded by

P.< ) AeQ ( d2@) (3.1.2)

ryed 2Ny

where R = K/N is the code rate, Ej is the energy per information bit, and
Ny is the one-sided noise power spectral density. The smallest d found in
the trellis is called the free Fuclidean distance, dfree, or free distance for
short.
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The information bit error probability (BER) associated with the code
can also be similarly treated. Each error event ¢ — e; will cause a certain
number of information bit errors. We count the averaged number of in-
formation bit errors, Bz, on all error paths with distance d. The average
is taken over all possible correct paths ¢. If A,z in equation (3.1.2) is re-
placed by Bgz, we obtain a bound on the information bit errors per time
unit. Since an (N, K) trellis code processes K information bits per time
unit, the average bit error probability is bounded by (see [119]),

Py< Y %decg (,/d? RE") . (3.1.3)
d2eD

The infinite set of triplets {d?, Ag2, B2} is called the distance spectrum
of the trellis code. Each triplet {d?, Ag, B4z} in the distance spectrum is
called a spectrum line.

The lower bound of the error probability is determined by d3,., [17],

RE,
2
Ad?reeQ < dfree 2N, )

— 1 9 RE
P, > EBd?MEQ ( dfree 2N, )

Algorithms have been presented for computing the distance spectrum,

ol
v

{dz,Ad2aBd2}a

for trellis coded modulation (TCM) with some special properties, such as
the quasiregularity in [112].

Since MC are also trellis codes with Euclidean distances, the above per-
formance bounds apply directly to MC. In a time unit, K symbols are input
to an MC encoder, i.e., Klog, M bits. The bounds of bit error probability
for MC are

— RE,
Py, < 2 1.4
o <Y Fiooit deQ( ¢ NO), (3.1.4)
d2eD
— 1 RE,
Py, > ———Bp —_— . 1.
b = Klog2M d_freeQ< d%ree2N0) (3 5)

A method to compute the distance spectrum for an MC is presented in the
following section.
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3.2 A Method for Computing the Distance
Spectrum of Modulated Codes

Let us first review the method for distance spectrum computation for trellis
codes. It has been mentioned in [9, 112] that distance spectrum of a trellis
code can be computed from a trellis error diagram, which corresponds to the
error-pattern trellis for an MC later. However, there are two main reasons
that finite-field-defined trellis codes (e.g., TCM) usually do not use the
trellis error diagram in distance spectrum computation. First, for regular
trellis codes, the set of distances of incorrect paths from a correct path
does not depend on the correct path, and hence the distance spectrum can
be calculated by assuming that a specific information sequence, e.g., the
all-zero information sequence, was sent [138, 67]. Therefore, the distance
spectrum can be computed from the trellis code’s own trellis and it is not
necessary to build a trellis error diagram. Second, for non-regular trellis
codes, e.g., quasiregular trellis codes, all correct paths do not contribute
the same to the distances. Thus, we have to consider all correct paths
to compute a precise distance spectrum. A solution is to build trellis error
diagrams. However, due to the nonlinear binary-to-complex mapping, there
is no unique trellis error diagram from which a precise distance spectrum
can be computed. In other words, a set of trellis error diagrams have to be
built and the distances must be averaged over all these diagrams, which may
be too complicated in practice. As an approximation approach, Rouanne
[112] has shown that the worst case distance spectrum of quasiregular codes
can be computed by first assuming that the all-zero information sequence
was sent, and then following the method for regular trellis codes. The BER
bound computed from the worst case distance spectrum is clearly a looser
upper bound than the one in equation (3.1.3).

We note that an MC is a nonlinear code, i.e., the sum of any two
codewords may not be a codeword. A consequence of the nonlinearity is
that there does not exist any all-zero path in an MC trellis. Furthermore,
correct paths give different contributions to the distances (see details in
Section 3.2.1). Thus, trellis error diagrams must be built to compute the
precise distance spectrum. Although an MC is nonlinear in terms of finite
symbol input information sequences, i.e., the codewords, it is linear when
all the input sequences are treated as arbitrary complex-valued, i.e., the
MC encoding operation is the complex matrix-vector multiplication. This
special property of an MC implies that the distances can be computed
from a unique trellis error diagram, the error-pattern trellis, by applying
the generator matrix G(z) directly to the error sequences along the paths
in the trellis. The error-pattern trellis represents the multiplicity Az and
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By averaged over all correct paths in the MC trellis. Thus, the precise
distance spectrum can be obtained by using some searching algorithms on
the error-pattern trellis, e.g., the bidirectional stack algorithm [112, 67],
and the tight BER upper bound in equation (3.1.4) can be computed. In
the next subsection, we present a method to build up such an error-pattern
trellis.

3.2.1 Error-Pattern Trellis

First, let us define an error-pattern trellis. The difference between any two
information symbols (with total M symbols) is called an error symbol. Let
M, denote the number of all different error symbols including error symbol
“0”. In each time unit n, K symbols are input to the MC encoder with
a generator matrix G(z). These K symbols are called an input vector,
i.e., X(n). There are M¥ different possible input vectors. The difference

between two input vectors, U(n) 2 X, (n) — X2(n), is defined as a branch
error pattern. The number of all possible branch error patterns is MX. The
error-pattern trellis associated with the MC G(z) (or simply error-pattern
trellis) is defined as the trellis with K error symbols as the input and G(z)
as the generator matrix. Note that the number of states of the error-pattern
trellis is M?, while the one of the original MC trellis is M”, where v is the
constraint length of the MC. For each state in the error- pattern trellis, there
are MK branches entering it and also MX branches leaving it.

Let us see the following example. We assume an MC with K = 2, N = 4,
constraint length v = 2 and the generator matrix G(z) as follows:

_0.4695 0.1720 —0.3806 —0.9119
| —0.4044 06677 .| 06796 05152
G)=1| 10321 o272 |*t7 | _0.1820 04657 (32.1)
1.0840 —1.1829 0 0

BPSK signal set {1, —1} is used as the information symbols. Fig.3.2 shows
the trellis of the code G(z). There are four branches leaving each state and
another four entering it. If binary “0” mapped to BPSK symbol “1” and
binary “1” mapped to “-1”, the four branches leaving each state correspond
to input symbol vectors {1,1},{1,—1},{-1,1},{—1-1}, respectively. If these
four input vectors occur at the encoder with equal probability 1/S, where
S = M¥X is the number of input vectors, any path with length { in the
trellis occurs with a probability of 1/S'. In this example, S = 4.

Given the generator matrix G(z), if two different input vector sequences
are {X1(n)},_, and {Xa(n)},_, and their output vector sequences are
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0:{1,1} Branches

Figure 3.2: The trellis of a modulated code.

{Yi(n)}, -, and {Y2(n)}!,_,, respectively, due to the linearity of the MC en-
coding operation, the distance between the two output sequences, d(Y1, Y2),
is determined only by {U(n)},_y = {X1(n) — X2(n)}, oo (see (2.2.4)).
Therefore, by exploring all the possible patterns of U(n), the distance set
can be determined.

We form the branch error patterns by computing all possible values of
U(n) = X;(n)— X2(n). Table 3.1 shows the possible branch error patterns.
There are total M, = 3 error symbols: {0,2,~2}, and they form MX =9
branch error patterns. One can see that the error pattens in Table 3.1 occur
with different frequencies. Some patterns are more likely to occur, and some
patterns are less likely. We name the frequencies of these occurrences the
weights, a, of the error patterns, as listed in Table 3.2. Table 3.2 also lists
the number, b, of information bit errors associated with each branch error
pattern. Similar tables for other signal alphabets can be found in [75].

Table 3.1: Possible branch error patterns.

correct input vector Xj(n)
error input vector Xp(n) |[ 1, 1] 1,-1]-1,1] -1,-1

1,1 0,0[0,2]-20] -2, 2
1,-1 0,2] 0,0 [-2,2] -2,0
1,1 2,0(2,2]|0,0] 0,2
1,1 2,2 2,0]0,2] 0,0
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Table 3.2: Weights and bit-error numbers of error patterns.

branch error pattern || weight (a) | bit-error number (b)
0,0 4 0
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Note that, for a particular correct path ¢, only some of the error pat-
terns in Table 3.1 may occur. For example, if we consider a correct path
with input z(n) = (1,1,1,1,...), only the branch error patterns in the sec-
ond column of Table 3.1 occur. In order to obtain the complete distance
spectrum, we must consider all correct paths in the trellis. Therefore, we
label the error-pattern trellis with the weight a’s and bit-error numbers b’s
listed in Table 3.1.

Fig.3.3 shows the error-pattern trellis. The state number is MY = 9,
state O conrresponds to the error symbols {0,0} in memory, state 1 to {0,2},
state 2 to {0,-2} and so on. Fig.3.3 only shows 9 branches, but actually for
each state, there are MX = 9 branches leaving it and 9 branches entering
it.

The branches are labelled with their branch error patterns (taken as in-
put vectors), as well as their weight o’s and bit-error numbers b’s as (a, b).
A path p in the error-pattern trellis is called an absolute error path. When
applying generator matrix G(z) to the input sequence on such a path p,
as shown in equation (2.2.4), we obtain a distance triplet of {d?, A%,, B, }
(superscript p denotes path p). The computation of {A%,, BY,} is straight-
forward [108, 112, 115]. The number A%, is the product of the | weights a;,
i=1,2,...,1, along the [ branches of the path p and then divided by S!,
and Bf,; is A, times the sum of the ! bit-error numbers b;, i = 1,2,...,1,
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Figure 3.3: The error-pattern trellis.
along its ! branches, i.e.,
1
AP, = ynai, (3.2.2)
=1
!
BL, = AL b (3.2.3)
i=1

From the definition of an error-pattern trellis, it is not hard to see the
following Lemma.

Lemma 3.1 An absolute error path in an error-pattern trellis can be de-

composed into Hizl a; different pairs of correct paths ¢ and error paths e.
All of the pairs in the decomposition have the same Euclidean distance and

the same number of bit errors.

The possibility of each correct path is 1/5'. Therefore, the absolute er-
ror path p contributes A%, = & Hi=1 a; to the multiplicity of the distance d.
For example, the absolute error path with input (U(n)) = ({2,0}, {-2,-2})
can be decomposed into 2 pairs of correct paths and error paths: a correct

path with input
(X(n)) = ({1,1},{-1,-1})
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and an error path with input
(X(TZ.)) = ({_11 1}7 {1? 1})a

or a correct path with

(X(n)) = ({1’ "l}a {‘17 -1})

and an error path with

(X(n) = ({-1,~1},{1,1}).

The number B, following its definition, is the averaged bit-error number
of the Hi=1 a; pairs over all possible correct paths. Since each pair occurs

with the probability of 1/S' and has the bit-error number of Zizl b;, the
averaged value is

Piotat 1 1 l
1 1
B, = E:}ﬁi:m:]]aﬁﬁE:m (3.2.4)
m=1 =1 i=1 i=1
!
= AR b (3.2.5)
=1
= A%, WP, (3.2.6)

where Pjo4; is the total number of pairs decomposed from an absolute error
path, and b is the bit-error number of each pair, or the bit-error number
along the absolute error path p, i.e.,

i

Piota = ] ai, (3.2.7)
=1
[

¥o= ) b (3.2.8)
=1

3.2.2 Distance Spectrum and Bidirectional
Searching Algorithm

With the error-pattern trellis, the distance spectrum {d?, A2, Bg2} for an
MC can be easily computed by following the bidirectional stack algorithm,
which was presented in [112, 67] for quasiregular tréllis code. The detailed
bidirectional distance spectrum calculation algorithm is as follows.
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The searching algorithm on an MC error-pattern trellis is based on a
bidirectional stack algorithm for TCM in [112]. The algorithm extends
paths forward and backward along the error-pattern trellis simultaneously.

A forward path leaves the all-zero state in the forward direction and
reaches a non-zero state. A backward path leaves the all-zero state in the
backward direction and reaches a non-zero state. Once a path has remerged
with the all-zero path, it is discarded. If a forward path and a backward
path reach the same state, we say that the forward path merges with the
backward path, or a merger occurs, and a distance d occurs.

A path is determined by the following information.

e fw: forward or bw: backward — direction

e s — terminal state

[ — length

d — distance

A — multiplicity
e B — number of bit errors.

The terminal state s is the last state reached by a path of length [ (I branches
from the all-zero state for an fw path, or [ branches to the all-zero state for a
bw path). A is the product of the weights a;, i = 1,2,...,! along | branches,
ie, A= Hi:l a;. B is the sum of bit-error numbers bi: 1=1,2,...,1 along
! branches, i.e., B = Eézl b;. The squared distance d? is computed by:

1. applying G(z) to the input sequence (U(n)) on the path, and obtain-
ing the output sequence (W (n)) =

{wr (1), w2 (1), - ., wn (D}, {wi (2), wa(2), - .., wn (@)}, ...,
{w1 (1), w2(l),...,wn()}).

2. letting d* = ZLI Z:’:l w? (3).

Two paths are identical if and only if they have the same direction, terminal
state s, length  and distance d. Two stacks are used for storing the infor-
mation of paths, one for each direction. Each entry in the stack contains a
path with all its information. All paths are ordered from the stack top by
the order of increasing distances. So the top path in the stack is the most
likely to give the free distance. We also have a table that stores the tem-
porary spectrum lines {d?, A2, B2} by the order of increasing distances.
The algorithm is described as the following steps.



3.2. DISTANCE SPECTRUM CALCULATION : 59

1. Load the forward and backward stacks with the origin node s = 0,
with squared distance d?> = 0, length [ =0,and A=1, B=0.

2. Extend the top path in forward stack by computing its MX succes-
sors. For each successor, if it reaches all-zero state, it is discarded;
otherwise, compute its [, d>, A and B. If the top path has l;, d?, A,
and B;, then the squared distance d?, the length I, the multiplicity A
and the bit-error number B of a successor are

I = L+1, (3.2.9)
N

& = di+) vin), (3.2.10)
n=1

A = A xa, (3.2.11)

B = B+, (3.2.12)

where {v/(1),v(2),...,w(N)}, a; and b; are, respectively, the out-
put symbols, weight and bit-error number on the lth branch of the
successor.

3. Delete the top path from the stack.

4. For each successor, check its information with the paths in forward
and backward stacks. Three situations may occur as follows.

(a) The successor is not identical to any forward path. Then, create
a new entry in the forward stack to store the successor as a new
path and its information.

(b) The successor is identical to a forward path. Then, update the
information of the identical path by

Apew = Aga+ A (3.2.13)
Aotg X Botyg + Ax B

Brew 3.2.14

Aja+ A ( )

where A4, Boig are the old information of the identical path in
the forward stack, and Anew, Bnew are the updated information
in the stack, respectively. Note that although the paths are
identical (same direction, s, I and d?), they may have different
multiplicity and bit-error number. So B is the number of bit
errors averaged over the total multiplicities of all identical paths.

(¢) The state s is the terminal state of one or more backward paths
in the backward stack. Thus, the successor is merged with these
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backward paths, and one or more distance pairs are achieved.
Let d},,, lfw, Ajw and By, denote the squared distance, the
length, the multiplicity and the bit-error number computed in
step (b) of the successor, and d?,, lyw, Abw and By, denote the
ones in the backward stack of a backward path that merges with
the successor, respectively. Thus, the squared distance, d2,,, ;.
the length, l;,erger, the multiplicity, Amerger, and the bit-error
number, Bperger, Of the merger are computed by

Gerger = o, +diy, (3.2.15)
lnerger = ljw +lbw (3.2.16)
Amerger =  Agfw X Apw (3.2.17)
Bmerger = Bfuw + Biw (3.2.18)

Following equations (3.2.2)-(3.2.8) and Lemma 3.1 in Section
3.2.1, the multiplicity and bit-error number, denoted by
A(d?

merger

) and B(dznerger ’

respectively, are what the merger contributes to the spectrum
line for the squared distance d? = df,mger. They can be com-

puted via
Amer er
A(dfnerger) = _Slmﬁ, (3219)
B(d,erger) = Bmerger X A(@erger).  (3.2.20)

If an entry with squared distance d*> = dZ,,, ., has existed in the
table of the temporary spectrum lines, we increase the values of
its multiplicity and bit-error number, {Ag2, By2}, by

{A(d?'nerge'r)’ B(dgnerger)};

If an entry with such a distance has not existed, we create a new
entry of {d? A(d2,rger), B(dZ,,, 4.} in the table.

merger?’

5. Rearrange the forward stack and the table of the spectrum lines in
the order of increasing distance.

6. Output all the spectrum lines in the table whose distances are smaller
than the sum of the minimum forward and backward distances. These
spectrum lines are “mature” since their values of {Agz, B2} will not
be increased any more. After the output, these spectrum lines are
erased from the table of the temporary spectrum lines.
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7. Change to the backward direction and repeat steps 2-6: extending
the top backward path by its MX successors, check their merging
information etc. Keep on changing the directions and repeating steps
2-6 until the desired number of spectral lines have been output, then
stop.

Fig.3.4 shows the distance spectrum (the first 50 spectral lines) of the
MC G(z) in the example. In this case, d%, , is 13.0555. Fig.3.5 shows a
comparison of the computer simulation results we performed with the per-
formance bounds computed from the spectra of the MC G(z). An AWGN
channel is used.

3 T T T T T

25

- il Ily“l”””””

Squared Euchdean Drstance (d2

15 T T T T T T T

. L ull 112.2 Jl;lol ““'hsll ]I”l i HJ ”HJO

Squared Euclidean Distance {d?)

Figure 3.4: Distance spectrum of the MC G(z).

3.3 Simulation Examples

In this section, we study the optimal modulated codes searched for the ISI
channel
h = [0.5000, 0.5000, —0.5000, —0.5000].

It should be emphasized that the ISI channel can be arbitrary and the
above example is purely for convenience. Due to the high complexity in
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MC v=0, free d°=13.0555, channel=[0.5;0.5;-0.5;~0.5]

W T T T T T
-=-- upper bound
...| #—*  simulation |[.
gomm lower bound|..

Bit Error Rate

Figure 3.5: BER of the MC G(z) on AWGN.

searching for good MC with long constraint lengths, we only consider MC
with the constraint lengths of » = 0,1, respectively. The distance spec-
trum, simulated BER performances and BER bounds are also shown. The
performance comparison with the optimal binary convolutional code on the
same channel is presented.

Let C(z) with K = 2 and N = 4 be the combined generator matrix
as shown in (2.3.2) of an MC G(z) and the channel h. The generator
matrix C(z) produces another MC. The performance of the MC G(z) with
the ISI channel is the same as the performance of the MC C(z) with an
AWGN channel, and thus is lower bounded by the free distance of the MC
C(2). Therefore, we search for an optimal matrix G(z) that maximizes the
free distance of the corresponding C(z). Random searching’ is performed,
and suboptimal matrices G(z) for the ISI channel with constraint lengths
v = 0,1 are as follows. The combined matrices C(z) associated with G(z)
and their free distances are also shown below.

! An optimal MC searching algorihtm will be presented later.
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The case of v = 0, i.e., block MC:

~0.9390 0.3440
3 0.1302  0.9915

Go2) = | (o951 -0.0990 |°

| 0.3641 —0.9314

[ —0.4695 0.1720 ] —0.3806 -0.9119
Colz) = ~0.4044 06677 | _,| -0.6796 05152
0 = 1.0321  0.2742 z —0.1820 0.4657 |’

1.0840 ~1.1829 | 0 0

dree(Co) = 13.0555.
The coding gain in this case is

Yisro = 137055 = 2.127dB.

The case of v = 1:

-

0.0432  0.7248 0.6876 0
B —0.2061  0.9041 1| -0.3742 0
Gi(2) = | 7053 —o06s54 | 7% | —07015 o0 |
| 0.8042 -0.5756 | | —0.1481 0
[ 0.0216  0.3624 [ 0.9466 —0.3972
Ci() = —0.0814 0.8145 4o —0.1478  0.6305
BT 02223 -0.2530 —1.2838  0.2878
| 0.3859 —1.4450 | | -0.5815 0
0.4638 0
o | 0.4248 0
0.0740 0 [°
0 0
d%ree(C1) = 14.0422.

The coding gain in this case is

14.0422 = 2.4435dB.

YISI1 =

Note that the above codes C;(z) are obtained by numerous computer
searches, which may not be the optimal ones for the channel h as we will
see later. The distance spectrum of the combined code Cgy(z) is the same
one as shown in Fig.3.4. Its BER performance and bounds are also shown
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Figure 3.6: Distance spectrum of the MC C (z).

in Fig.3.5. The distance spectrum, BER performance and bounds of the
code C;(z) are shown in Fig.3.6 and Fig.3.7, respectively.

The optimal binary convolutional codes (CC) with K =2 and N =4
for the ISI channel /i with constraint length » = 0 or 1 are also searched by
maximizing the free distance of the combined codes of the CC and the ISI
channel. The BPSK symbols {1, -1} are used after the CC. The optimal
CC we obtained after searching and the maximum free distances of their
combined codes are listed below. Their BER performances are compared
with the optimal MC in Fig.3.8. The figure also shows the performances
of uncoded BPSK on an AWGN channel and the rate 1/2 CC on the ISI
channel with the following generator matrix G3(D). The CC G3(D) has
constraint length » = 3 and its free distance is optimal for an AWGN
channel. In the above simulations, all the decoding algorithms are the joint
maximum likelihood decoding MC or CC with the ISI channel. In Fig.3.8,
the BER vs. Ey/Np curves are shown for uncoded BPSK on AWGN channel
marked by dashed line; the channel independent CC G3(D) marked by x;
the optimal binary CC Gg(D) marked by o; optimal binary CC G;(D)
marked by *; the MC Gg(z) marked by A; and the MC G;(z) marked by
O.
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where D denotes the delay variable.

65
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Figure 3.8: BER performance comparison of MC and CC codes on the ISI
channel.

3.4 An Algorithm for Searching the Optimal
MC Given an ISI Channel

In the previous section, we presented an efficient algorithm to calculate the
distance spectrum for a combined MC C(z). In this section, we present
an efficient algorithm to search the optimal MC G(z) of a given size for
a given ISI channel such that the free distance of the combined MC C(z)
is maximal.- For convenience, in this section all coefficients are considered
real valued.

In what follows, the ISI channel H(z) of I' + 1 taps is fixed and the size
of the combined MC is also fixed, where an (N, K) MC encoder G(z) of
order Qg is used and the constraint length » of the combined C(z) is thus
fixed to

r
v =11 K, where v = [N] + Qg (3.4.1)

In other words, the error-pattern trellis diagram is fixed, i.e., the input
patterns are fixed while the outputs on the trellis depend on a particular
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MC encoder G(z). For a given G(z), the bidirectional searching algorithm
presented in Section 3.2 is used to find the free distance dree,c Of C(2),
which is the minimal norm among the output sequences of all the nonzero
paths in the error-pattern trellis. Since the MC encoding is over the real
field, the norms of the output sequences on the paths can be calculated as
follows.

Similar to Section 3.2, {U(n)} denotes a difference sequence of two
different input signal sequences {X1(n)} and {X»(n)}, which corresponds
to a path or input sequence in the error-pattern trellis. The norm of the
output sequence {W(n)} on this path is

2O =W e = IC(2) UG, (3.4.2)

where W(z) = C(2)U(z). Therefore,

2 _ : 2 _ B 2
G =i S IW O = pig CEUGIE (343)

We next want to éxpress the output sequence norm in (3.4.2) in terms of
the coefficients in an MC encoder G(z) and an input path {U(n)}. For
convenience, let us first consider it in the z-transform domain.

Let G(2) = (9i;(2)) and gi(2) = [9:1(2), - - , 9ix (2)]". Then,

UE)™ 0 0 g1(2)
we-mE| 0 T o) el
0 0 UE)T | | gn(z)

(3.4.4)

Let W=[-- ,WT(n-1), WT(n),---]7 be the sequence vector of the output
W(z) with the input U(z). Then equation (3.4.4) tells us that

W = AU)G, (3.4.5)

where G is a (K N(Qg+1)) x 1 column vector formed from all the coefficients
of total number KN(Qg + 1) of g;(z) since each g;;(z) has order/degree
Qc¢, and A(U) is a constant matrix formed from the coefficients of H(z)
and U(z). Therefore, the squared norm of the output sequence {W(n)} is

IWI? = T AT(V)AU)G, (3.4.6)
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which is a quadratic form of G. If a path or an input sequence {U(n)}
repeats a non-all-zero state, i.e., there exists ny # n; such that

s = [UT(nz + 1),'-- ,UT(TL2 + I/1)] = [UT(m + 1),' .- ,UT(n1 + Vl)] ;é 0,
(3.4.7)

then there always exists another shorter path {Ui(n)} such that the norm
of its corresponding path output sequence {W;(n)} is the same or smaller,
where {U;(n)} is simply obtained by cutting the segment between the same
state. This means that the path {U(n)} can be ignored or deleted in the
free distance calculation. Therefore, to consider the free distance all the
paths that have repeated non-all-zero states can be excluded. The length of
a path {U(n)} is defined as | = ny —ny, where U(n) for n < n; and n > ny
are the all-zero state, i.e., U(n) =0 for n < n; + v; and n > ny — v4, and
it does not reach the all-zero state in the middle, i.e.,

UT(n+1),---,UT(n+1)]#0, for n1 <n<ng—u.

Let P denote all the paths {U(n)} of length MY +1, where v is the constraint
length of the error-pattern trellis and defined in (3.4.1). Clearly, the set P
has a finite number of paths. Note that there are total M} states and each
state has MX paths joining in and MX paths going out. By the above
non-repeating state argument we have

2 _ : 2 _ : T AT
@ ree,c —O%gpinjnvv(n)n = min GTATW)AUV)G.  (348)

Therefore, the optimal (N, K) MC G,p:(2) of order Q¢ with the coefficient
vector Gope is

Gopt = arg max{ min_ GTAT(U)AWU)G « |IG]I* = N}, (3.4.9)

where }|G[|> = NV is the normalization condition of an MC. When K = N =
1, this problem has been considered in [48, 115]. Usually the number of
paths in the set P is large and the optimization problem in (3.4.9) is too
expensive to solve. We present the following efficient algorithm proposed
in [115].

Algorithm

Step 1: Choose a subset Py with a few number of paths of P.
Step 2: Solve the following optimization problem:

Gopt.0 = arg mga,x{o;érrl}iélpo GTAT(U)AWU)G : |IG])? = N}. (3.4.10)
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Step 3: Find the free distance de.,c of the combined MC C(z)
using the above MC G,,: 0 and a shortest path Uy € P that reaches
this free distance.

Step 4: If Uy € Py, stop. Otherwise, add this path to the subset:
Po = Po U {Us} and go to step 2.

Since the free distance is always reached in P and P has only finite
elements, the above algorithm always stops in finite steps. Furthermore,
it is not hard to see that the solution from the above algorithm is always
the optimal MC G,p:(2). As a remark, the initial path subset Py in step 1
usually takes the first few shortest paths in the error-pattern trellis. Similar
to what was mentioned in [115], this algorithm works very efficiently from
our numerical examples.

Example 1:

Consider the ISI channel h = [0.5, 0.5, —0.5, —0.5] in Section 3.3. The
optimal block (4,2) MC is

-0.4641 0.8875

~0.9982 —0.0240
—0.0240 —0.9982
0.8875 —0.4641

Gopt (2) =

The squared free distance of the combined MC is d?,ree,c = 13.2547. It has

coding gain 2.19 dB compared to the uncoded AWGN channel, which is

slightly better than the one in Section 3.3 with the same constraint length.
The optimal (4,2) MC of constraint length 2 is

0.3716 —0.1667 0.6264  0.7712
Gopi(z) = —0.0287 —0.6248 e 0.7041 —0.1469
opt —0.7245 -0.2528 —0.1660 —0.6064
-0.3990 0.7082 —0.4914 -0.2283

The squared free distance of the combined MC is dfc,ee’c = 16.4367. It has
the coding gain is 3.13dB compared to the uncoded AWGN channel.

Notice that the upper bound of the coding gain of an MC for this channel
compared to the uncoded AWGN channel is 6dB.

Example 2:

Consider the ISI channel [1/v/2, 1/v/2]. The optimal (2,1) MC of con-
straint length 0 is

Gonle) = | 1 |-
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The squared free distance of the combined MC is dfc,,ee,d = 12 and the
coding gain compared to the uncoded AWGN channel is 1.76dB.
The optimal (2,1) MC of constraint length 1 is

_[05055 ], _y[ 08629
Gop(2) = [ 0.8629 ] +z [ 0.5054 ]

The squared free distance of the combined MC is d%,., ¢ = 14.4671 and
the coding gain compared to the uncoded AWGN channel is 2.57dB.
The optimal (3,2) MC of constraint length 0 is

1.0105  0.0326
Gope(2) = | 0.6913 —0.6914
-0.0327 —1.0104

The squared free distance of the combined MC is d%,,, ¢ = 8.704 and the
coding gain compared to the uncoded AWGN channel is 1.62dB.
The optimal (3,2) MC of constraint length 2 is

—0.0353 —0.4874 0.7834 0.2469
Gope(z) = | 03175 -0.7121 0.3700 0.6290
0.7598 —0.3851 0.0041 0.4694

The squared free distance of the combined MC is d3,,, ¢ = 10.187 and the
coding gain compared to the uncoded AWGN cha.nnel is 2.3dB.

Notice that the upper bound of the coding gain of an MC for this channel
compared to the uncoded AWGN channel is 3dB.



Chapter 4

Modulated Code Coded
Decision Feedback
Equalizer

In the previous chapter, we studied the joint maximum-likelihood MC en-
coding and decoding, where the input signal constellation is fully used.
Its complexity is, however, high when the ISI channel length, or the MC
size, or the signal constellation size is large. In this chapter, we study a
suboptimal encoding and decoding method, namely joint decision feedback
equalizations, where the input signal constellation can be arbitrary. The
results in this chapter are summarized from [168, 167, 179, 185].

In this chapter, we first introduce MC coded zero-forcing (ZF) decision
feedback equalizer (DFE) and its performance analysis and the optimal MC
design. We then generalize it to the minimum mean square error (MMSE)
DFE (MMSE-DFE), which may perform better than the ZF-DFE for some
ISI channels. In the third section, we introduce another optimal MC design
such that an ISI channel becomes an ISI-free AWGN channel. Notice that
all the MC designs in this chapter are input symbol independent.

4.1 MC Coded Zero-Forcing DFE

In this section, we study the MC coded ZF-DFE studied in [167]. The block
diagram for the MC coded ZF-DFE is shown in Fig.4.1, where Ix is the
K by K identity matrix, and the K by 1 vector decision takes the best K
by 1 vector of all the possible K by 1 information symbol vectors, and 7 is

71
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the channel additive white Gaussian noise with zero mean and the variance
U% =:]Vb/2.

binary to

binar
Acomplex

sequence [mapping

parallel
K by 1 to serial
vector and complex—m
decision to b?nary
mapping

matrix

multiplier
of size

K by N
D{z)

serial to
parallel

D(z)C(z)-Ig

Figure 4.1: MC coded zero-forcing decision feedback equalizer.

The role of the matrix multiplier D(z) at the receiver in Fig.4.1 for the
MC coded ZF-DFE is to convert the nonsquare matrix polynomial C(z) of
the combined MC into a square matrix polynomial so that the DFE can be
implemented as shown in Fig.4.1. It is usually the case that the higher the
order of the ISI channel to equalize is, the worse the DFE performance is.
To make the order of the overall ISI system F(z) with the matrix multiplier
as low as possible, where

F(z) 2 D(2)C(z) = D(2)H(2)G(2), (4.1.1)

and H(z) is from (2.3.3), the matrix multiplier D(z) simply takes a K by
N constant matrix. It also suggests that the MC G(z) takes a block code,
i.e., G(z) is an N by K constant matrix. We next want to study the MC
design rule for the ZF-DFE. Consider an N by K block MC G(z) = G
and a constant K by N matrix multiplier D(z) = E. The combined MC
becomes

C(z) = HO)G + H1)Gz ™" +--- + H(P)Gz7, (4.1.2)
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where H(z) = 3°F_ H(p)z~? for some P > 0 and
p=0

h(0) 0 0
H(0) = h(zl) h(:o) 0 . (413)
MN=1) h(N-2) --- h(0)

which is nonsingular when h(0) # 0. From the feedback loop in the ZF-
DFE in Fig.4.1, we want to have EH(0)G = Ik, i.e., the feedback does not
depend on the current vector. Therefore, the matrix multiplier D(z) = E
is the right inverse (pseudo inverse), (H(0)G)™!, of the N by K constant
matrix H(0)G.

4.1.1 Performance Analysis

Since the matrix multiplier D(z) = E is implemented at the receiver, the
channel] additive noise 5 is also multiplied by the matrix E. Let E =
(eij) k xn- Then the mean power of the multiplied noise 7 of 7 is

K N K N
2 _ 2im1 Zj:l |€ij|202 _ Yim1 Zj:l |€ij|2N
g K " 2K o

o (4.1.4)
By the normalization condition of the MC G, the mean transmitted signal
power is still ¢2. Similar to the conventional ZF-DFE for invertible ISI
channel, see, for example, [68], the signal-to-noise ratio (SNR) after the
MC coded ZF-DFE for the invertible C(z) is

o2 2Ko?

ERD Y Ej:l lei;[>No

Based on this SNR analysis at the receiver, to maximize the SNR we have
the following optimal MC design rule:

SNR =

Q

K N
mc%n Z Z lei;|> under the condition EH(0)G = Ik, (4.1.6)

=1 j=1

where the MC @G satisfies the normalization condition

N K
> > lgiil* =N. (4.1.7)

i=1 j=1
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Let the singular value decomposition (SVD) of the matrix H(0)G be
UVU, = H(0)G, (4.1.8)
where U; and U, are N x N and K x K unitary matrices, respectively, and

v - [ diagOa,-oAx) ] , (4.1.9)
ON—K)xK

and A; fori = 1,2, ..., K are the singular values of the matrix H(0)G. Then
the matrix multiplier F should be

D(z) = E = UIVU}, (4.1.10)
where T denotes the conjugate transpose and
V! = (diag(1/A1, -+ ,1/Ak), Ok x(N—K))- (4.1.11)

Thus, the total energy of the matrix FE is

ZZI%I2 Z = (4.1.12)

i=1 j=1

Therefore, using the elementary inequality on the right hand side of (4.1.12)
we have

1/K
ZZ lei;|? > K (H /\z) : (4.1.13)

i=1 j=1 1
where the equality (the minimum) is reached if and only if
AL=dp=-=Ag=A (4.1.14)

The optimality condition (4.1.14) is the one to design the MC G that
whitens the matrix H(0) generated from the ISI channel. In the next sub-
section, we propose a method to design such MC G given an H(0).

We now study the error probability for the MC coded ZF-DFE in
Fig.4.1. Let us consider the vector decision block in Fig.4.1. For a gen-
eral MC G at the transmitter and the matrix multiplier £ with the form
n (4.1.10), each K x 1 multiplied noise vector 7 for a fixed time may be
colored when K > 1. In this case, the vector decision is necessary for the
optimal detection. If the MC G whitens H(0), i.e., the condition (4.1.14)
holds, then it is not hard to see that each K x 1 multiplied noise vector 7
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binar binary to
complex
sequence jmapping

serial to
parallel

matrix parallel

multiplier symbol- to serial
b and complex—

serial to of size
parallel K by N decision to binary
D(z) mapping

D(z)C(z)-I

Figure 4.2: MC coded zero-forcing decision feedback equalizer with optimal
MC.

for a fixed time is white too. Thus, the vector decision in Fig.4.1 can be
reduced to the symbol-by-symbol detection as shown in Fig.4.2.

Assume that the condition (4.1.14) for the MC encoding holds, which
is always possible to design as we shall see later. In this case,

N K
K
D> el = 5YR

=1 j=1

Let Ps(7,) denote the symbol error probability at the symbol SNR ~, for
the binary-to-complex symbol mapping used at the transmitter in Fig.4.1.
For convenience, in what follows we only consider the BPSK binary-to-
complex symbol mapping. In this case, the symbol error probability is
P;(vs) = Q(v/2vs), where 7, is the SNR before the decision block in Fig.4.1.
Using the SNR (4.1.5), the corresponding vs is

Ve = o2 Ko? Mo2 MK E,
s = 55 = N = = —_
203 25.:1 2 j=1 lei]*No No N No

(4.1.15)

Then, the bit error rate (BER) for the MC coded ZF-DFE at the E; /Ny is

Ey

BER = Ps(vs) = Q ( 2F07) , (4.1.16)

where + is the coding gain as follows, which is based on the joint ZF-DFE
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decoding and compared to the uncoded BPSK in AWGN channel:

(4.1.17)

where A is defined in (4.1.14).

4.1.2 The Optimal MC Design

In this subsection, we present the optimal MC design such that the opti-
mality condition (4.1.14) is satisfied.

Let the singular value decomposition of the N x N matrix H(0) be
defined in (4.1.3) as

H(0) = WAW,, (4.1.18)
where W, and W, are two N x N unitary matrices and

A :dia’g(élv"' agN)a (4'1'19)

where £ > --- > £y > 0 are the N singular values of H(0). Since H(0) is
nonsingular, we have

&2--2¢v >0 ! (4.1.20)
Thus, using the singular value decomposition (4.1.8) for H(0)G we have
WUV = AW,.GU}.
Let
G =W,GU} and U =W]U,. (4.1.21)
Then
ATIUV =G. (4.1.22)

It is not hard to see that G is normalized if and only if G is normalized.
Let the N x N unitary matrix U= (uij)Nxn and the MC G = (§ij)nxk-
The normalization condition on G becomes

A

N K N K y2
D2 laal* =330 Fhusl = N (4.1.23)

i=1 j=1 i=1 j=1 >t
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The optimality condition (4.1.14) implies that

N K

1 N
§ j? > Jugl? = S (4.1.24)
i=1 > j=1

From the coding gain formula (4.1.17), the larger A is, the more the coding
gain is. Therefore, from (4.1.24) the optimal normalized MC G is obtained
by optimally designing the unitary matrix U such that the left hand side of
(4.1.24) is minimal. By the unitariness of the matrix U, there are at most
N — K many «; that are zero, where

K

; = Z |’U,ij|2.

=1

Using the monotonic order property (4.1.20) of £;, the minimum of the left
hand side of (4.1.24) is reached when

K
ai =Y luzl>=0 fori=K+1,K+2,..,N.
Jj=1

Thus, the optimal unitary matrix U has the following form

. U11 0
U= [ o U, ] , (4.1.25)

where U;; and Us, are arbitrary K x K and (N — K) x (N — K) unitary
matrices, respectively. In this case,

K
Yol =1, i=1,2,.,K (4.1.26)
j=1

Thus, we can solve for the optimal A% given K and N from (4.1.24)

v=_N (4.1.27)

K o
Zi:l 51 ?

where &, i = 1,2,..., K, are the first K largest singular values of H(0).
Going back to (4.1.18)-(4.1.22), the optimal normalized MC G is

Gone = WiGU, =wia"0 [ o ME o, (4.1.28)
ON—_K)xK
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where U, is an arbitrary K x K unitary matrix, U is defined in (4.1.25), W,
is the N x N unitary matrix defined in (4.1.18), A is the diagonal matrix
defined in (4.1.19), and ) is defined in (4.1.27). This concludes the following
result.

Theorem 4.1 Given an ISI channel H(z), the optimal normalized (N, K)
modulated code G for the MC coded zero-forcing decision feedback equalizer
in Fig.4.1 is given in (4.1.28).

Using the optimal A in (4.1.27) and the optimal coding gain formula in
(4.1.17) for the BPSK signaling, we have the following optimal coding
gain using the optimal (N, K) MC G,y in (4.1.28) for a given channel:

_K
Y&

where &, i = 1,2, ..., K, are the first K largest singular values of H(0).
Notice that the sum of all squared singular values &; of H(0) is equal to
the sum of all the squared coefficients in H(0), i.e., from (4.1.3),

YZF-DFE = (4.1.29)

N N
o= i N - (4.1.30)
=1 i=1
Clearly, when
K
> &7 <K, (4.1.31)

a coding gain for the MC coded ZF-DFE is achieved. In particular, when
K =1 and the largest singular value & of the matrix H(0) is greater than
1, a coding gain for the MC coded ZF-DFE is achieved.

4.1.3 Some Simulation Results

In this section, we want to present some simulation results to illustrate the
theory for the optimal MC design for the MC coded ZF-DFE developed in
the previous sections. We only consider low channel SNR and the BPSK
signaling.

Three ISI channels are tested. Channel A: [1/4/2, 1/v/2]; Channel B:
[v/2/3, \/1/3]; Channel C: [0.815, —0.407, —0.407]. Channel A and Chan-
nel C are spectral null while Channel B is none spectral null. BPSK sig-
naling is used for all the following simulations.
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We compare four equalization techniques, namely (i) conventional con-
volutionally coded and uncoded ZF-DFE; (ii) conventional convolutionally
coded and uncoded TH precoding; (iii) MC coded ZF-DFE; and (iv) MC
coded joint MLSE. Theoretical BER vs. E; /Ny curves for BPSK in AWGN
channel and the MC coded ZF-DFE with BPSK signaling are also compared
with the simulation results. In (i), the CC decoding and the ZF-DFE are
separated, i.e., the ZF-DFE is implemented first and then the CC Viterbi
decoding is implemented. The ZF-DFE structure in (i) is the same as the
one in the MC coded case. As a remark, we have not implemented more
sophisticated DFE algorithms, such as [42, 40], which is because a) we only
use the BPSK signaling and b) these algorithms can also be used in the
proposed MC coded ZF-DFE. In (ii), the CC and the TH precoding are
separately implemented.

In all the following optimal normalized MC Gzp_prg in (4.1.28), the
unitary matrices U and U, are set to the identity matrices. In the fol-
lowing conventional convolutionally coded ZF-DFE and the TH precoding
methods, the rate 1/2 and constraint length 2 with the optimal dfree = 5
convolutional code, i.e., the convolutional code (2,1, 2), is used. Since the
data rate in the MC coded ZF-DFE is 1/2, we do not implement the com-
parisons with the TCM where the data rates for the TCM are not below 1.
The combined TCM and DFE can be found in, for example, [23].

Channel A: [1/v2,1/V2).

This is a spectral null channel. We first consider the case when K =1 and
N =2 in the MC G. In this case, the optimal MC in (4.1.28) is

1.2030 ] _ (4.1.32)

Gope = [ 0.7435

The largest singular value of H(0) is & = 1.1441 and the optimal coding
gain in (4.1.29) for the MC coded ZF-DFE is yzr_prg = 1.17dB. For the
MC in (4.1.32), the squared free Euclidean distance of the combined MC
with the ISI Channel A is d3,,, = 11.58. Thus, the coding gain in (2.4.1) of
the joint MLSE method is sy = 1.6dB. It is 0.16dB less than the optimal
block (2,1) MC obtained in Section 3.4 based on the optimal design based
on the joint MLSE for the BPSK signaling. However, the above optimal
ZF-DFE design does not depend on the signal constellation.

In Fig.4.3, the BERs vs. Ej3/Ny for the conventional uncoded ZF-DFE
are plotted with the solid line marked by o; the BERs vs. E;/Np for the
convolutionally coded ZF-DFE are plotted with the solid line marked by OJ;
the BERs vs. E;/Np for the uncoded TH precoding are plotted with the
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solid line marked by A; the BERs vs. E} /N, for the convolutionally coded
TH precoding are plotted with the solid line marked by *; and the BERs
vs. Ey/Ny for the MC coded ZF-DFE with the above optimal MC code
in (4.1.32) are plotted by the solid line. The theoretical BERs vs. Ej /Ny
for uncoded BPSK in the AWGN channel are plotted with the dashed line.
The BERs vs. Ey/Ng of the joint MLSE for the MC in (4.1.32) and Channel
A are plotted with the solid line marked by +.

performance comparison for Channel A {0.7071, 0.7071]

Bit Error Rate
>

CC coded ZF-DFE

Uncoded ZF-DFE

#——=  CC coded TH precoding

10 a-——a=  Uncoded TH precoding
: -—- Uncoded AWGN

——  MC coded ZF-DFE

: : : ; .| +——+  Joint MLSE with MC

-6 f L I L I T - — T T

3 4 5 6 7 8 9 10 11 12 13

Figure 4.3: Performance comparison for different equalization methods:
Channel A and MC code rate 1/2.

We then consider the case when K = 2 and N = 3 in the MC G. In
this case, the optimal MC in (4.1.28) is

0.5825 —1.0497

Gopt = | 0.7264 0.4671 | . (4.1.33)
0.3233 0.8418

The first two largest singular values of H(0) are & = 1.2742 and & =

0.8817 and the optimal coding gain in (4.1.29) for the MC coded ZF-DFE

is vzr—pre = 0.22dB. For the MC in (4.1.33), the squared free Euclidean

distance of the combined MC C(z) with the ISI Channel A is d%,__, = 6.52.
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Thus, the coding gain in (2.4.1) of the joint MLSE method is yrsy = 0.36dB.
It is 1.26dB less than the optimal block (3,2) MC obtained in Section
3.4 based on the optimal design based on the joint MLSE for the BPSK
signaling.

In Fig.4.4, we compare the performances of the optimal rate 1/2 and
rate 2/3 normalized MC in (4.1.32) and (4.1.33), respectively, with both
theoretical and simulation results. The BERs vs. E, /Ny for the rate 1/2 in
(4.1.32) are plotted with the solid line marked by o and the corresponding
theoretical performance is plotted with the dashdot line. The BERs vs.
Ey /Ny for the rate 2/3 in (4.1.33) are plotted with the solid line marked by
+ and the corresponding theoretical performance is plotted with the solid
line marked by x. The uncoded BPSK in the AWGN is plotted with the
dashed line. The BERs vs. E; /Ny for the joint MLSE of the rate 2/3 MC
in (4.1.33) and Channel A are plotted with the solid line marked by 0. In
Fig.4.4, we also compare the performances of the MC G = [1,1]T, which is
plotted by the solid line marked by .

performance comparison for Channe! A [0.7071, 0.7071}

Bit Error Rate

: {K=1 N=2) MC [1,1] coded ZF-DFE

le——o optimal (K=1 N=2) MC coded ZF-DFE

P il optimal(K=1 N=2) MC coded ZF-DFE (theory)
% --- Uncoded BPSK in AWGN

(| +— optimal (K=2 N=3) MC coded ZF-DFE

| ¢ optimal(K=2 N=3) MC coded ZF-DFE (theory)

e——a  optimal (K=2 N=3) MC joint MLSE

-6 I 1 1 1 1 L 1 1

A
3 3.5 4 45 5 5.5 6 6.5 7 7.5 8
E/N N

Figure 4.4: Performance comparison for different rate and different normal-
ized MC: Channel A.
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Channel B: [\/2/3,,/1/3].

This is a none spectral null channel. Similar to before, we first consider the
case when K = 1 and N = 2 in the MC @G. In this case, the optimal MC
in (4.1.28) is
1.1547
Gopt = [ 0.8165 ] . (4.1.34)

The largest, singular value of H(0) is & = 1.1547 and the optimal coding
gain in (4.1.29) for the MC coded ZF-DFE is yzr_prg = 1.25dB. For the
MC in (4.1.34), the squared free Euclidean distance of the combined MC
with the ISI channel Channel B is d3,., = 11.56. Thus, the coding gain in
(2.4.1) of the joint MLSE method is 7757 = 1.6dB. Similar to Channel A
and the results shown in Fig.4.3, the simulation results for Channel B in
this case are shown in Fig.4.5.

perfori
AL

ce comparison for Channel B [0.8165, 0.5774]

Bit Error Rate
5

CC coded ZF-DFE
Uncoded ZF-DFE N
#—= CC coded TH precoding - ™\;-
10° &~  Uncoded TH precoding
- Uncoded AWGN
~———  MC coded ZF-DFE
+—+  Joint MLSE with MC

Figure 4.5: Performance comparison for different equalization methods:
Channel B and MC code rate 1/2.

We then consider the case when K =2 and N = 3 in the MC G. In
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this case, the optimal MC in (4.1.28) is

0.5811 —1.0170
Gopt = | 0.7452 0.3385 |. (4.1.35)
0.3746  0.9043

The first two largest singular values of H(0) are & = 1.2667 and & =
0.9182 and the optimal coding gain in (4.1.29) for the MC coded ZF-DFE
is yzr—pre = 0.44dB. For the MC in (4.1.35), the squared free Euclidean
distance of the combined MC C(z) with the ISI Channel A is d3,,, = 6.82.
Thus, the coding gain in (2.4.1) of the joint MLSE method is yrs; = 0.56dB.
Similar to Channel A and the results shown in Fig.4.4, the simulation and
the theoretical results for Channel B in this case are shown in Fig.4.6.

performance comparison for Channel 8 [0.8165, 0.5774]

Bit Error Rate

: (K=1 N=2) MC [1,1] coded ZF-DFE

.|e——© optimal (K=1 N=2) MC coded ZF-DFE

Wikl T optimal(K=1 N=2) MC coded ZF-DFE (theory)
F| - =~ Uncoded BPSK in AWGN

f +——+ optimal (K=2 N=3) MC coded ZF-DFE

-| »——x  optimal(K=2 N=3) MC coded ZF~DFE (theory)

| e—=a&  optimal (K=2 N=3) MC joint MLSE

3 3.5 4 45 5 5.5 6 6.5 7 75 8
Eb/No

Figure 4.6: Performance comparison for different rate and different normal-
ized MC: Channel B.

Channel C: [0.815, —0.407, —0.407].

This is another spectral null channel. In this case, we only consider the
case when K = 1 and N = 2 in the MC G. In this case, the optimal MC
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in (4.1.28) is
(4.1.36)

1.1146
Gopt = [ —0.8705 ] '

The largest singular value of H(0) is & = 1.0435 and the optimal coding
gain in (4.1.29) for the MC coded ZF-DFE is vzr_prg = 0.37dB. For
the MC in (4.1.36), the squared free Euclidean distance of the combined
MC with the ISI Channel B is d%,,, = 9.2535. Thus, the coding gain in
(2.4.1) of the joint MLSE method is v;s7 = 0.63dB. It is interesting to note
that the decrease of the coding gain for the MC coded ZF-DFE is due to
the increase of the ISI channel length. For the ZF-DFE, the performance is
usually better for shorter ISI channels, which can be seen from the following
simulation results. Fig.4.7 is similar to Fig.4.3 except that, in Fig.4.7, the
theoretical performance for the MC coded ZF-DFE with the optimal rate
1/2 MC in (4.1.36) is plotted with the dashdot line.

Bit Error Rate

CC coded ZF-DFE
|| —© Uncoded ZF-DFE
10°H»—=*  CC coded TH precoding
&——aA  Uncoded TH precoding
-—= Uncoded AWGN

MC coded ZF-DFE
MC coded ZF-DFE (theory)
Joint MLSE with MC

Figure 4.7: Performance comparison for different equalization methods:
Channel C and MC code rate 1/2.

From all the above simulation and theoretical results, one can see that
the CC coded ZF-DFE and the TH precoding are even worse than the ones
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of the corresponding uncoded systems. We think that the reason is because
the CC decoding is separated from the equalization. After the equalization
the noise is no longer AWGN, which degrades the CC performance because
the CC with rate 1/2 and constraint length 2 is optimal in terms of the
AWGN channel. One can also see that the simulation and theoretical results
for the MC coded ZF-DFE almost coincide.

It is known that in the TH precoding, [133, 57], the modulo operation
of 2M is used, where M is the number of levels in the PAM signaling at the
transmitter. Due to the modulo operation at the receiver, the performance
is degraded by the size M is small, such as 2 in the BPSK case here.

4.2 MC Coded Minimum Mean Square
Error DFE

In the previous section, we studied the MC coded ZF-DFE and its per-
formance is determined by matrix H(0) in (4.1.3) from the ISI channel.
This matrix, however, may have small eigenvalues for some channels where
h(0) is small. In this section, we want to develop a general minimum mean
square error DFE (MMSE-DFE) for the MC coded ISI channel obtained in
[179]. Voois [153] presented the optimal decision-delay for a conventional
MMSE-DFE, see for example [116, 43, 28, 29, 4, 6], and derived the op-
timal scalar filter coefficients. Unlike the scalar coefficients in [153], the
filter coefficients in this section are either vectors or matrices. We want to
extend Voois’s derivation from scalars to vectors/matrices. The results in
this section are from [179)].

4.2.1 Optimal Decision-Delay and Coefficients of an
MC Coded MMSE-DFE

The channel in this section means the combined channel, C(z), of an (V, K)
MC G(z) and an ISI channel H(z), unless otherwise specified. The block
diagrams of the MMSE-DFE are shown in Fig.4.8 and Fig.4.9.

Let W denote the Ls-tap feedforward vector

W= [Wo Wy - Wi, 7,

where each W; is a K x N matrix.
Let B denote the Ly-tap feedback vector

B=(B, B, --- B,]".

where each B; is a K x K matrix.
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N
~ — %
*® Fve |, | Blocked ISI " YO T Leedforward | 4~ | Vector decision (0)
G(2) Channel H(z), Filter { #,} N ___I—_
noise 1} Feedback

Filter {B,)

Figure 4.8: An MC coded MMSE-DFE.

~
Vector decision X(n-8)

"
X(n-a-1)

Figure 4.9: The structure of DFE.
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Let X denote the channel input vector
X=[X(n) X(n-1) -+ X(n~(L; ~1) - P)]T.

where each X (n — 1) is a K x 1 vector, and P is the highest order of the
polynomial matrix C(z) (the combined channel matrix).
Let Y denote the channel output vector

Y=[Y(n)Y(n-1) - Y(n—(L; - 1))7,

where each Y(n —4) is an N x 1 vector.
Let 1 denote the noise vector

=) gn—1) - n(n—(Ly - .

where each n(n — 1) is an N x 1 vector of Gaussian noise with zero-mean
and variance
— A3 2 2
Ry = diag(oy, -+ ,0,)-

Let X (n) denote the output signal after the decision.
Let C denote the following block Toeplitz channel matriz

co --- CP 0 0
0 C@© - C(P)
- : : : : _ : . (4.2.1)
o 0 - 0 CO - CP)
We have
Y =CX+n.

The autocorrelation and the crosscorrelation of X and Y are

Rxx = EXX)
Rxy = Rxx(C!
Ryvy = CRxxCT + le'

For an (N, K) block MC G, a given feedforward filter length L; and a
given feedback filter length Ly, the error vector between the DFE estimate
X(n — A) and the input X (n — A) is expressed as

e(n) = X(n-A)-X(n-A)

Ly
X(n-A)- (WTY —ZBiX("—A_i))

=1
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We assume that all feedback vectors are correct, i.e., X (n) = X (n) for any
n. Thus, '

Ly
e(n) = X(n-A)- (WTY - BX(n-A- i))

=1

= BTX-wWTy
where B is the extended feedback vector as follows
B = [0k x(ka) Ix BT OxxJ]", (4.2.2)

where
J=K(P+(Ly—-1) — Ly ~ A).

Note that the optimal length of the feedback filter is Ly = P+ (Ly —1) — A,
and any longer filter does not perform better due to the finite length of the
channel. So we assume L, < P + (Ly — 1) — A.

The mean-square-error (MSE) o2 is

o2 = E(e(n)te(n)) (4.2.3)
= EB(BTX-wWTY)/(BTX - WTY)) (4.2.4)
= trace( WTRyyW* + BT RxxB*
-BTRxyW* - WTR}  B*). (4.2.5)
Let
F(W) 2 WTRyyW* + BT RxxB* - BTRxyW* - WTR B*.
(4.2.6)
Then, the MSE is minimized when
d(trace(f(W))) _ 0
oW o
which is equivalent to
trace( ag(V\:’V)) =0 (4.2.7)
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For a given B, the MMSE solution is
W' = B RxyRyY (4.2.8)
The corresponding MSE is
o = trace(ﬁTRx|Y}§*), (4.2.9)

where

Rx|y = Rxx — nyR;{%{R;(Y.
‘We next want to find the optimal feedback vector B. Recall the form
of B in Eqn. (4.2.2). The MSE in Eqn. (4.2.9) can be reduced to

o2 = trace ([IK B”] Q(A, Ly) [ gﬂ ]) , (4.2.10)

where Q(A, L) is the K (Ly + 1) x K(Ly + 1) subblock of matrix Rxy, as
follows
Q(A, L) = SRxv ST,

where
S=[ Okwernxa IK@Ltnxkmer) Ok@enyxs |- (42.11)
We further partition Q(A, L) as

t
QA Ly) = [ A 2 ]

Then Eqn. (4.2.10) is further reduced to (note that P = P! due to the
Hermitian property of matrix Q(4A, Lp))

o} = trace(Axxk — d'P7lg) + (B + P~l)! P (B +P7lg).

Note that, matrix (B* + P~ 1)t P (B* + P~!q) is non-negative definite.
Thus, the optimal feedback vector that minimizes the o2 is [153]

B =—(Plg)%, (4.2.12)
and the minimum MSE (MMSE) is
02 min = trace(Axxx — ¢'P7'q). (4.2.13)

We note that[153], the decision-delay A determines the position of
Q(A, Ly) in Rx|y. The decision-delay A can vary from 0 to P. There-
fore, we compute the MMSE for each value of decision-delay from 0 to
P, and choose the optimal decision-delay A which yields the least MMSE
[153].
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4.2.2 Optimal Block MC for MC Coded MMSE-DFE

In Section 4.1, the optimal MC G for the ZF-DFE is based on the singular
decomposition of the matrix H(0). This is, however, not necessarily the
best block MC for the MMSE-DFE.

For an MC coded MMSE-DFE, we design a block MC G based on the
singular decomposition of each constant coefficient matrix H(i), 0 <i¢ < P
of the blocked channel H(z) in (2.3.3):

Wi(i)V (6) W, (3) (4.2.14)
diag(&1(4), - ,€n(4)), (4.2.15)

where Py is assumed the order of H(z). Following Eqns. (4.1.18)-(4.1.28),
we compute a block MC G; for each H(3), 0<i < Py,

H()
V(i)

il

A6k

G = Wr(i)T(V(i))_lU [ ON-K)xK

] U.(1), 0<i< P (4.2.16)
where
N

S (& ()2

Then following Eqns. (4.2.8)-(4.2.13), we compute the MMSE-DFE coefli-
cients (feedforward W and feedback B) and its MMSE for each G;, 0 <
1 S Pli

Tt min(Gi) = trace(A(Gi)kxk — (@GN (P(G:))'¢(Gy)), 0< i < Py,

where A(G;) and q(G;) are the corresponding A and ¢ in (4.2.13) with
respect to MC G;. We choose MC G; that yields the least MMSE among
allG,-, OSZSPI

A1) = (4.2.17)

— : 2 .
GOPt - a‘rg{Og;'nSr}’l (Ue,nzin (Gl))} (4218)

It is clear that the above MC coded MMSE-DFE with the above MC
Gopt performs at least as well as the ZF-DFE one. The performance of the
MMSE-DFE over the ZF-DFE is, however, channel dependent. Examples
and simulation results are given in the following section.

4.2.3 Simulation Results

In this section, we simulate the MC coded MMSE-DFE on some ISI chan-
nels using (2,1) MC.
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Channel D

Channel D is h = {—0.4083,0.8165, —0.4083}. The blocked 2 x 2 channel
matrix H(z) is

_[-04083 0 1 [ —0.4083 0.8165
H(z)‘[ 0.8165 —0.4083]+Z [ 0 —0.4083]'

In this case, P, =1 and

—0.4083 0
H(0) = [ 0.8165 —0.4083 ] ’

and
—0.4083 0.8165 ]

HQ) = [ 0 —0.4083

channel response h=[-0.4082 0.8165 —0.4082] variance/tap=0

MSE-DFE(1)
ZF-DFE(1
ZF-DFE(theor.)
Uncoded AWGN

Probability of BIT error

5 [}
E/N, (dB)

Figure 4.10: BER performance on Channel D.

Feedforward filter length Ly = 2 and feedback filter length L, = 1
are sufficient for this channel. The MSE of the ZF-DFE is 0.0051. The
minimum MSE of the MMSE-DFE is 0.0038, which is achieved when the
MMSE-DFE is designed based on the channel matrix H(0) and the decision-
delay A = 1.
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The BER curves of the MMSE-DFE and the ZF-DFE are shown in
Fig.4.10. The theoretical BER of the ZF-DFE and the BER of uncoded
BPSK on the AWGN channel are also shown in Fig.4.10. One can see that
the MC coded ZF-DFE has no coding gain, while the MC coded MMSE-
DFE can achieve more than 1dB coding gain, compared to the uncoded
BPSK in the AWGN channel.

Channel E

Channel E is h = {0.2271,0.4602, 0.6883, 0.4602, 0.2271}. The blocked ISI
channel matrix H(z) is

H(z) = 0.2270 0 41 0.6881 0.4601
2= 0.4601 0.2270 0.4601 0.6881
-2 | 0.2270 0.4601
+z [ 0 04270 |- (4.2.19)
channel response h=[0.227 0.4601 0.6881 0.4601 0.227] variance/tap=0
MSE—DFE?‘)‘ -
ZF-DFE(1
ZF-DFE(theor.)
Uncoded AWGN
10~52 n't é : 112 1|4 16

8 10
E/N, (dB)

Figure 4.11: BER performance on Channel E.

The matrix H(0) has singular values of & = 0.5532 and & = 0.0931.
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Following Eqn. (4.1.29), the coding gain for the ZF-DFE is yzr_pre =
—5.14 dB, which is negative compared to the uncoded AWGN channel.

For the MC coded MMSE-DFE, feedforward filter length Ly = 3 and
feedback filter length L, = 2 are sufficient for this channel. The MSE is
minimized when the MC is designed based on the matrix H(1) and the
decision-delay of the DFE A = 2.

The BER performance of both the MMSE-DFE and the ZF-DFE are
plotted in Fig.4.11. Compared to the uncoded BPSK on the AWGN chan-
nel, neither MC coded MMSE-DFE nor MC coded ZF-DFE has coding
gain. However, MC coded MMSE-DFE performs more than 3 dB better
than the ZF-DFE does.

Channel F

Channel F is h = {0.8165,0.5774}. For this channel, both MC coded
MMSE-DFE and MC coded ZF-DFE achieve more than 1dB coding gain
compared to the uncoded AWGN channel and their performances are al-
most the same as shown in Fig.4.12.

channel response h=[0.8165 0.5774] variance/tap=0

MSE-DFE(1)
ZF-DFE(1)
ZF-DFE(theor.)
Uncoded AWGN

error

Probability of BIT

4
Eb/N0 (dB)

Figure 4.12: BER performance on Channel F.
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4.3 An Optimal MC Design Converting
ISI Channel into ISI-Free Channel

The block-based transmission techniques, or block MC, in {72, 5] and the
MC coded ZF-DFE and MMSE-DFE in Section 4.1 and 4.2 assume no inter-
block interference (IBI) either explicitly or implicitly: the IBI is eliminated
by inserting zeros in each block in the vector-based precoding in [72, 5]
and the IBI is assumed to be eliminated completely by the DFE in the MC
coded ZF-DFE and the MMSE-DFE.

In this section, a different MC design is proposed by taking the complete
blocked channel matrix into account, rather than considering only single
coeflicient matrix H(0) of the blocked channel matrix H(z). The results
in this section are from [185]. The new MC design optimally converts an
ISI channel with AWGN into an ISI-free AWGN channel and the data rate
expansion may provide the coding gain compared to the uncoded AWGN
channel in some cases. Since most of the existing error correction coding
(ECC) techniques are good for AWGN channels, the MC design in this
paper is particularly useful when any further ECC is applied before the
MC encoding, such as turbo coding.

Binary to] - X(z) V(@) ivi ¥{(
MC Receivin, 2)
———{camplex-»[ 5] —1 M Lp[pis] ] 151 | siter D@ [
binary [Mapping Kxl Nxl Nxl Kx1
sequence

AWGN

Figure 4.13: MC coded system.

Although the globally optimal MC design of the proposed approach
is hard to implement in practice, the simplified sub-optimal MC design
performs well. Experimental results show its performance advantage over
the previous MC design.

In this section, we are interested in the communication system shown in
Fig.4.13, where G(z) is a modulated encoder and D(z) is a receiving filter.
The transmitted and received symbols are grouped into equal-size blocks.

The receiving filter D(z) is usually required at the channel output in
order to recover the K by 1 signal vector X(z) as the same in Section 4.1.
Then the combination of the MC G(z), the filter D(z) and the ISI channel
H(z) becomes:

Y (2) = D(2)(H(2)G(2)X(2) + n(2)) (43.1)
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where the signal is the following K by 1 vector
Y(z) = D(2)H(2)G(2)X(2), (4.3.2)
and the noise is the following K by 1 vector
Y. (2) = D(2)n(2). (4.3.3)
In what follows, we impose the following condition on the MC design
D(2)H(z)G(z) = Ik, (4.3.4)

which ensures that the filtered output is ISI free. Another advantage of
such design will be seen later.

As a remark, in the maximum-likelihood MC decoding studied in Sec-
tion 3.1 the receiving filter D(2) is not used while the decoding complexity
may be high, in particular when the input signal constellation has a large
sS1ze.

4.3.1 An Optimal Modulated Code Design

The objective of an optimal modulated code design is to design G(z) and
D(z) such that it is optimal based on a given criterion. In what follows, we
use the criterion of maximizing the output SNR normalized to the mean
transmission power per information symbol in the following sense:

SNRy

max —— 4.3.5
D(2)H(z)G(2)=Ix E([v|>)N/K (4.3.5)
where SN Ry is the SNR in (4.3.1), i.e.,
E{|Y.]*}
SNRy = —t-sLJ (4.3.6)
S EB{|Ya?}

and E(|v|?) is the mean transmission power. Assume that the mean signal
power before the MC encoding is E, and the variance of the AWGN is
02 = No/2. Then,

E{Y,} = ”D<z>H<;>G<z>n2FEz,
and |
By, 2} = IP@Ir No

K 2
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Meanwhile, the mean transmission power is

_ EIGEIE

B(of?) = =1

To normalize the mean transmission power such that it is the same as E,,
the following condition is always imposed on an MC G(z) from now on:

IG(2)||3% = N. (4.3.7)
By noticing that, when D(2)H(2)G(2) = Ik,
ID()H()G()IF = K, -

the criterion (4.3.5) can be rewritten

. K2
max Y(G(z)) = max ——, (4.3.8)
D(2)H(z)G(2)=Ix D(:)H(:)G(»)=Ix N ||D(2)|%
where K2
NG(2) & —r
N|D(2)|%

can be viewed as the coding gain compared to the uncoded AWGN chan-
nel.

Regardless whether the channel matrix H(z) comes from blocking a
linear time invariant channel H(z) or not, if the channel matrix H(z) is a
constant matrix, i.e., H(z) = Hp, the optimal solution of (4.3.8) is the one
that whitens the channel Hy, see Section 4.1.

Lemma 4.1 When H(z) = Hy, a constant matriz, the solution of (4.3.8)
18

1 diag(AT", -, ALY ]
Gopr = ~VH . 1K , 4.3.9
TN Onv-K)xK ( )
Dopt = X~ Ixxn - UL (4.3.10)

where Uy, Vo, and Ay are the singular value decomposition of Hy, i.e. Hy =
UgAoVo, Uy and Vy are two N x N unitary matrices, Ag =diag(A1, A2, -+ , AN)
with)\l 2)\2 Z ZANZO, and

A=A (4.3.11)
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When H(z) is not a constant matrix, which is always the case when the
IST channel H(z) has more than one tap, similar result still holds as follows.

Theorem 4.2 For a general channel matriz H(z), the optimal solution of

(4.5.8) is

oy 1 i diag( A\ (e7?), - -+, At (e7%))
Gon(e) = 3y (Ve | M |
(4.3.12)
D, (e7) = A7) [ x n (U(e 7)) H (4.3.13)

where U(e’), A(e’), and V(e*) are the singular value decomposition of
H(e’v) for each w, i.e.,

H(e™) = U(e?)A(e)V (e¥), (4.3.14)
where U(e’*) and V(e¥) are two unitary matrices and
A7) = diag(A\1(€7), A2 (e7%), - -+, AN (e7¥))
with A (€7%) > Aa(e7%) > -+ > An(e7¥) > 0 for each w € [0,2r), and

K

Ae™) = 4| D (e(edv))=2. (4.3.15)

k=1

From this theorem, one can see that the received signal after the above
optimal receiving filter D(e’*) is

r(n) = z(n) + £(n), (4.3.16)

where £(n) is an AWGN with mean 0 and variance

2
2 Oy

7€ T 3(Gop(2))’

which is because U(e™7*“) is unitary in the receiving filter. In other words,
the ISI channel H(z) after the optimal MC and the opitmal receiving filter
in Fig.4.13 becomes an ISI-free AWGN channel. When y(G,p:(2)) > 1,
then a coding gain is achieved compared to the uncoded AWGN channel.

From (4.3.12)-(4.3.15), one can see that, for an arbitrary H(z), the
above optimal MC Gp:(2) and the optimal receiving filter D,,; may not
have finite impulse responses (FIR), which may cause the implementation
problem at both the transmitter and the receiver. We next want to intro-
duce a suboptimal MC design method.
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4.3.2 A Sub-optimal Modulated Code Design

There are two ways to simplify the transmitter and the receiver implemen-
tations. One way is to only consider the constant matrix part H{0) of the
channel matrix H(z) for the optimal transmitter and receiver design, which
was basically used in Section 4.1. This method may not perform well. As
an example, let the ISI channel be

h =[0.099 0.225 0.456 0.681 0.456 0.225 0.099)].

Fig.4.14(a) shows the BER performance of constant MC with the (5,3) MC
coded ZF-DFE design in Section 4.1.

The other way is to only consider the receiving filter D(z) to be a
constant matrix D. This method simplifies the receiver. In what follows,
we will focus on this method. The problem can then be described as follows:

2
ax  1(G(2) K

o = max = ——— (4.3.17)
DH(2)G(2)=Ix DH(2)G(2)=Ix N ||D||%

where D are K X N constant matrices.
There are two issues associated with this optimization problem:

(i) The existence of D and polynomial matrix (FIR) G(z) such that
DH(2)G(z) = Ix.

(ii) The optimal D and G(z) under the existence.

We study these two issues next.

The FIR Solution Existence

To study this issue, let us first consider a special case when D = Ix .. In

this case, the equation
DH(2)G(z) = Ik

becomes
Iy nH(2)G(z) = Ik

or its transpose

GT(Z)HT(Z)INxK = IK‘
The existence of FIR G(z) thus becomes the existence of the FIR inverse
of the polynomial matrix HT (2)Inyx k, or the existence of the FIR inverse
of the ISI channel H(z) using the MC Iy, which is reduced to the same
case studied in Section 2.3. When D is an arbitrary K x N constant matrix,
we have the following existence result.
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Theorem 4.3 For an arbitrary K x N constant matriz D and an arbitrary
finite tap ISI h(z), there almost surely exists an FIR N x K polynomial
matriz G(z) such that DH(z)G(z) = Ix, where H(z) is the blocked version

of h(z).

Proof. Similar to the derivation of Theorem 2.1, the existence of the
right FIR inverse of DH(z) is equivalent to the one of DH(z"). So, we
next only consider DH(z"V). Using (2.3.10) and absorbing W} A(z) into
G(z), the existence of the right FIR inverse of DH(z) is equivalent to the
one of

Q(2) £ DA™ (2)WNV(2),

which is equivalent to the greatest common divisor (gcd) of the determi-
nants of all the K x K minors of K x N polynomial matrix Q(z) to be dz™
for some non-zero constant d and an integer ng. Let Qq(z) = DA™ (z)W .
Due to the diagonal forms of V(z) and A~1(z), it is not hard to see
that the determinant of the K by K submatrix of Q(z) at its columns
1<h<lhb<---<lg<Nis

K
Clytytge 2~ izt T H(zWpE) (4.3.18)

k=1

where ¢, 1,...1; i a constant and cy,p,...., 2~ %12 !x is the determinant of
the K by K submatrix of Q;(z) at its columns 1 <} <l < --- <l < N.

Notice that, when D = Ik, the above Ciyly--1y 18 the Vandermonde’s
determinant of a K x K submatrix of the first K rows of the DFT matrix,
which is always nonzero. As long as none of the constants ¢;,i,...1, is zero,
the condition (2.3.12) is sufficient for the existence, which holds almost
surely for an arbitrarily given polynomial H(z). By noticing the form of
Qi(z), it is not hard to see that, for an arbitrarily given D, it is almost
surely that none of the constants ¢;,;,...1,. is zero. This proves Theorem 4.3.
[

From the above proof, one can see that it is similar but more general to
the proof of Theorem 2.1 in Section 2.3.

The Optimal Solution

We next want to present the optimal solution of the optimization problem
(4.3.17).

Theorem 4.4 For a finite tap ISI channel H(z) with its blocked version

H(z)=HO)+HQ)z"' +-.- + H{P)z"F,



100 CHAPTER 4. MC CODED DFE

let its SVD be H(z) = U(2)A(2)V(z) for each complex z # 0 including
z = oo. If all the components in matriz U(z) are analytic for |z| > r for
some 0 < 7 < 1, then the optimal constant receiving K x N filter matriz
D and the optimal FIR N x K modulated code G(z) based on the criterion
(4.8.17) are given by

Dopt = Mgxn(Uo)t, (4.3.19)
Gopt(2) = % arg min{HG(z)HF : -}{DoptH(z)G(z) = IK}4.3.20)

where X is a scaling factor such that |G,pe(2)||% = N and Up is the left
unitary matriz in the SVD of H(0), i.e, H(0) = UpAoVo.

Proof. From Theorem 4.2, regardless of a scaling factor, the optimal re-
ceiving filter D(e?“) in the frequency domain is D(e?*) = I« n(U(e?))T.
As long as the receiving filter is given, the optimal MC G(z) is the mini-
mum norm solution of the equation D(2)H(2)G(z) = Ix. Since we are only
interested in a constant receiving filter D, the optimal constant receiving
filter D should be the constant projection of the above D(e’“) in the finite
energy signal space LZ.

By the condition that U(z) is analytic for |z| > r for some constant
r < 1, it can be expanded as follows

Uz) =) Up2™, |2 > (4.3.21)
n=0
By replacing z with e/, (4.3.21) becomes
U(e®) = Y Une ™™, (4.3.22)
n=0

which is the Fourier expansion of U(e’”). The constant projection of
U(e?) is, thus, Up. Therefore, the optimal constant approximation of
D(e’?) is D = I xn(Up)t. We next want to show that Up can be obtained
from the SVD of Hy.

Let z = 00 in (4.3.21), we have U(2)|;=00 = Up. On the other hand,

H(2)|.=c0 = U(z)|z=ooA(z)|z=ooV(z)lz=00~
While H(z)|,=00 = H(0), it implies that the SVD of H(0) is

H(O) = UOA(Z)lzzooV(z)lz:oo-
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This proves Theorem 4.4. m

The analyticity condition of U(z) in the above theorem is more general
than the one of FIR U(z). However, it is still not easy to check and is
rather a theoretical result. On the other hand, this theorem explains the
optimality of the MC design from some theoretical perspectives. For more
about the analyticity condition, see [111]. This theorem also suggests that
the optimal D,p; and G,,¢(2) can be obtained as follows:

Algorithm

Step 1: Do singular value decomposition of the constant matrix H(0)
of H(z) as H(0) = UpAoVp with Ag =diag(A1, -+ ,An)and Ay > --- >
An 2 0.

Step 2: Let D = Ixxn(Up)t.
Step 3: Find the minimum norm solution of G(z) from the equation
DH(2)G(z) = Ix

G(2) = arg min{||G(2)||r : DH(2)G(z) = Ix}.

Step 4: The optimal MC is

__ YN &
Gopi(2) = |Ié(z)||pG(z)' (4.3.23)

Step 5: The optimal constant receiving filter matrix is

Dopt = MD. (4.3.24)

VN

When the optimal constant projection D is obtained, the minimum
norm solution of G(z) in Step 3 is the pseudo-inverse of the linear equations

DH(2)G(z) = Ix

of the variables in matrices G(n) in G(z) = )., G(n)z~". As long as the
order of the channel matrix H(z) is known, the maximal order of the MC
G(z) can be estimated. In our following simulations, the estimated order
of G(z) is the McMillan' degree [142] of H(z).

An important remark is that, although the optimal receiving filter D is
based on the constant matrix H(0) of the channel matrix H(z) for the sake
of the receiving filter simplicity, the optimal MC G(z) at the transmitter is
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based on the whole polynomial matrix H(z). This is a difference between
the study in this section and the ones in Section 4.1 and [72, 5]. A difference
of the above MC design and the MC coded MMSE-DFE design in Section
4.2 will be explained later.

4.3.3 Delayed Design

The above design can be generalized as follows, if we add a delay z~¢ into
(4.3.4), the optimal design problem in (4.3.17) becomes

KZ

= max —_—. (4.3.25)
DH(z)G(z)=z-4Ixxx N “D“F

G(2))

max 0%
DH(2)G(z)=z-41Ix

For some cases, such delayed MC design performs better.  With some
minor modification, the optimal solution can be obtained in a similar way
as before.

4.3.4 Some Simulation Results

In this section, we will verify the performance of the proposed polynomial
MC design via simulations, and compare it with the constant block chan-
nel matrix based MC design. Ccomparisons are also made with the TH
precoding and the MSE-DFE equalizer. In all the simulations, we assume
the input signals are i.i.d. random sequences with zero mean.

New Sub-optimal MC Design vs. Constant MC Design

We first compare the performance of the sub-optimal MC design with the
constant channel matrix based design techniques in Section 4.1 and [72, 5,
30]. Without loss of generality, the optimal constant MC ZF-DFE design
in Section 4.1 is compared, where the constant channel matrix is equivalent
to the one in [72, 5, 30] if L (number of channel taps) zeroes are inserted
after each block.

The ISI channel k = [0.099 0.225 0.456 0.681 0.456 0.225 0.099] is tested.
The input i.i.d. signals are chosen from binary set {—1,+1} and (5,3) MC
are used. The theoretical coding gain (assume no error in DFE) of the op-
timal constant MC with ZF-DFE design, is: —25dB, while the coding gain
of the sub-optimal MC design (with delay d = 1), is -14.2dB. Fig.4.14(a)
shows their BER simulated performance.

Next, we examine the asymptotic performance of the sub-optimal MC
design. Table 4.1 shows the coding gains (losses) of rate 2/3 MC design on
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Rate=3/5, Block size=5, for normalized channel
\ h=[0.099 0.225 0.456 0.681 0.456 0.225 0.099 ]

Constant 3/5 MC with ZF-DFE:

TH-precoding with BPSK
Our new suboptimal 3/5s MC

Probability of BIT error

E,/N, (4B)

(a)

Rate=8/12, Block size=12, for normalized channsl
h=[{0.099 0.225 0.456 0,681 0.456 0.225 0.099 ]

Probability of BIT error

Constant 8/12 MC with ZF-DFE
TH-precoding with BPSK

Our new suboptimal 8/12 MC
Uncoded BPSK on AWGN chanrié

15
E/N, (dB)
(b)

Figure 4.14: Bit error rate performance of the constant MC with ZF-DFE
and our sub-optimal MC.
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the above ISI channel, where the coding gain/loss is compared to the ideal
AWGN channel.

Table 4.1: Coding gains for different block size.

Block size (N} | Coding gain (theory) of | Coding gain of
MC with ZF-DFE (dB) | sub-optimal MC (dB)

3 22.3230 ~18.0145 (d=1)

6 33.9676 ~13.4890 (d=1)

9 -13.4793 i -12.1571 (d=1)

12 -11.2472 -11.5629

18 -10.1252 -10.2951

00 -9.20 -9.20

Note: The first three block sizes 3,6 and 9, and the delayed sub-optimal
MC design are used with d = 1 in (4.3.25). The infinite block size coding
gain here is obtained by using sufficient large block size (N=1000). See also
[5] for the calculation of the optimal coding gain of infinite block size. The
results in the second column in Table 4.1 also apply to the vector coding
[72, 30] as we explained before.

As we observed from Table 4.1, the coding gain/loss of both MC de-
sign approaches asymptotically to the same optimal value as the block size
increases. The reader may notice that there is a small difference between
the theoretical coding gain of the constant MC and that of the sub-optimal
MC, when the block size is larger than 12 in Table 4.1. The theoretical
result on the ZF-DFE is, however, based on the complete cancellation of
the IBI from the DFE, which may not be true for spectral null channels, in
particular when the channel SNR is not so high, as indicated in Fig.4.14(b).

MC Design vs. TH Precoding

In this subsection, we compare the performances of the MC coding and the
TH precoding. The test channel is A = [0.7071 0.7071]. Two MC designs
are tested. One is the simple MC with D(2) = D = Igxn in Fig.4.13. In
this case, the receiver does not need to implement the filter D and the ISI
is completely compensated by the transmitter filter. With this aspect, the
MC coding is similar to the TH precoding, where the receiver in the TH
precoded system does not need any filter either. Unlike the MC coding,
in the TH precoded system, the receiver needs the modulo operation that
may degrade the performance when the modulo size is small, such as in
the BPSK case. The other MC design is the suboptimal MC design, which
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implements the filter D at the receiver. The BER vs. E;/Ny curves are
shown in Fig.4.15, where the (4, 3) and (4,2) MC are used. One can clearly
see the improvement over the TH precoding.

Channel h=[0.707  0.707)
10 e T | EEXEEREEEEEEE: R

——  TH-Precoding (BPSK) |:
- Simple 3/4 MC -
Suboptimat 3/4 MC
Suboptimal 1/2 MC .
Uncoded BPSK on AWGN

Probability of a symbol error, Pm
3
T

6 8
SNR per bit (dB)

Figure 4.15: Performance comparison of the MC coding and the TH pre-
coding.

Suboptimal MC Design vs. MSE-DFE

‘We now want to compare the performances between the sub-optimal MC de-
sign and the conventional decision feedback equalization (DFE) technique.
Consider ISI channel h'= [0.417 0.815 0.417] that has severe ISL

In order to maintain the same data rate for both systems, the binary
signal set {-1, +1} is chosen as the input signal sets for the DFE system,
and the QPSK signal set {-1,-j,+1,j} is chosen for the 1/2 code rate MC
coded system. The block size N for the sub-optimal MC is N = 10, i.e.,
(10,5) MC is used. Fig.4.16 shows their BER performances.

MC Design vs. Turbo-Equalizer

As we explained before, one of the most important advantages of the MC
design method proposed in this section is that the MC converts the ISI into
the AWGN channel with coding gain compared to the uncoded AWGN
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Rate=5/10, Block size=10, for Channe! h=[0.407 0.815 0.407]

Our suboptimal 1/2 MC with QP§K
21-tap MSE-DFE with BPSK
TH-precoding with BPSK
Uncoded BPSK on AWGN

Probability of BIT error

12 14 16 18 20

10
Eb/No(dB)
Figure 4.16: Performance comparison of the sub-optimal 1/2 rate MC de-

sign of block size 10 and QPSK, and the uncoded MMSE-DFE with 21-taps
and BPSK.

1SI channel h=[0.7071 0.7071]

18 T T 7 T T T T T
—— 18! channel capacity
16} ~ - = AWGN channel capacity
—o— 18] channel information rate
1k * Our result
’ Joint turbo~equalizer

Bits/Symbol

LS
1
w
|
R
1

0 1
SNRE, /N, (dB)

Figure 4.17: Performance comparison with existing turbo-equalizers.
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channel if only the first K symbols of each N symbols are maintained at
the receiver. This property allows us to add a turbo code before the MC and
the BER vs. SNR curves of the turbo code performance over the AWGN
channel are then shifted by the coding gain to the left over the ISI channel.
This is not achievable for the MC coded ZF-DFE in Section 4.1 and the
MMSE-DFE in Section 4.2.

Let us consider the ISI [0.7071,0.7071]. When we choose the MC of size
K =10 and N = 20, i.e., of rate 1/2, the suboptimal MC designed from
steps 1-5 in Section 4.3.2 has 1.85dB coding gain compared to the uncoded
AWGN channel. If the rate 1/2 turbo code is used before the MC and the
turbo decoding is used at the receiver, the performance of the turbo/MC
coded ISI channel is shown by * in Fig.4.17, where the turbo code of the
BER 10~% at E /No = 0.7dB is assumed. The current performance limit of
the turbo-equalizer (joint turbo and ISI channel equalization) is the infor-
mation rate curve marked by o in Fig.4.17 and the current state of the art
turbo-equalizers are marked by +, see for example [51, 49]. It is surprising
that our result in the ISI channel even outperforms the AWGN channel ca-
pacity at Ep/Ng = —1.15dB, which has broken the achievable performance
limit of all current joint coded equalization, such as joint turbo-equalizer,
i.e., the ISI channel information rate. The above suboptimal (20,10) MC
is listed as follows.

[ 0.0591 —0.1181 0.1759 —0.2335 0.2885
0.1169 -0.2249 0.3156 —-0.3814 0.4163
0.172 -0.3108 0.3898 -0.3905 0.3114
0.223 -0.368 03826 —0.2579 0.0318
0.2687 —0.3909 0.296 —-0.0313 —-0.2655
0.3082 —-0.377 0.1484  0.2072 —0.4138
0.3406 —-0.328 —-0.0301 0.3702 —0.3309
0.3647 -0.2488 —0.2029 0.3978 -0.0637
0.3804 -0.1463 -0.3334 0.2807  0.2392
0.3873 ~0.0299 -0.3941 0.062 0.4092
0.3851 0.0893 -0.3732 —0.1794 0.3502
0.3736 0.1997 —0.2753 —0.3563 0.0947
0.3535 0.2917 —0.1201 -0.4031 -0.2135
0.3254 0.3569  0.0608 —0.3023 -—-0.4014
0.2805 0.3887  0.2288 —0.0917 —0.3652
0.2465 0.3836  0.3483  0.1511 —0.1263
0.1978  0.343 0.3958 0.3392 0.1836
0.1451 0.2715  0.3627  0.4058  0.3931
0.089 0.1749 0.2546 0.3252  0.3838

| 0.028 0.0563 0.0853  0.1153  0.1469

G(z) =
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—0.3434 0.3944 —0.4453 0.4909 —0.5368 ]|
-0.4157 03774 -0.3005 0.1873 —0.041
—0.1607 —0.0338 0.2421 —-0.4196 0.5337
0.2203 —0.4103 0.4637 —0.3474 0.0817
0.4278 —0.3581 0.0714  0.2873 —0.5275
0.2991  0.0688 —-0.4149 04572 -0.122
-0.0653 0.4237 -0.3519 -0.1132 0.5182
—0.379  0.3354 0.1764 -0.5008 0.1615
—0.394 -0.1031 0.4713 -0.0774 -0.5059
—0.098 -0.4332 0.1429 0.4718 -0.2
0.275 -0.3109 -0.3748 0.2571  0.4907
0.4306 0.1353 —0.397 -0.3744 0.2374
0.2473  0.4404 0.1065 —0.3997 -—0.4727
—0.1296  0.2866 0.47 0.223 —-0.2732
-0.4048 —0.1668 0.2111  0.4847  0.4522
-0.3626 -0.4474 -0.3286 -0.0395 0.3072
—-0.0346 -0.2606 -—0.4334 -—0.5002 —0.4296
0.3232 0.201 0.038 —0.149 -0.3387
0.4278 0.4546 0.4619 0.4474 0.409
0.1805  0.2167 0.2564 0.3006  0.3508

[ —0.0054 —0.011 —0.0166 -0.0224 —0.0286
—-0.0038 —0.0077 -0.0117 -0.0158 -0.0201
0.0012  0.0024  0.0037 0.005 0.0064
0.0021  0.0043 0.0065 0.0087  0.0111
—0.0007 -0.0014 -0.0021 -0.0029 -0.0037
-0.0015 —0.0029 —-0.0044 —0.006 -0.0077
0.0006  0.0011  0.0017 0.0023  0.0029
0.0011  0.0022 0.0034 0.0046  0.0058
—0.0005 -0.001 -0.0015 -0.002 -0.0026
_1 | —0.0009 -0.0018 -0.0027 -0.0037 -0.0047
0.0005 0.001 0.0014 0.002 0.0025
0.0008  0.0015 0.0023  0.0031 0.004
-0.0005 -0.001 -0.0014 —-0.002 -0.0025
—0.0007 -0.0013 -0.002 -0.0027 -0.0034
0.0005 0.001 0.0015 0.002 0.0026
0.0006  0.0011  0.0017  0.0023 0.003
—0.0005 -0.0011 -0.0016 -0.0022 -0.0028
—0.0005 -0.001 -0.0015 —0.002 -0.0026
0.0007 0.0014 0.0021  0.0028  0.0036
0 0 0 0 0
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—0.0351
—0.0247
0.0079
0.0137
—0.0045
—0.0094
0.0036
0.0072
—0.0032
—0.0058
0.0031
0.0049
~0.0031
—0.0042
0.0032
0.0037
—0.0034
—-0.0032
0.0044
0

—0.0422
—0.0296
0.0094
0.0164
—0.0054
—0.0113
0.0043
0.0086
—0.0038
—0.007
0.0037
0.0059
—0.0037
~0.0051
0.0038
0.0044
—0.0041
—0.0038
0.0053
0

—0.0499
—0.0351
0.0112
0.0194
—0.0064
—0.0134
0.0051
0.0102
-0.0045
-0.0082
0.0043
0.0069
—0.0043
—0.006
0.0045
0.0052
—0.0049
—0.0045
0.0063
0

—-0.0585
—0.0411
0.0131
0.0228
—0.0075
-0.0157
0.0059
0.0119
—0.0053
—0.0097
0.0051
0.0081
—0.0051
—0.007
0.0053
0.0061
—0.0057
—0.0053
0.0074
0

—0.0683
—-0.048
0.0153
0.0266

—0.0088

—0.0183
0.0069
0.0139

—0.0062

—0.0113

0.006
0.0095
~0.006

—0.0082
0.0062
0.0071

—0.0067

—0.0061
0.0086

0
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Chapter 5

Capacity and Information
Rates for Modulated Code

Coded Intersymbol
Interference Channels

In Chapter 2, we studied the distance property of the MC coded ISI channel
and showed that, for any finite tap ISI channel, there exists an MC with
coding gain compared to the uncoded AWGN channel. This tells that using
a proper MC at the transmitter and the joint MLSE at the receiver, the
BER vs. Ey /Ny performance of the MC coded ISI channel is better than the
one of the uncoded AWGN channel. In this chapter, we want to study the
capacity and the information rates of the MC coded discrete-time Gaussian
channel with ISI (or ISI channel with AWGN) (1.0.2). We first derive some
lower bounds and then prove the existence of MC such that the MC coded
ISI channel has larger information rates than the ISI channel itself does at
low channel SNR. This suggests a combination of turbo and MC codings
for an ISI channel, which is also discussed in this chapter. The results:in
this chapter are summarized from [45, 184].

111
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5.1 Some Lower Bounds of Capacity and
Information Rates

We first derive some lower bounds for the capacity and information rates
of an MC coded ISI channel. From (2.3.6), the MC coded system becomes
the following multi-input and multi-output (MIMO) system (or multivariate
channel):

Y (z) = C(2)X(2) + E(2) = H(2)G(2)X(z) + E(2), (5.1.1)

where Z(n) is an N X 1 vector sequence and all components are i.i.d. Gaus-
sian and is blocked from n(n) in (1.0.2). From (5.1.1), one can see that the
MC coded system becomes a K-input and N-output system. To study its
capacity and information rates, we need the following capacity result for an
N-input and N-output multivariate system obtained by Brandenburg and
Wyner [21]. Let an N-input and N-output multivariate channel be

Y(z) = P(2)X(2) + =(2), (5.1.2)

where all components in the noise Z(n) are i.i.d. Gaussian and with the
same statistics of n(n) in (1.0.2). Then, the capacity of the multivariate

channel (5.1.2) is

(S, N) Z d9 max {0,log2 %ﬁlff_s} , (5.1.3)
0
where
1 N
o ; d9max{0 Ks— —,\k (0)} =5, (5.1.4)

and \y(8), k = 1,2,...,N, are the N eigenvalues of matrix Pf(e’?)P(e??)
for each 6 with —7 < § < 7, the dagger ! denotes the complex conjugate
transpose of matrix P(e’?), and S denotes the mean norm squared, i.e.,
[|X|I?, of N x 1 vectors X and is treated as the signal mean power of N x 1
vectors. The information rate of the multivariate channel (5.1.2) can be
derived similar to (1.3.3):

Ci.ia.(S,N) Z/_ﬂ [ 25’\"(0)] de, (5.1.5)

where A\ (@) are the same as in the capacity (5.1.3). Notice that the units
of the capacity C(S, N) and the information rates C; ; 4. (S, N) are bits per
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vector symbol of size N, i.e., bits per N symbols. The signal mean power
S is also the mean power of vectors of size N, i.e., the mean power per N
symbols.

With the above results it is not hard to derive some lower bounds for
the capacity and the information rates of the MC coded system in (5.1.1).
Notice that the MC coded ISI channel in (5.1.1) does not have the same
number of inputs and outputs as in the multivariate channel in (5.1.2)
studied by Brandenburg and Wyner [21].

For each 8, —m < # < m, let the singular value decomposition of C(e??)
be

C(e’’) = H(e”)G(e”°) = U(¢)A(”)V (e”), (5.1.6)

where U(e??) and V(e’?) are N x N and K x K unitary matrices and

. Alo30
A(e??) = [ 0(256;)11( ] , (5.1.7)
where
A(e?®) = diag(A1 (6),- - , Ak (), (5.1.8)

O(nv-K)xk is the (N — K) by K all zero matrix, and Ax(6) > 0 are the
singular values of C(e’?). In what follows, we assume A\¢(8) > 0,1 < k < K,
which is possible by employing MC even when the ISI channel H(z) has
spectral nulls as we have seen in Section 2.3.1. Then, (5.1.1) becomes

Y1(e'?) = A(e?) X, (e7) + 21 (7)), (5.1.9)
where
Y1(e%) = Ul ()Y (), Xi(e!) = V()X ("),
21 (%) = Ut(e7?)Z(e?). (5.1.10)

Since U(e??) and V(&%) are both unitary, the capacity and the information
rates of the system (5.1.9) are the same as the ones of the system (5.1.1),
ie.,

supI(X1,Y1) =supI(X,Y), sup I(X;,Y1)= sup I(X,Y). (5.1.11)
X, X iid. Xi iid. X

Let
Ya(e??) = A(e??)X 1 (e7%) + Ey(e??), (5.1.12)
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where Z5(e??) only takes the first K rows of Z;(e’?) and A(e??) is defined
in (5.1.8). Since the system (5.1.12) is obtained by cutting the last N — K
rows from the system (5.1.9), the information is not increased, i.e., from
(5.1.11), '
sup I(X,Y) >supI(X1,Y2), sup I(X,Y)> sup I(X1,¥3). (5.1.13)
X X, iid. X iid. X
Notice that the system (5.1.13) is now a K-input and K-output multivariate
system and therefore we may apply the Brandenburg and Wyner’s capacity
and information rate results (5.1.3) and (5.1.5). Although the MC coded
ISI system can be converted to an MIMO system (5.1.1), it is however a
single-input single-output (SISO) system. Therefore, the units for vectors
in (5.1.3) and (5.1.5) need to be changed to the units for symbols. By
doing so, we obtain the following lower bounds for the capacity and the
information rates of the MC coded ISI channel. The capacity, Carc(Es), is
lower bounded by

K
m 20 (0)K s
Cumc(E Zl df max {0, log, T} , (5.1.14)
where
1 e ["
” E/_ df max {o Ks — —/\ 1(9)} = KE,, (5.1.15)
and \¢(6), £ =1,2,..., K, are the K eigenvalues of the following matrix
c*(eJ”)C(eJ") = Gl (e’ )H (e7°)H(e) G (). (5.1.16)
The information rates, Cr pc(Es), are lower bounded by
K
1 i 2E,\(9)
Cz.z.d.,MC(Es) Z m ; . logg l:]- + _—"'N'O'— de, (5117)

where A;(f) are the same as in the capacity (5.1.14).

Note that the MC encoding causes the rate K/N loss, which has been
taken into the account in the above lower bounds. Otherwise, the factor
1/N in (5.1.14) and (5.1.17) would be 1/K.

5.2 MC Existence with Increased Informa-
tion Rates

With the lower bound (5.1.17) of the information rates of the MC coded ISI
channel, in this subsection we want to prove the following existence result
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by constructing an MC for an arbitrarily given finite tap ISI channel H(z).

Theorem 5.1 For any finite tap ISI channel H(z) = Y p_a h(k)z™* with
h(0) # 0, h(l' — 1) # 0, and T > 1, there exists an MC such that, when
the SNR, E; /Ny, is sufficiently low, the MC coded ISI channels have larger
information rates than the original ISI channel, i.e.,

Ciia.mc(Es) > Cii.4.(Es), when E; is small, (5.2.1)

where the rate reduction due to the MC encoding has been taken into the
account in the MC coded ISI channel.

Proof. Without loss of generality, we may assume that the ISI channel
H(z) is normalized as in (2.3.1). Consider N x 1 modulated code G =
[gl’ T 7gN]T with

N
> ol =N, (5.2.2)
k=1

where N > 2T" — 1 is chosen. The condition N > 2I" — 1 will be used later
for ensuring the MC existence. In this case, the blocked version in (2.3.3)
of the ISI channel H(z) can be written as

H(z) = H(0) + H(1)z!, (5.2.3)
where
H(0) =
[ h(0) 0 0 0 0 0 1
h(1) h(0) 0 0o - 0 0
BO-1) B-2) - hO) 0 -+ 0 - 0
0 AL -1) --- k(1) h(O) --- 0 e 0
B 0 0 0 e BT=1) - B
(5.2.4)
and
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0 0 -+ 0 A(-1) AT -2) --- h(1) 7
00 --- 0 0 R -1) --- h(2)
00 0 0 0 hT -1) (5.2.5)
0 0 0 0 0 0

00 - 0 0 0 0 lnun

Let gn—r42 = --- =gn = 0 in the MC G, i.e.,
N-T+1
G =g, ,gn-r+1,0,---,0]", and Z lge|> = N. (5.2.6)
k=1

In this case, it is not hard to see
H(1)G =0. (5.2.7)

In the following, we want to apply the information rate lower bound
(5.1.17) to prove the existence. To do so, we first need to calculate the
eigenvalues of the matrix Ct(e/®)C(e’?) in (5.1.16). By (5.2.3) and (5.2.7),

we have

Ct(e”’)C(e’)
=G HN0)+ HI (1)e ) (H(0) + H(1)e’®)G = GTHT(0)H(0)G. (5.2.8)

Let H;(0) be the submatrix of the first N — I' + 1 columns of H(0), i.e.,
H(0) = [H1[0], H2(0)]. By the normalization of H(z), i.e.,

r-1
> k) =1.
k=0

‘We have

Hyy Hipp ]
HY(0)H(0) = , 5.2.9
OHO) = | 1 3 (5:29)
where Hjy; is the following nonnegative definite matrix

Hii = H(0)H,(0) =

1 hi2 -+ hiN-r41

h;,2 1 . h2,N—F
. (5.2.10)

h* ’ h* e
1,N-I'+1 2,N-T (N-T+1)x(N-T'+1)



5.2. MC EXISTENCE 117

Let G1 = [g1,-++ ,gN—r+41)7. Then,

Cl(e’)C(e’®) = GTH (0)H(0)G = G} H11Gy. (5.2.11)
Let Hy; have the following diagonalization
Hy, = UAU, (5.2.12)
where U is an (N —T' + 1) x (N — " + 1) unitary constant matrix and
A = diag(Ar,- -+ ,AN-ry1)

and A; > -+ > AN_r41 > 0 are the eigenvalues of Hy;. Clearly, by (5.2.10)
we have

N-T+1
> A =trace(Hy) =N -T+1. (5.2.13)
k:l

We claim that, under the condition on the ISI channel length, I' > 1, the
following inequality holds:

AN-r+1 < L. (5.2.14)
In fact, if :/\N_r+1 >1. By (5.2.13) and Ay > -+ > AN_r41 > 0, we have
M= =Ayorp1 =1

In other words, the matrix H;; is the (N — '+ 1) x (N — T + 1) identity
matrix Iny_r4+1, which is not possible when h(0) # 0, hr—; # 0, " > 1,
N > 2T — 1, and the vector {h(k)}; 4 has the unit norm.

By (5.2.13) and (5.2.14), we have

N-T
> M>N-T. (5.2.15)
k=1
In.other words, if we let
N-T
1 Ak
o= ke 2t (52.16)

then,

K> 1. (5.2.17)
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We are now ready to design the MC G such that the MC coded ISI
channel has larger information rates than the ISI channel itself does. Let

F=UG, = [flaf27' ot 7fN—F+1]T- (5218)

Then, by (5.2.11), (5.2.12), and (5.2.18), we have

‘ _ N-T+1
Cl(e*)C(e’) = FIAF = > |fil*)x. (5.2.19)
k=1
Let
fi=fh==fv_r= NoT’ and fy_r41 =0. (5.2.20)
Clearly,
N-T+1
> IRlP=N.
k=1
Since U is unitary, by (5.2.18) we have
N-T+1
G =U'F, and Y  |al* =N, (5.2.21)

k=1

which ensures that the MC G in (5.2.6) is a normalized N x 1 MC. We next
want to prove that this MC is what we wanted for the existence proof.
In fact, by (5.2.19), (5.2.20) and (5.2.16), we have

Cl(e7%)C(e?®) = Nk = A(8), (5.2.22)

where A(8) is the only eigenvalue of Ct(e??)C(e??) and it is also § indepen-
dent. Using the information rate lower bound (5.1.17) we have

1
2N

2F,
Cr.mc(Es) 2 57 log, [1+ Nn]. (5.2.23)

No

By Jensen’s inequality, it is not hard to prove that the capacity of the
AWGN channel is greater than or equal to the information rates of any ISI
channel with AWGN; i.e.,

™

Ny
(5.2.24)

1 E, , 1 Ey
Ciia(Es) = E/ log, [1 +2FO|H(6]0)|2} df < ‘2-log2 [1 + 2—} .

-7
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Therefore, by (5.2.23) and (5.2.24) we have

2E
Ciida mc(Es) S ﬁlogz [1 + TV;’-NI{]
Ciia(Es) ~ Llog, [1 N 21%_]

(5.2.25)

Since the limit of the right-hand side of (5.2.25) is x when E,/Ny goes to
0, i.e.,

L log [1+ 2B. N

N 2

2 1 - ] Sk>1 as%——)O. (5.2.26)
5 log, [1 + 21—\,3-] 0

The inequalities (5.2.25) and (5.2.26), thus, imply that, for any N > 2I' -1,
there always exists E > 0 such that when E; /Ny < E, we have

Ciid.,mc(Es) > Ciia.(Es),

which proves Theorem 5.1. =

The above proof is constructive and the MC to achieve the larger infor-
mation rates is given in (5.2.6), (5.2.18), (5.2.20), and (5.2.21). From the
proof (5.2.14)-(5.2.15), one can see that the ISI provides the information
rate gain at low SNR. The inequalities (5.2.23)-(5.2.25) in the above proof
also provide the following lower bound of the information rate gain of the
MC coded ISI over the ones of the ISI itself.

Corollary 5.1 For a normalized ISI channel of length T with AWGN, the
ratio of the information rates of the MC coded ISI channel over the ones of
the ISI channel itself is lower bounded by

Ciia.,mc(Es) 2 log, [1 + ZTE;"NR] S log, [1 + %NK]
Ciia(Bs) 7 N [T log, [1 + 2,%§|H(eje)|z] dd ~ Nlog, [1 + 27%;;]
(5.2.27)

where & is defined in (5.2.16) and N > 2" — 1.

The above lower bound can be evaluated when the ISI channel H(z) is
known.
5.3 Numerical Results

In this section, we want to evaluate the capacities (5.1.14) and the infor-
mation rates (5.1.17) of some MC coded ISI channels and compare them
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with the ones of the ISI channels themselves. We consider two different ISI
channels:

Channel A: [0.5, 0.5, -0.5, -0.5], which is a spectral null channel;

Channel B: [\/2/3,/1/3] ~[0.8165, 0.5774], which does not have
spectral null.

The MC G 4 for Channel A is chosen from Section 3.3, which is obtained
by using the joint MLSE. The (4,2) MC G4 is

-0.9390 0.3440
0.1302  0.9915
0.9951  —0.0990
0.3641 -0.9314

Ga= (5.3.1)

The coding gain for the MC in (5.3.1) is yysy = 2.127dB compared to the

1St channel [0.5,0.5,-0.5,-0.5]

1.8 I T
—+—  MC coded information rates with an optimal MC :

16l —— ISl channel information rates R
—*—  MC coded capacity with an optimal MC L
------ ISI channel capacity e

148 —&—  MC coded information rates with an arbitrary MC |, .
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Figure 5.1: Channel A: MC coded and uncoded information rates. The
curves for the information rates of the MC coded channels are the lower
bounds.

uncoded BPSK over AWGN channel. Fig.5.1 shows the information rates
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and the capacities for Channel A. The information rates of Channel A with
AWGN and without MC coding are shown by the solid line. The lower
bound (5.1.17) of the information rates of the MC coded Channel A with
AWGN are marked by +, where the MC in (5.3.1) is used. One can see that
the MC coded information rates are above the uncoded information rates
when the channel SNR 2E, /Ny are below 4.7dB. The capacity of Channel
A with AWGN is shown by the dashdot line and the capacity lower bound
(5.1.14) of the MC coded Channel A with AWGN is marked by *. Although
the capacity and the information rates of the uncoded Channel A have a
significant gap when the SNR is below 12dB, their corresponding ones of the
MC coded channel are rather close, which is due to that the MC encoding
improves the ISI channel condition. The last curve marked by o is the lower
bound of the information rates of the MC coded Channel A with AWGN
and the MC is arbitrarily chosen, which is far below the rest curves.

1S channel [0.8165,0.5774)

1.8 = r — N
—+—  MC coded information rates with an optimal MC N
16l —— 1Sl channel information rates i
7| —*—  MC coded capacity with an optimal MC 7

—————— ISI channel capacity :
144 —8—  MC coded information rates with an arbittary MC  |,/............. -

Bits/Symbol
N

2 4
channel SNR 2€ /N (dB)

Figure 5.2: Channel B: MC coded and uncoded information rates. The
curves for the information rates of the MC coded channels are the lower
bounds.
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The MC G g for Channel B is chosen from Section 4.1, which is obtained
by using the MC coded ZF-DFE criterion. The (2,1) MC Gp is

1.1547
G = [ 0.8165 ]

The coding gain based on the MC coded ZF-DFE is 1.25dB and the coding
gain based on the joint MLSE is v;s; = 1.6dB, where both of them are
compared to the uncoded BPSK over AWGN channel. Fig.5.2 shows the
information rates and the capacities for Channel B. The information rates
of Channel B with AWGN and without MC coding are shown by the solid
line. The lower bound (5.1.17) of the information rates of the MC coded
Channel B with AWGN are marked by +, where the MC in (5.3.2) is
used. One can see that the MC coded information rates are above the
uncoded information rates when the channel SNR 2E, /Ny are below 2dB.
The capacity of Channel B with AWGN is shown by the dashdot line and
the capacity lower bound (5.1.14) of the MC coded Channel A with AWGN
is marked by *. Similar to Channel A, the capacity and the information
rate lower bounds of the MC coded Channel B almost coincide due to the
channel condition improvement of the MC encoding. The last curve marked
by o is the information rate lower bound of the MC coded Channel B with
AWGN and the MC is arbitrarily chosen, which is much worse than the
one using the MC (5.3.2) with certain optimality.

The above examples are, by no means, of any special purposes. They are
arbitrarily chosen from the previous chapters. From these two examples,
one can see that, the worse the ISI channel spectrum is, the better the MC
improves the information rates, and the closer the information rate lower
bound and the capacity lower bound of the MC coded ISI channel are.

(5.3.2)

5.4 Combined Turbo and MC Coding

Turbo codes [16, 15, 37] have been used to approach the AWGN channel
capacity at relatively low channel SNR. For an ISI channel, joint turbo
equalizations have been also studied in for example [39, 110, 50], where
the performance is bounded by the ISI channel information rates, i.e., the
maximal mutual information when the input is i.i.d. In the meantime, for
MC, as we have seen in the previous section, the MC coded ISI channel
has higher information rates than the original ISI channel does when the
channel SNR is relatively low. This suggests a combination of turbo and
MC codings.

In this section, we propose a joint iterative decoding of combined turbo
and MC coded ISI channel. In the combined turbo and MC coded ISI sys-
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tem, we use the MC to encode the symbols generated from the turbo en-
coder after multiplexing/interleaving/binary-to-complex-symbol mapping.
At the receiver, we combine the soft MC decoder with the turbo decoder
through the exchange of two kinds of extrinsic information. Simulation re-
sults show that the combination of the turbo and MC encoding/decoding
on the ISI channel significantly outperforms the current turbo equalization
techniques. Our examples show that the combined system may outperform
the capacity of the AWGN channel and the ISI channel information rates
at low SNR. The results in this section are from [184].

5.4.1 Joint Turbo and Modulated Code Encoding

The structure of the combination of the turbo code and the MC is illustrated
in Fig.5.3, where m; and 7, are two interleavers. The turbo code is similar
to the one used in [16}, i.e., the parallel concatenated convolutional code
(PCCC). The MC can be designed in several ways, for instance, the optimal
design in Section 3.4 and the suboptimal designs in Section 4.

transmitter receiver
Binary to| {ci} {x}
Complex ISI(H)—»
mapping ,
AWGN
chammel

turbo encoder (PCCC)

Figure 5.3: The structure of the combination of turbo and modulated en-
coding.

In Fig.5.3, the information bits {b;} are first encoded by the PCCC
turbo encoder, and after multiplexing, interleaving and symbol mapping,
the resulted symbols {¢;} are then fed into the MC. Finally the coded data
{z;} is transmitted over the ISI channel.

5.4.2 Joint Soft Turbo and MC Decoding

The decoding structure is illustrated in Fig.5.4, which consists of three
basic soft-in and soft-out (SISO) decoding blocks that originated from
the SISO APP module in {14]. The SISO decoding block is a four port
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device that accepts two inputs I, and I.. The I, represents the sequence
of the probabilities of the input bits (or symbols) {ux} in log domain,
ie., I, = {log P(u)}Y_,, where N is the length of the data sequence. I,
represents the sequence of the probabilities of the output bits (or symbols)

{er}, ie., I = {log P(ce)}V,.

[Mcis1 C&MCKS!
o]

] | » turbo decoder
SISO
IMCISI (MCISI) (?JMC!SI
U
-1 De
» T RSC| RSC2
, (e @ | @
MUX]i!c > C >
SISO SISO
RSC RSC
ILRISCl( N Qr 01 plzjscz( 2) QR
1
decision
—
7l
S —
2 MUXl,

Figure 5.4: The structure of the joint soft turbo decoder and soft modulated
code decoder.

Based on the knowledge of the trellis diagram, which can be either of the
convolutional code or of the MC coded ISI, the SISO decoder generates two
outputs: O, and O., where O, is the sequence of the new estimated proba-
bilities of the input bits (or symbols) after the decoder excludes the priorly
known values I, and O, is the sequence of the new estimated probabilities
of the output bits (or symbols) after the decoder excludes the priorly input
values I., as shown in the following:

O. = {logP(ug|decoding)}_, — I,
O, {log P(ck |decoding)}kN:L -1

Note, O, and O, are also viewed as the extrinsic information of the corre-
sponding input and output bits (or symbols) of the code.

In Fig.5.4, the decoding algorithm starts at the MCISI (combined mod-
ulated code and ISI) SISO decoding block. The initial value of IMCIST g
taken as zero, since no prior information about the MC inputs is known in
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the beginning. The IMCIS! js the soft information of the channel output
symbols.

Assume that the channel noise is AWGN with variance o,. Then,
IMCISI can be calculated from the received signal Y = {yx}&_, as fol-
lows:

2\ N
IMOIST = (log P(ec V)L, = {l’“-"—'}
.20',,’ k=1

The output OMCIST of the MCISI SISO decoder is then de-interleaved
and de-multiplexed into two separate parts: I#SC1 [RSC2 which are then
input into the two constituent SISO decoders of the turbo decoder.

Inside the turbo decoder, it is similar to the decoding algorithm in [16]
that the decoded output O, of either one is interleaved or de-interleaved
before entering the other SISO decoder as I,. The O, is called the ex-
trinsic information between the two constituent decoders that sustains the
iteration of the inner decoding loop in the turbo decoder.

Another extrinsic information, which is different from [16], is the outputs
ORSCland OFSC? of the turbo decoder that connects the turbo decoder and
the SISO MCISI decoding block, and therefore sustains the iteration of the
outer decoding loop.

5.4.3 Simulation Results

We now verify the performance of the combined turbo code and MC for ISI
channels. The ISI channel [0.7071, 0.7071] is tested. The turbo code we
use here is the one from [16] with the interleave length 65536.

First, we use the following optimal (3,2) MC of constraint length 2
designed using the joint MLSE design of Section 3.4:

—0.0353 —0.4874 0.7834 0.2469
G(z)=| 03175 —0.7121 | + | 0.3700 0.6290 | z™1,
0.7598  —0.3851 0.0041 0.4694

which has the coding gain 2.3dB compared to the uncoded AWGN channel.
In order for the comparison with the same signal rate, the punctured 1/2
rate turbo code and the above rate 2/3 MC are combined, while in turbo
equalization the unpunctured 1/3 rate turbo code is used. Therefore, both
systems have the same coding rate, 1/3.

Fig.5.5(a) shows the BER vs E; /Ny results of the combination of the
turbo and MC method and that of the turbo equalization method. It is
observed that our new coding scheme has about 0.9dB gain over the turbo
equalization method and is also above the ISI information rate.
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As another example of MC is the following optimal (2,1) MC of con-
straint length 3:

(023187 709290 _; [ 02748 | _, [ —0.0958 ] _q
G(z)“[0.6614] [0.7463]2 +[—-0.0655]z +[—0.0025]z ’

which has the coding gain 2.62dB compared to the uncoded AWGN chan-
nel. Fig.5.5(b) shows the performance of the combined turbo code and
the modulated code method. We notice that the BER reaches 10~ at
Ey, /Ny = —1.15dB, which is also above the information rate curve of the
ISI channel marked by dotted line in Fig.5.6. This information rate, in fact,
is the upper limit of the turbo equalization techniques. Surprisingly, this
performance is above the AWGN channel capacity.
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Performance of the Turbo Equalization and the Combined Turbo and Modulated Coding
with rate 1/3 and BPSK modulation, on Channel (0.707 0.707]

10
—e—  Turbo Equalization !
—*—  Combined Turbo and Modulated Coding
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(a)
Combined Turbo and Modulated Coding with rate 1/4 on Channel [0.707  0.707]
o PCCC with 172 RSC[G1=037, G2=021], punctured, Interleave=65536, and 1/2 MC
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Figure 5.5: Performance comparison of the combined turbo code and mod-
ulated code method and the turbo equalization method on the ISI channel
h =[0.7071 0.7071}: (a) overall code rate 1/3; (b) overall code rate 1/4.
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1Sl channel h=[0.7071 0.7071]
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Figure 5.6: Performance of the combined turbo code and modulated code.



Chapter 6

Space-Time Modulated
Coding for Memory
Channels

Space-time coding for multiple transmit and receive antenna communica-
tion systems has recently attracted considerable attention, see for example
[158, 157, 132, 70, 131, 130, 129, 8, 19, 60, 62, 61, 65, 66], which is mainly
because of the significant capacity increase from diversities. Such studies
include, for example, the capacity studies [132, 70, 157}, space-time trel-
lis coded modulation (TCM) schemes [131, 130], the combination of the
space-time coding and signal processing [131, 130}, and differential space-
time coding [129, 60, 62, 61, 65, 66]. Most studies for such systems so
far are for memoryless channels that may fit slow fading environment well,
where all the paths from different transmit and receive antennas are as-
sumed constants and treated as independent random variables. A recent
study on multiple transmit and receive antenna systems with memory can
be found in [8], where no space-time coding was considered. In this chapter,
we are interested in multiple transmit and receive antenna channels with
memory, where there are ISI for each pair of transmit and receive antennas.
However, we assume that all the ISI channels for all the different pairs are
known at both the transmitter and the receiver.

In this chapter, we generalize MC to space-time MC for multiple trans-
mit and receive antennaISI channels. Similar to the MC for single antenna
ISI channels (in previous chapters), the space-time MC can be naturally
combined with the multiple antenna channels. We generalize the MC coded

129
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ZF-DFE for single antenna systems studied in Chapter 4 to space-time MC
coded multiple antenna systems. By using the capacity formula of the mul-
tivariate channel with memory in [21], we first derive lower bounds of the
capacities C' and the information rates C;; 4. for the MC coded systems,
where C; ; 4. is the i.i.d. information rates when the input is an i.i.d. source,
see for example [122, 121]. As a property of the space-time MC, it is proved
that for an N transmit and N receive antenna channel H(z) with memory
and AWGN and for any rate r, 0 < r < 1, there exist rate r MC such that
the MC coded systems have larger information rates C; ; 4. than the system
itself does, when the channel SNR is relatively low and the channel H(z) is
not paraunitary [142]. Notice that for a channel H(z), the condition that
H(z) is not paraunitary holds almost surely. Another remark is that, when
N =1 this result is more general than the one obtained in Chapter 5 for
MC coded single antenna systems, where only rate 1/P MC with P > 2I'—1
were constructed. The results in this chapter are summarized from [176].

6.1 Channel Model and Space-Time MC

Before going to space-time MC, let us first describe the channel model.
Consider an N transmit antenna and M receive antenna channel with finite
memory and AWGN, i.e.,

N I'-1
Tm(t) =D Y hmn(k)sn(t ~ k) +7m(t), 1<m <M, (6.1.1)

n=1 k=0

where s, (t) is the information sequence at the nth transmit antenna, r.,(t)
is the received signal at the mth receive antenna, b, (k) is the ISI chan-
nel finite impulse response of length I' corresponding to the nth transmit
antenna and the mth receive antenna, and 7,,(¢) is the AWGN at the mth
receive antenna. Let H,, ,(z) denote the z-transform of hp, (k) in terms
of variable k. Let H(z) denote the following M x N matrix polynomial

H(2) = (Hmn(2))1<m<M,1<n<N- (6.1.2)

Then, channel (6.1.1) is an N input and M output system with transfer
matrix function H(z), i.e.,

R(z) = H(2)S(z) + n(2), (6.1.3)

where R(Z) = (Rl(z)7 U 7RM(Z))T1 S(Z) = (S](Z), T aSN(z))T) and
n(2) = (m(2), - ,nm(2))T, T stands for the transpose, and R,,(z), Sn(z)
and 7n(z) are the z-transforms of r,,(t), sn(t), and 7., (¢), respectively.
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For convenience, in what follows the above channel transfer matrix func-
tion H(z) is normalized so that the channel itself does not have any gain:

M N
222D (k)P = M. (6.1.4)

m=1n=1 k

In the following, we want to encode the information sequences s,(t) by
using a space-time MC given the channel H(z). ’

A space-time MC for N transmit antennas is an (N P, K) MC, where the
nth block of block length P of the MC encoded N P x 1 vector is transmitted
at the nth antenna as shown in Fig.6.1.

Pby 1 | Parallel

} to serial
Binary to Serial to| Kby 1| Space-Time | ¢ .

*| complex ™ parallel 1\/? C G(z) H H
mapping Pty 1 | Parallel

7| toserial

NPby K

Figure 6.1: Space-time modulated code encoding.

Similar to the combination of an MC and an ISI in the single antenna
case (2.3.2)-(2.3.6), which corresponds to N = 1 and L = NP here, the
space-time MC can be combined with the multiple transmit and receive
antenna channel H(z) in (6.1.2) by blocking it with block size P. The
combined MC and channel is

C(z) = H(2)G(z), (6.1.5)

where H(z) is the blocked version of H(z) and has the following pseudo-
circulant form, see for example [175],

Ho(z) 27 'Hp_i(z) - 2z71Hy(2)
H1 (Z) Ho(z) e z‘le(z)
H(z) = : : : : ) (6.1.6)
Hp_2(z)- Hp_3(z) - 27'Hp_1(2)

Hp_l(z) HP_Q(Z) te Ho(Z)
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where Hj,(z) is the pth polyphase component of H(z) = Y, H(k)z~*:

Hy(z) =) H(Pl+p)z!, 0<p<P-1
)

The space-time MC coded system in (6.1.1) and (6.1.3) after the blocking
becomes

R(z) = C(2)X(z) + E(2), (6.1.7)

where the size of R(2) is M P x 1 and the mth receive antenna receives the
mth block of block length P in the vector R(z), the size of C(2) is MP x K,
the size of X(z) is K x 1, and the size of Z(z) is M P x 1 and it is blocked
from 7n(z) in (6.1.3). All the components of Z(z) are i.i.d. Gaussian with
mean 0 and single-sided power spectral density Ny. Since the rank of C(z)
in (6.1.7) and (6.1.5) is at most min{M P, NP, K}, for the decodability of
the MC coded system (6.1.7), K has to satisfy the following condition

K < min{M P, NP}. (6.1.8)

In the following we shall study the MC coded multi-input and multi-
output (MIMO) system (6.1.7) under condition (6.1.8).

6.2 Space-Time MC Coded ZF-DFE

Similar to single antenna MC coded ISI channels, there are several decoding
schemes for the space-time MC coded multiple transmit and receive antenna
systems discussed in the preceding chapters, such as the MLSE decoding,
the MMSE decoding, and the joint ZF-DFE and MMSE-DFE decodings.
Different decoding algorithms also give different criterion for the optimal
MC design at the transmitter. In this section, we want to study the ZF-
DFE decoding and the corresponding optimal space-time MC design. The
others can be similarly done.

6.2.1 MC Coded ZF-DFE and Performance Analysis

Consider an N transmit antenna and M receive antenna system with M x N
transfer polynomial matrix H(z). For a space-time (NP, K) MC G(z) ,
K < NP is always assumed in what follows. The block diagram for the
space-time MC coded ZF-DFE is shown in Fig.6.2, where Ix is the K by K
identity matrix, and the K by 1 vector decision takes the best K by 1 vector
of all the possible K by 1 information symbol vectors, and 7 is the channel
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additive white Gaussian noise with zero mean and variance o2 = No/2, and
H(z) is the blocked version of H(z) and has size MP x NP.

The matrix multiplier D(z) at the receiver in Fig.6.2 for the MC coded
ZF-DFE converts the nonsquare polynomial matrix C(z) of the combination
into a square polynomial matrix so that the DFE can be implemented as
shown in Fig.6.2. It is usually the case that the higher the order of the
ISI channel to equalize is, the worse the DFE performance is. To make
the order of the overall system F(z) after the matrix multiplier as low as

possible, where

F(2) £ D(2)C(2) = D(2)H(2)G(z), (6.2.1)

Binary to | reeralto
— complex [

. parallel
mapping
n

Matnx Parallel to
multiplier Kbyl serial and

of size —P@—b vector complex |—»
K by MP decision to bingry

8z) mapping

B(2)C(z)- I

Figure 6.2: Space-time MC coded zero-forcing decision feedback equalizer.

and H(z) is as (6.1.6), the matrix multiplier D(z) simply takes a K by M P
constant matrix. It also suggests that the MC G(z) takes a block code,
ie., G(z) is an MP by K constant matrix. We next want to study the
MC design rule for the above ZF-DFE. Consider an NP by K block MC
G(z) = G and a constant K by NP matrix multiplier D(2) = D. The
combined MC of the channel and the transmitter MC G becomes

C(z) = HoG + Hi1Gz"  + -+ Hp, Gz 11, (6.2.2)
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where H(z) = Y p 1o Hez~* and

H(1) H(0) 0
0= ' : : : , (6.2.3)
H(P-1) HP-2) --- HQO) |, p.np

where H(0),..., H(P — 1) are M x N constant coefficient matrices in the
channel H(z) = 1,;;3 H(k)z=*. From the feedback loop in the ZF-DFE
in Fig.6.2, we want to have DHyG = I, i.e., the feedback does not depend
on the current vector. Therefore, the matrix multiplier D(z) = D is the
right inverse (pseudo-inverse), (HoG)™!, of the MP x K constant matrix
HoG. This also implies that the MC coded matrix HgG should have full
column rank. In other words, the M P x N P matrix Hg should have rank
at least K. For an arbitrarily given H(z), the matrix Hg almost surely has
full rank. Without loss of generality, in what follows we always assume that
Ho has full rank. As we shall see later on the MC design, it is only needed

that the rank of Hj is at least K.
After the matrix multiplier of D(z) = D = (d;;)k xmp at the receiver,
the mean power of the multiplied noise 7 of 7 becomes

K MP K —MP
_ Zi:l Zj:l |dij|202 _ Zi::l Zj:l 'dij|2N
K "= 2K o
By the normalization condition of the MC G, the mean transmitted signal
power is still 2. Similar to the conventional ZF-DFE for invertible ISI
channel, see, for example, [68], the signal-to-noise ratio (SNR) after the
MC coded ZF-DFE for the invertible C(z) is
_ 2Ko?
T K MP :
Zi:1 ijl |dij|2N0
Based on this SNR analysis at the receiver, to maximize the SNR we have
the following optimal MC design rule:

(6.2.4)

St

g

SNR = (6.2.5)

dnqul qu

K MP
i dij{* under the condition DHoG = Ik, 6.2.6
ménggl ;1 under the condition 0G = Ik ( )
where the MC G = (g;;) satisfies the normalization condition

NP K

> > lgil* =NP. (6.2.7)

i=1 j=1
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Let the singular value decomposition of the matrix HoG be
UVU, = HoG, (6.2.8)

where Uy and U, are MP x M P and K x K unitary matrices, respectively,
and

diag(A1, -+, Ak)

V =
Omp-K)yxK

, (6.2.9)

and \; for i = 1,2, ..., K are the singular values of the matrix H¢G. Then
the matrix multiplier D is

D(z) =D =UV-IU}, (6.2.10)
where

V™ = (diag(1/A1, -+ ,1/Ak), Ok x(MP-K))- (6.2.11)
Thus, the total energy of the matrix D is

K MP

> ldyl = ZV‘ (6.2.12)

=1 j=1

Therefore, using the elementary inequality on the right hand side of (6.2.12)
we have

K MP 1/K
Y N ldsl* > K (H /\2> , (6.2.13)

i=1 j=1
where the equality (the minimum) is reached if and only if
/\1 = /\2 == AK = A (6214)

The optimality condition (6.2.14) is the one to design the MC G that
whitens the matrix Hg generated from the ISI channel. In the next subsec-
tion, we propose a method to design such MC G given an Hp in (6.2.3).
We next want to study the performance of the MC coded ZF-DFE in
Fig.6.2, i.e., the error probability. Let us consider the vector decision block
in Fig.6.2. For a general MC G at the transmitter and the matrix multiplier
D with the form in (6.2.10), each K x 1 multiplied noise vector # for a
fixed time may be colored when K > 1. In this case, the vector decision is
necessary for optimal detection. If the MC G whitens Hg, i.e., the condition
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Binary to Serial to
— complex parallel

mapping
n
Matnx Parallel to
multiplier Symbol serial and |
of size —P@—V by gyfnbo- complex —»
K by MP decision to binary
H(2) mapping
B(2)C(z)T]

Figure 6.3: Space-time MC coded zero-forcing decision feedback equalizer
with optimal MC.

(6.2.14) holds, then it is not hard to see that each K x 1 multiplied noise
vector 7 for a fixed time is white too. Thus, the vector decision in Fig.6.2
can be reduced to the symbol-by-symbol detection as shown in Fig.6.3.

Assume that the condition (6.2.14) for the MC encoding holds, which
is always possible to design as we shall see later. In this case,

MP K

K
DD Nyl = 5vh

i=1 j=1

Let P,(~,) denote the symbol error probability at the symbol SNR «, for
the binary-to-complex symbol mapping used at the transmitter in Fig.6.2.
For convenience, in what follows we only consider the BPSK binary-to-
complex symbol mapping. In this case, the symbol error probability is
P,(vs) = Q(v/27s), where «y, is the SNR. before the decision block in Fig.6.2.
Using the SNR (6.2.5), the corresponding v; is

o? Ko? _ A2g2 _XNKE,

Ys =535 = 174 = = —
205 Y Z]A{_-If |di;12No No NP N,

(6.2.15)
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where Ej is the total energy of all the transmit antennas per bit. Then,
the bit error rate (BER) for the MC coded ZF-DFE &t the Ey /Ny is

BER = P,(7,) = Q (, /2%7) , (6.2.16)

where v is the coding gain as follows, which is based on the joint ZF-DFE
decoding and compared to the uncoded BPSK in AWGN channel:

2K
7= Sp (6.2.17)

where A is defined in (6.2.14).

6.2.2 The Optimal Space-Time MC Design

In this subsection, we present the optimal MC design such that the optimal-
ity condition (6.2.14) is satisfied. Consider the singular value decomposition
of HiHo: ’

HIHo = WIAW, (6.2.18)

where W is an NP x N P unitary matrix and

_ | diag(&2,--- & p), when MP > NP, (6.2.19)
| diag(éf,--- ,&3p,0, -+ ,0), when MP < NP, e
where
& 2 2 Emin{mpnpy > 0, (6.2.20)

are the min{ NP, M P} singular values of Hy. Using the singular value
decomposition (6.2.8) of HyG we have

U.GTWIAWGU! = diag(\?;--- ,2%).
Define
G =wgU}. (6.2.21)
Then

GYAG = diag(\2,- -+, A%) "2 M, 6.2.22
1 K
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where step 1 is from the optimal criterion (6.2.14). Let

__ NP (6.2.23)
& -
and
(NP-K)xK

By (6.2.23), it is not hard to see that G is normalized. Since both W and
U, are unitary, by (6.2.21) the MC G is also normalized. Clearly, G satisfies
the optimality condition (6.2.14), which is therefore optimal. Note that
only the inverses of the K largest singular values of Hg are needed, and the
rank of Hy only needs to be K or above.

Going back to (6.2.18)-(6.2.22), the optimal normalized MC G is

gopt = thUr, (6.225)

where U, is an arbitrary K x K unitary matrix, W is the NP x NP unitary
matrix defined in (6.2.18), and G is defined in (6.2.23)-(6.2.24).

Theorem 6.1 Given an N transmit and M receive antenna channel H(z),
the optimal normalized (NP, K) modulated code G for the space-time MC
coded zero-forcing decision feedback equalizer in Fig.6.2 is given in (6.2.25).

Using the optimal X in (6.2.23) and the optimal coding gain formula in
(6.2.17) for the BPSK signaling, we have the following optimal coding
gain using the optimal (NP, K') MC Gop; in (6.2.25) for a given channel:

K
Y &Y

where &, 1 =1,2,..., K, are the first K largest singular values of Hy. One
might want to ask when the above coding gain v,,; > 1. We have the
following simple result.

(6.2.26)

Yopt =

Theorem 6.2 When K = 1 and P > T in the MC Gop in (6.2.25), if
M > N, i.e., the number of the receive antennas is greater than the number
of the transmit antennas, then the corresponding coding gain yopt > 1.

Proof. To prove this theorem, by (6.2.26) we need to prove that the
first singular value &; of Hg is greater than 1, i.e., & > 1. Assume that all
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the singular values of Hy are less than 1. We want to derive a contradiction.
Consider the following matrix sequence for [ = 1,2, ...:

4,8 [HJ,HO] " (6.2.27)

By (6.2.18),

ol+1

A = Widiag(@™ - &)W (6.2.28)
By the assumption that &, < 1 for all k, we have

all the magnitudes of the elements in matrix A; are bounded by NP.
(6.2.29)

We now want to see the direct expansion of A4; in (6.2.27). Let
P-1
H =" H'(k)H(k). (6.2.30)
k=0

It is not hard to see that the left upper corner N x N submatrix of 4; is
always

¢ & m:? +B, (6.2.31)

where B is a nonnegative definite matrix. Since P > T', by the normaliza-
tion condition in (6.1.4) on H(z) and the condition M > N, we have

N
> An =trace(H) = M > N, (6.2.32)

n=1

where A\; > --- > Axy > 0 are the eigenvalues of H. Clearly, A\; > 1 by
(6.2.32). Since B; is nonnegative definite, we have trace(B;) > 0. Therefore,

trace(Cy) = trace(H2') + trace(B;) > Xf" — 00, when!— co. (6.2.33)

This implies that some elements in matrix A; go to co as I goes to oo, which
contradicts with (6.2.29). This proves Theorem 6.2. m

Although in Theorem 6.2 the condition M > N is required, the result
in Theorem 6.2 still holds when M = N and the channel matrix H(z) is not
paraunitary. Since the proof in this case is notationally tedious, we omit it
here. We shall see some numerical simulation results later.
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6.3 Capacity and Information Rates of the
Space-Time MC Coded MIMO Systems

In this section, we want to study the capacity and information rates of the
space-time MC coded channels similar to the one in Chapter 5. The basic
idea for the following capacity and information rate study is based on the
capacity formula obtained by Brandenburg and Wyner [21] for N-input and
N-output systems (or multivariate channels) with memory and AWGN.

6.3.1 Capacity and Information Rates of MIMO Sys-
tems without MC Encoding

Let us now study the capacity and information rates of the MIMO system
(6.1.3) using the ones in (5.1.3)-(5.1.5) for N input and N output systems
derived by Brandenburg and Wyner [21]. To derive the exact capacity
and information rates for the system (6.1.3), the difficulty arises from the
number N of the inputs may be different from the number M of the outputs.
When M = N, the above capacity formula (5.1.3) and the information rate
formula (5.1.5) can be directly applied by replacing P(z) with H(z). By
changing the units in (5.1.3) and (5.1.5) from per vectors to per symbols,
the capacity and the information rates of an N transmit antenna and N
receive antenna system are

N
1 ” 2)\]@(9)}-{5

— LA Al 3.1

C(Es,N) o 321 /_7r d6max{0,log2 No , (6.3.1)

where

1 N 4 No '

— E : dé —2X16) = NE;, 6.3.2

e 2 [ omes {5 - o} (632

and Ax(6), k = 1,2,...,N, are the N eigenvalues of matrix Hf(e’)H(e??)
and E; denotes the mean symbol power. The information rate is

N
1 4 2E, ) (0
Ci.i.d.(Es,N) = m E / log2 [1 + —N:(——z] de, (6.3.3)
k=1Y""

where A (6) are the same as in the capacity (6.3.1).

When the number of the receive antennas is not equal to the number
of the transmit antennas, i.e., M # N, we may use the singular value
decompositions of the MIMO system H(z) (6.1.3) and then convert it to
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a subsystem with min{M, N} inputs and min{M, N} outputs. By doing
so, we have the following lower bound for the capacity and the information
rates. '

min{N,M} .

C(Es,N,M) > m ; _ﬂdﬁmax{o,log2&1(\6;o)_}£§},
(6.3.4)
where
L minNMY g No |
by ; » df max {O,Ks - 7)\,c (9)} = min{N, M}E;, (6.3.5)

and Ag(0), k = 1,2,...,min{N, M}, are the min{N, M} squared singular
values of matrix H(e’?). The information rate is

min{N,M}
1 i 2E ;A (6)
> > ¥ 1 et A ASEN P
Ciia (Bo N M) 2 min{N,M} /_". o2 [1 A ] &
(6.3.6)
where A () are the same as in the capacity (6.3.4).

6.3.2 Capacity and Information Rates of the Space-
Time MC Coded MIMO Systems

We next want to study the capacities and the information rates of the
space-time MC coded MIMO systems (6.1.7). It is not hard to see that
the MC coded MIMO system (6.1.7) is a K input and M P output system.
Based on the decodability condition (6.1.8), there are two cases for the
parameters K, NP, MP: Case (i) when K = MP < NP and Case (ii)
when K < MP and K < NP.

We first consider Case (i). Similar to (6.3.1)-(6.3.3), the capacity and
the information rates of the space-time MC coded system in (6.1.7) when
K=MP< NP are '

K
i 2 (0)K
C(E,,K,NP,MP) = 47r11v > 3> | dfmax {0, log, ﬂ%} ,
k=1Y "7

(6.3.7)

where

df max {O,Ks - %}\k—l(e)} = KF;, (638)

1 K
=/
k=1
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and Ai(8), k = 1,2,.., K, are the K squared singular values of matrix
C(€’?) in (6.1.5). The information rate is

K
1 " 2E, M (6)
TN ;; /_ log, [1 + T] 9, (6.3.9)

where A, () are the same as in the capacity (6.3.7). Notice that the data
rate loss K/(NP) in the above MC encoding has been taken into the ac-
count in the above formulas and otherwise the factor 1/(NP) in (6.3.7) and
(6.3.9) would be 1/K.

For Case (ii), similar to (6.3.4)-(6.3.6), the capacity and the information
rates of the space-time MC coded system in (6.1.7) when K < MP and
K < NP are lower bounded by

Ciia(Es, K, NP,MP) =

K
1 " 2)\k(0)KS
> bk Sl A
C(Es, K,NP,MP) > NP kz:l/_"dﬂmax{ﬂ,log2 ,

Ny
(6.3.10)
where
1 [™ .
o :L__:l  dfmax {O’KS _’\k (9)} = KE;, (6.3.11)
and Ag(0), k 1,2,...,K, are the K squared singular values of matrix

C(e?%) in (6.1.5). The information rate is lower bounded by

K
: 1 4 2E A (6)
Ciia(Es, K,NP,MP) > MNP; /_ ] log, [1+ No d(),
‘ (6.3.12)

where Ag(6) are the same as in the capacity (6.3.10).

We next show that there exists space-time MC such that the information
rates of the MC coded system in (6.1.7) are larger than the ones of the
original system in (6.1.3) when the channel SNR is low and the number of
transmit antennas is equal to the number of receive antennas, i.e., M = N.
When M # N, similar arguments can be used to show the space-time MC
existence with the larger information rate lower bound of the MC coded
system over the information rate lower bound of the original system.

Before going to the results, we need to introduce two concepts on N x N
polynomial matrix H(z). An N x N polynomial matrix H(z) is called
paraunitary if and only if, see [142],

H(e?)H(e?®) = dIy, -7 <0 <, (6.3.13)
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where d > 0 is a constant. The above paraunitariness is a generalization of
the unitariness for constant matrices. When N > 1, an N x N polynomial
matrix H(z) is almost surely not paraunitary. When N = 1, a polynomial
is paraunitary if and only if it is a single delay dz—*°, i.e., no ISI. An N x N
polynomial matrix H(z) is called pseudo-paraunitary if and only if

H(e') = d(e?®)U(e??), —r <8< m, (6.3.14)

where d(e??) is a scalar function of e? and has at least two terms of e/*% for
different k and U(e’®) is an N x N unitary matrix for any 6. For an N x N
polynomial matrix with N > 1, it is almost surely not pseudo-paraunitary.
However, for N = 1, any polynomial H(z) is pseudo-paraunitary unless it
is only a delay, i.e., H(z) = dz~*°, and in this case it is paraunitary.

Lemma 6.1 If the blocked version H(z) in (6.1.6) with block size P of
an N x N polynomial matriz H(z) is pseudo-paraunitary (or paraunitary),
then H(z) is also pseudo-paraunitary (or paraunitary).

Proof. When IV = 1, the blocked version H(z) can be diagonalized as
follows, see (2.3.10),

H(z") = WU )T A(2) W3 U(2), (6.3.15)
where Wp = —=(w})o<p,e<p-1, wp = exp(—j2m/P),

U(Z) = dlag(la Z_ls T az_P+1):

and
A(z) = diag(H(z), H(zwp),- - - , H(zwp™)). (6.3.16)

When N > 1, H(zF) can be permuted both row-wisely and column-
wisely such that each P x P submatrix of the permuted H(zF) is pseudo-
circulant and corresponds to the case when N = 1. Therefore, the diago-
nalization (6.3.15) can be used toc each P x P submatrix of the permuted
matrix of H(zF). Then each diagonalized P x P submatrix of H(2F) is
permuted back. Let P denote the permutation matrix. Then, H(z%) has
the following diagonalization

H(2F) = PTdiag (WpUR)],- -, [WpU(2)]") PTA(2)PT

diag (WpU(2),--- ,WpU(2)) P7, (6.3.17)

where A(z) has the form (6.3.16). Since all matrices Wp, U(z), and P are
unitary, by the form of A(z) in (6.3.16), H(z) is pseudo-paraunitary (or
unitary) implies that H(z) is also pseudo-paraunitary (or unitary). m

We are now ready to state and prove the following results.
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Theorem 6.3 Let H(z) be an N x N transfer polynomial matriz of an
N transmit antenna and N receive antenna system with AWGN. If H(z)
is not pseudo-pareunitary, then for any 1 < K < NP, there ezists an
(NP, K) space-time MC such that the information rates in (6.8.12) of the
MC coded system (6.1.7) are larger than the information rates in (6.3.3) of
the original system (6.1.83), when the channel SNR is sufficiently low.

Proof. For each § with —7m < 6 < , let H(e’?) in (6.1.6) have the
following singular value decomposition

H(e®) = U(e??)A(e?®)V (e??), (6.3.18)
where U(e??) and V(e’?) are both unitary and
A(e’®) = diag(M (), -~ , Anp(6))
with
M(68) > - > Anp(8) > 0. (6.3.19)

By the Parseval’s equality, the channel normalization (6.1.4) with M = N
and the form (6.1.6) of H(z),

NP
1 M L WRTICIRT.
- /_ ] ;Akw)da = /_ trace(H! (") H(e)d
M N
PY NS |hma(k))> = NP. (6.3.20)
m=1n=1 k
Let G(e’?) be the following NP x K matrix
_ ) ; NP | NP
G(e?) = Vi(e'?) [ diag(y/ %51/ &) ] (6.3.21)
Ovp-K)xK NPxK
Then, the K squared singular values of matrix H(e’®)G(e’®) are
NUOE EK}—sz(o), 1<k<K. (6.3.22)

We claim that, when H(z) is not pseudo-paraunitary, we have

r K
> M(6)do > K. (6.3.23)

1
2n T k=1
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In fact, if

- K
%/‘ZE@WSK (6.3.24)

3
|
3

then, by (6.3.20) and (6.3.19) we have
M) == Anp(@) = A(6), almost surely. (6.3.25)

By (6.3.18), we know that H(z) is pseudo-paraunitary. Therefore, by
Lemma 6.1 H(z) is also pseudo-paraunitary, which contradicts the con-
dition in Theorem 6.3.

Let An(6), 1 < n < N, be the N squared singular values of matrix
H(e’?). By the normalization (6.1.4) of H(z) and the Parseval’s equality,
similar to (6.3.20) we have

1 [ =
— [ Y X0 =N. (6.3.26)
T op=1

Let

P > 1X<”(0)d0
P YN A.(6)de’

(6.3.27)

K

which only depends on the channel H(z). Therefore, by (6.3.22), (6.3.23),
and (6.3.26), we have

R > 1 (6.3.28)

If V(2) in the decomposition (6.3.18) is a polynomial matrix, i.e., each
component in V(z) has only finite terms of 27*, then we claim that the
(NP,K) MC G(z) in (6.3.21) is the MC G(z) we wanted to construct for
the proof. We next want to prove this claim. To do so, we consider the
ratio Ry{<y) of the information rate (6.3.12) for the MC coded system over
the information rate (6.3.3) for the original system, where

2E;
Ny’
By the lower bound in (6.3.12), the ratio Ry(7y) is lower bounded by

JT TR logy(1+ 2 (6))dd
P T SN logy(1+vAa(6))df

vy =

Ri(y) > (6.3.29)
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Thus,

L I T logy (1 4+ 7R (6)df
10 P [T 5 logy(1 + yAa(6))dé
ste:pl flrvr Ef:l S‘Scl)(g)de

P YN aa(8)d8
= &>1, (6.3.30)

lim R;(y) 2>
v—0

where step 1 is from the L’Hopital’s rule.

When V(2) has infinite terms of z~¥, it is truncated into a polynomial
matrix V1 (z) in a way that it is close enough to V(z) and the corresponding
MC G(z) defined similar to G(z) in (6.3.21) by replacing V(z) with V;(z)
is also close enough to G(z). Then, the corresponding squared singular
values /\Scl)(O) of H(2)G(z) are also close to /_\21)(0) in (6.3.22) such that

é fj—rﬂ' Ef:l A;cl)(g)do

~ K, and k> 1 6.3.31
CP ST SN A(6)dd (6.3.31)

K

With the MC G(z) defined above, the corresponding information rate ratio
R;(v) is lower bounded by x > 1 as the channel SNR « goes to 0, which is
similar to (6.3.29)-(6.3.30).

The above arguments prove that when the channel SNR + is sufficiently
small, the information rates of the MC coded system are larger than the
ones of the original system. This proves Theorem 6.3. =

From Theorem 6.3, it is known that, for almost all N transmit antenna
and N receive antenna systems with N > 1 and any (NP, K) with K < NP,
there exists an (NP, K) space-time MC such that the MC coded systems
have larger information rates than the ones of the original systems, when the
channel SNR are small. Since when N = 1, i.e., a single antenna system, the
ISI channel H(z) with length T > 1 is always pseudo-paraunitary, Theorem
6.3 does not apply to the case when N = 1. In order to include this case,
we have the following result.

Theorem 6.4 Let H(z) = ,1:;3 H(k)z"* be an N x N transfer polyno-
mial matriz of an N transmit antenna and N receive antenna system with
AWGN. If H(z) is not paraunitary, then, forany 1 < K < NP with P > T,
there exists an (NP, K) space-time MC such that the information rates in
(6.3.12) of the MC coded system (6.1.7) are larger than the information
rates in (6.8.8) of the original system (6.1.8), when the channel SNR is
sufficiently low.
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Proof. By Theorem 6.3, we only need to prove Theorem 6.4 for the
case when H(z) is pseudo-paraunitary. In this case,

H(e') = d(e”)U (),

where d(e’?) is a scalar function of €7’ and has at least two different terms
of e/*® and U(e??) is unitary. Since a unitary matrix multiplication does
not change the information rates, by absorbing U(e’?) into the signal, the
system H(z) is equivalently converted to d(e’®)I, which is equivalent to
N single antenna systems with the transfer functions d(e’?). Since H(e?%)
has length T, so does d(e??) due to the fact that

H'(*)H(e™) = |d(e”’) " In.

Therefore, to prove Theorem 6.4 we only need to consider the case of single
antenna systems, i.e., N = 1, with finite ISI. In this case, everything else
but (6.3.23) in the proof of Theorem 6.3 directly applies here. This implies
that we only need to prove (6.3.23) under the conditions that the single
antenna system transfer function H(z) of length T’ with I' > 1, and P > T.
If (6.3.\23) is false, i.e., (6.3.24) holds, then, similarly we have

A(8) =--- = Ap(f) = A(#), almost surely. (6.3.32)
Going back to (6.3.18),
H(e?) = AO)U(e?)V (e’?). (6.3.33)

Since H(e’%) is pseudo-circulant, it has the diagonalization (6.3.15). By
combining (6.3.33) and (6.3.15), we have

diag(H (e’*/P), H(e’*/Fwp),--- , H(e?/Pwb~1)) = A(O)W(6),

where W (0) is unitary. Therefore,

|H (7 Puh)|? = X2(6), forp=0,1,..,P—1. (6.3.34)
By expanding (6.3.34) and setting § = 0, we have
r-1 2
> h(k)exp(jkp/P)| = A*(0), forp=0,1,..,P~1. (6.3.35)
k=0

Since P > T, (6.3.35) is possible only if the sequence h(0), h(1),...,h(I' — 1)
has one non-zero element, which contradicts with the condition that H(z)
has at least two terms. This proves (6.3.23) and therefore Theorem 6.4 is
proved. =

From the above proof, the following corollary is immediate.
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Corollary 6.1 For a single antenna system with transfer function H(z)
of length T' > 1 and AWGN, there always ezists a rate K/P MC with
1< K < P >T such that the MC coded systems have larger information
rates than the original system does, when the channel SNR is small.

The above result is a generalization of the one obtained in Chapter 5,
where rate 1/P with P > 2I"' — 1 MC were constructed. Examples shall
be presented later to illustrate the above results. One thing should be
emphasized here is that, in all the above proofs of the information rate
increase, the condition K < NP, i.e., the data rate increase of the MC
encoding, ensures (6.3.23) and therefore x > 1 in (6.3.31) or & > 1 in
(6.3.28).

6.4 Numerical Results

In this section, we see some simulation results on both MC coded ZF-DFE
and the capacity and the information rates of the MC coded systems and the
systems themselves. In the following simulations, the number of transmit
and receive antennas are both 2, i.e.,, N = M = 2. The block size in the
space-time MC in Fig.6.1 is P = 3. The space-time MC code rate is 2/6,
i.e., K = 2. In this case, the rate for each transmit antenna is 2/3. The
BPSK is used for all the simulations and no additional coding is used before
the MC encoding.

We consider two different multiple transmit and receive antenna chan-
nels with memory and AWGN: Channel A H4(2) and Channel B Hp(2).

Channel A H4(z) has length I = 3 and its 3 coefficient matrices are:

0.4762  0.4286 4
HO)=HW)=H@=| 310 03333 |’ (6.41)

which is a spectral-null channel because H(z) = (1+271+272)H(0). The
optimal (6, 2) space-time MC G, in (6.2.25) for this channel is

0.9350 —0.7529
05778  1.2182
0.7498 —0.6038

Gort.d = | 04634 09769 |- (6.4.2)
04161 —0.3351
02572 0.5421

The optimal coding gain with this MC is y,p: = 1.96dB. Fig.6.4 shows the
capacities and information rates C;; 4. of the MC coded/uncoded systems.
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The solid line shows the original channel information rates C; ;4. (6.3.3)
with N = 2 while the solid line marked by 0 shows the lower bound (6.3.12)
of the information rates C;; 4. of the space-time MC coded channel using
the optimal MC in (6.4.2). One can see that the information rates C;; 4.
of the MC coded channel are above the ones of the original channel when
the channel SNR is below about 2.5dB. The dashed line shows the original
channel capacity (6.3.1) while the solid line marked by * shows the capacity
lower bound (6.3.10) of the MC coded channel. Fig.6.5 shows the BER
performance comparison. The solid line shows the theoretical BER vs.
Ey/No curve of the MC coded ZF-DFE and the solid line marked by X
shows the simulation results. The dashed line shows the BER vs. E,/Ny
curve of the uncoded BPSK over the AWGN channel (i.e., the ideal single
antenna channel). One can clearly see the coding gain of the MC. Since
the rate for each antenna in this case is 2/3 and all the ISI channels of all
transmit and receive antenna pairs are the same, basically 1 + 27! + 272,
it is possible to compare it with its single antenna system with the ISI
channel 0.5774(1 + 2! + 272). The rate of the MC for the single antenna
system is 2/3 comparing to Channel A. In this case, the optimal coding gain
using the ZF-DFE developed in Section 4.1 is —4.20dB, i.e., coding loss.
Compared to the coding gain 1.96dB;, the MC coded multiple transmit and
receive antenna channel significantly outperforms the correspondmg single
antenna channel.
Channel B Hg(z) has length I = 5 and its 5 coefficient matrices are:

[ 08111 0.5469 [ -0.1459 —0.0136
H(0) = [ 0.7117 0.6691 ] H(1) = [ —0.0880 -0.0507]

[—0.0183 -0.1676 0.0154 —0.0152]

H) =1 (1963 01129 ] H(3)=[—0.0457 0.0323

—0.0620 —0.0617 ]

HE) = [ ~0.0228 —0.0970 (643)

This channel is randomly chosen. The optimal (6,2) space-time MC Gopt
in (6.2.25) is

0.6276 —0.9998
0.4449 —0.7658

| —1.0787 -0.0931
Gopt.B = | _( 8155 0.0032
0.5606  0.9498

0.4488  0.7529

The optimal coding gain with this MC is vo,¢ = 3.24dB. Similar to Channel
A, Fig.6.6 shows the capacities C and information rates C; ;4. of the MC

(6.4.4)
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coded/uncoded systems and Fig.6.7 shows the BER performance compari-
son. From Fig.6.6, one can see that the information rates C;; 4 of the MC
coded channel are above the ones of the original channel when the channel
SNR is below about 6dB.

From both Fig.6.4 and Fig.6.6, the capacity lower bound curves almost
coincide with the information rate lower bound curves of the MC coded
channels. It is, however, not always the case for any MC.

Channel A, N=M=2, P=3, K=2
18 T T T T T T T T

—&—  MC coded information rate lower bound

16| —— original information rate .
—+—  MC coded capacity lower bound
original capacity

bits per symbol

0.4

oo T P S OSSOSO OO PNOFS NOO
° L L I 1 L L 1 I

-6 ~4 -2 10 12

0 2 4 6
Channel SNR 2E /N, (dB)

Figure 6.4: Channel A: Capacities C' and information rates C;; 4. for the
MC coded and uncoded channels.
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Channel A, M=N=2, P=3, K=2, rate 2/6 MC, rate for each antenna is 2/3

10
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o
s
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@
=
107°
uncoded BPSK over AWGN
—_— MC coded BPSK; theory  .iid Y RN
—*—  MC coded BPSK: simulation : :
107 : S T ‘ i i i i
1 15 2 25 4.5 5 55 6

35
E /N, (dB)

Figure 6.5: Channel A: BER performance for the MC coded channel using
the joint ZF-DFE, where the theoretical coding gain is 1.96dB.

Channel B, N=M=2, P=3, K=2

T T T

T

T T T

MC coded information rate lower bound : ,

original information rate

MC coded capacity lower bound h ,

bits per symbol
o
> ~

o
>

0.4

02k

P
Channel SNR 2E/N,, (dB)

Figure 6.6: Channel B: Capacities C and information rates C; ;4 for the
MC coded and uncoded channels.
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Channel B, M=N: ate for each antenna is 2/3

bit error rate
3

| uncoded BPSK over AWGN
——  MC coded BPSK: theory
| —+—  MC coded BPSK: simuation

-5 ' L s It 1 L L L I

35
E/N, (dB)

Figure 6.7: Channel B: BER performance for the MC coded channel using
the joint ZF-DFE, where the theoretical coding gain is 3.24dB.



Chapter 7

Modulated Code Coded

Orthogonal Frequency
Division Multiplexing
Systems

Orthogonal frequency division multiplexing (OFDM) systems have been
widely used in high speed digital wireline communication systems, such as
VHDSL and ADSL [25]. One of the main reasons is because OFDM systems
convert ISI channels into ISI-free channels by inserting the cyclic prefix as
an overhead at the transmitter. For tutorials, see, for example, [18, 189, 3].
Recently, the applications of OFDM systems to high speed digital wireless
communication systems have become an active research area. In frequency-
selective channels, however, the ISI channel may have spectral nulls, which
may degrade the performance of the existing OFDM systems because the
Fourier transform of the ISI channel needs to be inverted for each subcarrier
at the OFDM system receiver. For this reason, the coded OFDM systems
were proposed in, for example, [189, 188, 47], where the conventional trellis
coded modulation (TCM) was used in {189, 188}, and turbo codes were used
in [47]. Another problem with the existing OFDM systems is that when
the ISI channel has many taps, the data rate overhead of the cyclic prefix
insertion is high.

In this chapter, we first propose an MC coded OFDM system by simply
inserting one or more zeroes between each two sets of K consecutive infor-
mation symbols, which may be independent of the ISI channel. However,

153
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the MC can be general. Notice that, due to the insertion of zeroes, the
data rate is expanded in the MC coded OFDM systems. We show that, for
spectral null channels the MC coded OFDM systems perform better than
the existing OFDM systems do even when the conventional convolutional
codes and TCM are used in the OFDM systems, i.e., COFDM systems
[189, 188, 47]. The rationale is that the proposed MC coded scheme may
be able to remove the spectral nulls of an ISI channel without even know-
ing the channel information. Furthermore, the proposed MC coded OFDM
system does not increase the encoding/decoding complexity as much as the
conventional COFDM does, where the Viterbi decoding for the conventional
COFDM is needed.

We also propose vector OFDM systems, which are used to reduce the
data rate overhead of the prefix insertion. The basic idea for the vector
OFDM systems is basically from the above MC coded OFDM systems,
where no zeroes are inserted between each two sets of K consecutive infor-
mation symbols but each K consecutive information symbols are blocked
together as a K x 1 vector sequence. Compared to the MC coded OFDM
systems, the data rate before the prefix insertion for vector OFDM systems
is not changed. When K x 1 vector sequence is processed, the ISI channel
can be blocked into a K x K matrix ISI channel but the length of the ma-
trix ISI channel is only about 1/K of the original ISI channel length. The
cyclic prefix length for the vector OFDM system only needs to be greater
than or equal to the matrix ISI channel length. This implies that the data
rate overhead of the original cyclic prefix insertion is reduced by K times
for the vector OFDM systems. The bit error rate (BER) performances of
the vector and conventional OFDM systems are compared. Our simulation
results show that the BER performance of the vector OFDM systems is
similar to the conventional OFDM systems. The results in this part are
from [169).

We then study the performance of the MC coded OFDM systems in
frequency selective multipath Rayleigh fading channels obtained in [154].
Both analytical and simulation results are presented.

7.1 OFDM Systems for ISI Channels

In this section, the conventional OFDM system is presented by including
the theoretical bit error rate (BER) performance analysis.

Let z(n) stand for the information symbol sequences after the binary to
complex mapping, such as BPSK and QPSK symbol sequences. Let N be
the number of carriers in the OFDM system, i.e., the size of the IFFT and
FFT in the OFDM system as shown in Fig.7.1 is N. Let the ISI channel
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x,(n)
X, (1) Cyclic
x(n) . prefix
— N-pomnt| " > P/S
S FFT | | 2dding
with
length T’ ISI
H(z)
— nn
N-point |
“—rrr [ 5P
Yo(1)
Yy

Figure 7.1: Conventional OFDM system.

have the following transfer function

H(z) =) h(n)z™", (7.1.1)

where h(n) are the impulse responses of the ISI channel. Let I' be the
cyclic prefix length in the OFDM system as shown in Fig.7.1 and ' > L
for the purpose of removing the ISI. Let n{n) be the AWGN, as shown in
Fig.7.1, with mean zero, variance 03, = Ny/2, and Ny is the single-sided
power spectral density of the noise n(n). Let r(n) be the received signal
at the receiver and y(n) be the signal after the FFT of the received signal
r(n). Then, the relationship between the information symbols z(n) and the
signal y(n) can be formulated as

yr(n) = Hizp(n) + &(n), £=0,1,..,N -1, (7.1.2)
where g (n) denotes the kth subsequence of g(n), i.e.,

(q(n))n = (QO(TL), q1 (n)’ ey qN—l(n))n:
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and ¢ stands for z, y, and £, £(n) is the FFT of the noise n(n) and therefore
has the same statistics as n(n), and

Hi = H(2)| e oxpiont/ny » k=01, N = 1. (7.1.3)

The receiver needs to detect the information sequence z(n) from yi(n)
through (7.1.2).

From (7.1.2), one can clearly see that the ISI channel H(z) is converted
to N ISI-free subchannels Hy. The key for this property to hold is the
insertion of the cyclic prefix with length I' that is greater than or equal to
the the number of ISI taps L. Similar properties will be used in the following
MC coded OFDM systems in Section 7.2. As mentioned in Section 2.1, the
OFDM system itself is actually an MC coded system with the following
channel independent block (N +T', N) MC

G(z)=[$§],

where Wy is the N-point DFT matrix and Wy is the first I row submatrix
of Wy and corresponds to the cyclic prefix.

For the ISI-free system in (7.1.2), the performance analysis of the de-
tection is as follows. Let Py, . (Ep/No) be the bit error rate (BER) for the
signal constellation z(n) in the AWGN channel at the SNR E; /Ny, where
E, is the energy per bit. Then, the BER vs. E;/Ng of the OFDM shown
in Fig.7.11is

2
| "N Ey ) . (7.1.4)

L N1
P, =— Poerzs | 7o
Nkz=0 ber ((N+I‘)Ng

For example, when the BPSK for z(n) is used, we have

Pber,:c (Eb/NO) = Q (V %) . (715)

Therefore, the BER vs. Ey /Ny for the OFDM system is

1 & [2|H2NE,
Pe—ﬁng( m) . (7.1.6)

Numerical examples will be presented in Section 7.3.5.
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7.2 General MC Coded OFDM Systems
for ISI Channels

We now propose an MC coded OFDM system whose block diagram is shown
in Fig.7.2. It is formulated as follows, which is the goal of this section.

Symbol z(n) is as before, i.e., the information sequence after the binary
to complex mapping. The information sequence z(n) is blocked into K x 1
vector sequence

F(n) = (zo(n),z1(n), ..., Tk 1 (n))T,

where zx(n) = z(Kn + k), k =0,1,..., K — 1. Symbol G(z) is an (M, K)
MC.

The MC coded M x 1 vector sequence is denoted by Z(n). Let K x 1
polynomial vector X(z) and M x 1 polynomial vector X (z) denote the z
transforms of vector sequences Z(n) and Z(n), respectively. Then,

X(2) = G(2) X (2). (7.2.1)
The MC coded M x 1 vector sequence Z(n) is blocked again into M N x 1
vector sequence

&(n) = (&5 (n), 21 (n), .., Tx_1 (n)7,

where each % (n) = Z(Nn+k) is already an M x1 vector for k = 0,1,..., N—
1.

Let %(n), | = 0,1,...,N — 1, be the output of the N-point IFFT of
Zx(n), k=0,1,..,.N — 1, i.e,

Z @ (n) exp(j2rki/N), 1=0,1,..,N — 1, (7.2.2)

which is the N-point IFFT of the individual components of the N vectors
Tk (n) ~

The cyclic prefix in Fig.7.2 is to add the first ' vectors Z(n), I =
0,1,...,['—1, to the end of the vector sequence 7 (n), !l =0,1,..,N—1. In
other words, the vector sequence after the cyclic prefix is '

2(n) = (4 (n), 5 (n), ., En_1(n), 25 (n), ., L, ()7, (7.2.3)

which has size M (N +T') x 1. The cyclic prefix length T’ will be determined
later for the purpose of removing the IST of the MC coded OFDM system.
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Figure 7.2: MC coded OFDM system.

Notice that each subvector Z;(n) in 2(n) in (7.2.3) has size M x 1 and the
prefix components are also vectors rather than scalars in the conventional
OFDM systems as shown in Fig.7.1.

The transmitted scalar sequence in the MC coded OFDM system in
Fig.7.2 is z(n) and is obtained by the parallel to serial conversion of the
vector sequence £(n) in (7.2.3). Notice that the MC coded OFDM system
in Fig.7.2 is different from the OFDM systems with antenna diversities,
such as [85, 84, 78]. In the MC coded OFDM system in Fig.7.1, there is
only one transmitting antenna and one receiving antenna.

r(n) is the received scalar sequence at the receiver, which is converted
to the following M N x 1 vector sequence

TA(n) = (fg(n),f{(n), "-afﬁ—l(n))T:

where each 7(n) has size M x 1. The output of the N-point FFT of #(n)
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is

N-1
gr(n) = LNZ 7i(n) exp(—j2xlk/N), k=0,1,.,N—-1, (7.2.4)
=0

where the formulation is similar to the N-point IFFT in (7.2.2) and each
gr(n) is an M x 1 vector. In what follows, we derive a similar output and
input relationship between i (n) and Zx(n) as in (7.1.2) for converting the
ISI channel into an ISI-free channel, and also in what follows “ISI-free”
means that there is no interference between inter-vectors.

Since a single input and single output (SISO) linear time invariant (LTT)
system with transfer function H(z) is equivalent to an M input and M
output system by the blocking process with block length M, i.e., the serial
to parallel process. The equivalence here means that the M inputs and M
outputs are the blocked versions (or serial to parallel conversions) of the
single input and single output and vice versa. The equivalent systems are
shown in Fig.7.3, where the equivalent multi-input multi-output (MIMO)
transfer function matrix H(z) is the blocked version of H(z) in (2.3.3). If
the order of H(z) is L as in (7.1.1), then the order L of the blocked version
H(z) in (2.3.3) of H(z) with block size M is

L
=471 (7.2.5)
where [a] stands for the smallest integer b such that b > a. Clearly,
~ L
D<o+l (7.2.6)
Xo(n) ()
Xy (1) V()
x(n) ww — B
—H(z) — > (z) >
x,(n) V()
blocking
(a) SISO (b) MIMO

Figure 7.3: Equivalent (a) SISO and (b) MIMO systems.
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Using the above equivalence of the SISO and MIMO systems, the MC
coded OFDM system in Fig.7.2 is equivalent to the one shown in Fig.7.4.
The equivalent MC coded OFDM system in Fig.7.4 is the same as the
conventional OFDM system in Fig.7.1 if the scalar sequences z(n) and
y(n) are replaced by M X 1 vector sequences Z(n) and §(n), respectively.
Therefore, similar to (7.1.2) it is not hard to derive the relationship between
Zr(n) and gi(n):

Jr(n) = HyZr(n) + gk(n), k=0,1,..,N -1, (7.2.7)

under the condition on the cyclic prefix length I' that should be greater
than or equal to the order of the MIMO transfer function matrix H(z) in
(2.3.3), i.e.,

r>L (7.2.8)

The constant matrices Hy in (7.2.7) are similar to the constants Hy in
(7.1.2) and have the following forms

Hk = H(z)lzzexp(j%rk/N) y k= 0, 1, ’N —1. (729)

The additive noise £x(n) in (7.2.7) is the blocked version of £(n) and its
components have the same power spectral density as n(n) does and all
components of all the vectors & (n) are i.i.d. complex Gaussian random
variables in general. Notice that in the transmitter and receiver diversity
OFDM systems studied by Li et. al. in [84, 78, 85], the input-output
relationship has the same form as (7.2.7) where the ISI channel matrix
H(z) may not be necessarily pseudo-circulant.

The conventional OFDM system is the special case of the MC coded
OFDM system, if the M x 1 vector sequences Z(n) and (n) are replaced
by the scalar sequences z(n) and y(n) and taking the MC G(z) as constant
scalar 1. When the MC G = Ipxp, 6., M = K, the MC coded OFDM
system is the vector OFDM system, where as we can see in (7.2.6) that
the prefix length L is reduced by M times compared to the original L. In
other words, the vector OFDM system can be used to reduce the overhead
of the cyclic prefix insertion of the conventional OFDM system. And in
the following, we only consider the special case of the MC coded OFDM
system when the MC G(z) takes the following channel independent M x K
constant matrix

Ikxk
G(z)=G= 7.2.10
@=6=| g |, (7:2.10)
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Figure 7.4: An equivalent MC coded OFDM system.

where M > K, Iy x k stands for the K x K identity matrix and O(ar—s)xx
stands for the (M — K) x K all zeroes matrix. The MC (7.2.10) is just
inserting M — K zeroes between each two sets of K consecutive information
samples. As an example, let us consider the case M = 3, K = 2. In each
MC coded OFDM block, KN = 2N information symbols (z;, z3, ..., ZaN)
are sent. The 2N information symbol sequence is filled in a 3 x N matrix:

B X1 Ty T3 - TaN-1
X = X2 = Ty T4 - TaN . (7211)
O1xN o o - 0

where X; = (%1, 23, ..., Tan—1), X2 = (Z2, %4, ..., T2n), O1x N is & rOow vector
of zeroes with length N, and the row direction corresponds to the time
index. After the 2N information symbols and N zeroes are filled in the
3 x N matrix X, N-point inverse discrete Fourier transforms are taken
rowwisely to the matrix, i.e., Z1 = IFFTN(X1), Z2 = IFFTN(X3). Then
the cyclic prefix is added. The signal after the cyclic prefix is transmitted
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columnwisely. The 3 x N matrix R is obtained by columnwisely arranging
the received symbols r,,,n = 1,2, ...,3N at the receiver:

_ Ry L T4 0 T3N—2
R = R2 = 9 Ts e T3N-1 . (7212)
rs Te - T3N

The N-point discrete Fourier transforms are taken rowwisely to R:

Y1
v=|1v (7.2.13)

where Y1 = FFT(R,:), Yo = FFT(Ry), and Y3 = FFT(R3). The decoding
is based on Y as in (7.2.15) in the following. Notice that the MC (7.2.10) is
independent of the ISI channel and does not change the signal energy, i.e.,
the energy of the signal z,, before the MC coding is equal to the energy of
the signal %, after the MC coding.

Another remark we want to make here is that the way to insert zeroes
in the above MC coded OFDM system is different from the following one.
From (7.2.11), one can see that the zeroes are inserted as a row in a matrix.
It is clear that zeroes may be inserted as a column in a matrix as shown in

(7.2.14):

Ty Ty - Tp-z3 0 zTn -+ IT3N-5
X = g Ty - Tn—3 0 Tntl *°° TIN-4 - (7214)
T3 Te '+ Tn—1 0 Tnpz -+ T3N-3

Based on the decoding of the conventional OFDM system, this method of
inserting zeroes is equivalent to the one of not sending information at the
(1+ (n —1)/3)th frequency, i.e., 2r(1 + (n — 1)/3)/N, of the ISI channel.
Hence, if the ISI channel is known spectral-null at this frequency, there
will be no information loss at this frequency. However, the knowledge of
the ISI channel at the transmitter is usually not known in wireless applica-
tions. This implies that the method of inserting zeroes as in (7.2.14) is not

appropriate.
When the MC (7.2.10) is used, equation (7.2.7) becomes
gr(n) = HyZp(n) + & (n), k=0,1,..,N -1, (7.2.15)

where for £k =0,1,...,N — 1,

Zr(n) = Z(Nn + k) = (zo(Nn + k), z1(Nn + k), ...,z _1 (Nn + k))T
(7.2.16)
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are the original K x 1 information vector sequences and need to be detected
from §i(n), and for each k, Hy denotes the first K column submatrix of
H; in (7.2.9).

We now have two systems (7.2.7) and (7.2.15) in the OFDM decoding,
where the system (7.2.7) is from the OFDM system without adding any
redundancy, i.e., no zeroes is inserted, and the system (7.2.15) is from MC
coded OFDM system by adding some redundancy, i.e., inserting zeroes.
With the same DFT size N, the OFDM system (7.2.7) without adding ze-
roes is referred as the vector OFDM system, which is basically equivalent
to the conventional OFDM system. Clearly the performances of the MC
coded and the vector/conventional OFDM systems depend on the singu-
lar values of the matrices Hj, in (7.2.7) and the matrices Hy in (7.2.15)
because the inversions of these matrices are needed in the decoding in gen-
eral. The following known result [56] tells us that the singular values of the
submatrices Hy, in (7 :2.15) are always above the ones of Hy in (7.2.7).

Proposition 7.1 Let A = {a1,- - ,ax] be a column partitioning of an mxn
matriz A. If A, =[a1,-- - ,a,] denotes the submatriz of the first v columns
of A, then, forr =1,...,n—1,

01(Art1) 2 01(Ar) 2 02(Arg1) > -+ 2 00 (Ari1) > 00 (A1) 2 0rp1(Argr),

where 0;(A,) represents the i-th singular value in the SVD decomposition

of A..

This result tells us that the singular values of a sub column submatrix
of a matrix are always greater than or equal to the matrix itself.

7.3 Channel Independent MC Coded OFDM
System for ISI Channels

The goal of this section is to restrict ourselves to a special MC coding
scheme that is independent of an ISI channel H(z).

7.3.1 A Special MC

Before going to the details, we first see the rationale. By noticing that the
vector sequence Zr(n) in (7.2.7) is the MC coded sequence of the original
information sequence z(n) in Fig.7.2, there are two methods for detecting
the original information sequence z;(n). One method is to detect Zr(n)
first from the ISI-free vector system (7.2.7) and then decode the MC G(z)
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for zx(n). The problem with this method is that, when the ISI channel
H(z) is spectral null, the blocked matrix channel H(z) is also spectral
null by the diagonalization of H(z™) in (2.3.10). One will see later that
the performance of the detection of Zx(n) in (7.2.7) for spectral null ISI
channels is too poor that the coding gain of the MC G(z) is too far away to
make it up. This implies that the separate ISI removing and MC decoding
may not perform well for spectral null channels, which is similar to the
existing COFDM systems.

The other method is the joint ISI removing and MC decoding, i.e., the
combination of the MC G(z) with the vector systems (7.2.7). If the MC
G(z) is not a constant matriz, the encoded vector sequence Zi(n) is the
convolution of the information vector sequence zx(n) and the MC impulse
response g(n). The convolution and the constant matrix Hy multiplications
in (7.2.7) induces ISI, which may complicate the decoding of the system
(7.2.7) and is beyond the scope of this book.

The above arguments suggest that we may want to use a constant M x K
matrix MC G(z) = G. In this case, (7.2.7) becomes

gr(n) = HyGZr(n) + &(n), k=0,1,..,N -1, (7.3.1)

where, for k =0,1,...,N — 1, and

Ze(n) = F(Nn+k) = (zo(Nn+k),z1(Nn + k), ..., sy (N1 + k)T
= (¢(K(Nn+k)+0),z(K(Nn+k)+ 1),
co (K (Nn+ k) + K = 1))T (7.3.2)

are the original K x 1 information vector sequences and need to be detected
from gx(n). It is clear that one wants to have the singular values of all
matrices {HyG}r=0,1,. v-1 as large as possible for the optimal output
SNR. However, since the transmitter usually does not have the channel
information Hg, it may not be easy to optimally design the constant MC
G in (7.3.1) at the transmitter. The above two arguments suggest the use
of the MC in (7.2.10). This MC was used in Section 2.3.1 for converting
a spectral null channel into a nonspectral-null matrix channel as long as
the M equally spaced rotations of the zero set of H(z) do not intersect
each other. Notice that the MC (7.2.10) is independent of the ISI channel
. and does not change the signal energy, i.e., the energy of the signal z(n)
before the MC coding is equal to the energy of the signal Z(n) after the
MC coding.

As mentioned before, without the data rate expansion, i.e., M = K in
(7.2.10), the above system (7.2.15) may not be invertible if the ISI channel
H(z) has spectral nulls, i.e., Hr may not be invertible (may have zero
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singular values). We, however, will study this case later for the purpose
of reducing the prefix length rather than improving the robustness of the
system. With the data rate expansion, i.e., M > K, it was proved in Section
2.3.1 that, under a minor condition on the channel as mentioned before, the
non-squared matrices Hy, are invertible (have all nonzero singular values).
Clearly, the performance of the detection of the information symbols Zx(n)
in (7.2.15) depends on how large the singular values of the M x K matrices
H, are, i.e., how high the output SNR is. From the above argument,
the MC coding is already able to convert systems Hj with possibly zero
singular values into systems Hj, with all nonzero singular values. In general,
Proposition 7.1 intuitively explains why the MC coding may improve the
performance of the OFDM system. We next show a simple example to
analytically see how the MC coding improves the performance.

7.3.2 An Example

We now consider a simple example to see how the MC coding works. Let
the ISI channel be

1
H(z) = —=(1+2z7Y).
()= 25+
Consider 4 carriers, i.e., N = 4, and 1/2 rate MC (7.2.10), i.e., K = 1 and

M = 2. In this case, the MC coding inserts one zero in each two information
symbols. According to (2.3.3), the blocked ISI channel with block size 2 is

H(z) = % [ i z: ] (7.3.3)

In the conventional OFDM system, the input-output relationship (7.1.2) is
1
yr(n) = E(l +exp(—j2rk/4))zr(n) + &(n), £=0,1,2,3, (7.3.4)

where
_ 1+ exp(—j2nk/4)

V2
or Hy =2, H; = 17_51, H,=0,and H; = %’- One can see that the third

subcarrier channel in (7.3.4) completely fails. The BER performance of the
conventional OFDM system is, thus,

Hy

1
=3 (7.3.5)

[

1
P, o~ -
4
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For the MC coded OFDM system, the input-output relationship (7.2.15)
is
1

Jr(n) = 7 [ } ] zr(n) + &(n), k=0,1,2,3, (7.3.6)

where

_ 11
Hk_ji[l], k=0,1,2,3,

which have the same singular value 1. (7.3.6) is rewritten as
511 iln) = mu(m) + Eu(o), (737)

where {2 (n) are complex Gaussian random variables with the same statistics
as & (n). In this case, the BER performance of the MC coded OFDM is
the same as the uncoded AWGN performance if the additional cyclic prefix
is ignored. For example, when BPSK is used, the BER is

P.=Q (,/iff”) . (7.3.8)

As a remark, since the MC (7.2.10) does not increase the signal energy,
the bit energy E) before the prefix insertion does not increase although the
data rate is increased. In (7.3.8) the cyclic prefix data expansion is ignored
otherwise the E; /Ny in (7.3.8) needs to be replaced by

NE 1B,
(N +T)N, 5No’

Clearly, the BER performance (7.3.8) of the MC coded OFDM system
is much better than (7.3.5) of the uncoded OFDM system. One might want
to ask us to compare it with the existing COFDM systems as studied in
[189, 188, 47]. Since, in the existing COFDM systems, the conventional
TCM or other error correction codes are used, the coding gain is limited
for a fixed computational load. For example, the coding gain is about 3dB
at the BER of 10~° in [189], 6dB at the BER of 1077, and 7dB at the BER
of 1079 in [188], which can not bring the BER (7.3.5) down to (7.3.8). One
might also want to compare the data rate with the existing COFDM. To
increase the data rate for our MC coded OFDM system, high rate modu-
lation schemes, such as 64QAM or 256QAM, can be used before the MC
coded OFDM system. The key point here is that the existing COFDM sys-
tems do not erase the spectral nulls of the ISI channel while the MC coded
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OFDM systems here may do as shown in the above simple example, where
the spectral null characteristics play the key role in the performance degra-
dation of an OFDM system. We shall see more complicated and general
examples later via computer simulations.

Let us consider the MC (7.2.10) without data rate increase, i.e., M = K.
In this case, the input-output relationship (7.3.1) for the MC coded OFDM
system, which will be called vector OFDM later, becomes

_ 1 1 e—j21rk/4
yk(n) - ﬁ [ 1 1

where

] Ze(n) + &(n), k=0,1,2,3,  (7.3.9)

1
and the singular values of Hy are v/2 and 0, which confirms the previous
argument, i.e., the zero singular value can not be removed if no data rate
expansion is used in the MC coding. In this case, there are equivalently 8
subchannels and one of them fails due to the 0 singular value. Thus, the
BER performance is

1 e—j2‘rrk/4

1 1 ], k=0,1,2,3,

11 1

Notice that, even when a subchannel fails, the BER performance (7.3.10) of
the vector OFDM system is better than the one (7.3.5) of the conventional
OFDM system. This will be seen in Section 7.3.5 from other simulation
results for all other examples presented in this paper.

We next derive the analytical BER vs. E;, /Ny for the MC coded OFDM
systems for general ISI channels.

7.3.3 Performance Analysis of MC Coded OFDM Sys-
tems for ISI Channels

To study the BER performance of the MC coded OFDM systems proposed
in Section 7.3.1, let us go back to the MIMO system (7.2.15), where the
components of the vectors Z;(n) defined in (7.3.2) are from the original
information symbols z(rn). We need to estimate Zx(n) from g (n) through
(7.2.15) for each fixed index k. There are different methods for the estima-
tion, such as the maximum-likelihood (ML) estimation and the minimum
mean square error (MMSE) estimation. In what follows, for the BER per-
formance analysis we use the MMSE estimation, which is simpler. For the
simulations presented in Section 7.3.5, we use the ML estimation for each
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fixed index k. Clearly the BER for the MMSE estimation is an upper bound
of the BER for the ML estimation when the vector size of Zx(n) is greater
than 1,ie., K > 1.

The MMSE estimator of Zx(n) in (7.2.15) is given by

Zr(n) = (Hp)Yir(n), k=0,1,..,N -1, (7.3.11)
where * stands for the pseudo-inverse, i.e.,
& [T* ) —1 s
(Hy)t = ((H;) H:)  (Hp)". (7.3.12)
The noise of the MMSE estimator Zx(n) is

£x(n) = (Hx) " (n), (7.3.13)

whose components are, in general, complex Gaussian random variables.
Then, the theoretical BER can be calculated as long as the original binary
to complex mapping, number of carriers, N, the ISI channel H(z), and the
MC coding rate K/M are given.

For simplicity, let us consider the BPSK signal constellation. In this
case, the complex Gaussian random noise are reduced to the real Gaus-
sian random noise by cutting the imaginary part that does not affect the
performance. Thus the noise in this case is

Re (f k (n)) .
Therefore, the BER vs. E, /Ny for the MMSE estimator given in (7.3.11)

18
N-1

2K -IN & (2m)K/2(detMp)Y2 J_y  Jy,

exp {—%ETM,:I:E} dry - -de) , (7.3.14)

where the factor 25 -1 /(2% —1) is due to the conversion of the symbol error
rate (SER) of Z to the BER, Z = (z1,--- ,Zk),

N
vy = | —2EeN (7.3.15)
No(N +1)
and

M, = Re ((H)*) Re (Hx)*) " +Im ((H)*) Im () 7). (7.3.16)
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The overall data rate overhead can be easily calculated as

M(N+T) M(N+4&) MN+L

KN = KN =~ KN’
where L + 1 is the length of the ISI channel H(z), and ~ is due to the fact
that T = [L/M] = L/M if L is a multiple of M and 1+ L/M otherwise.
The uncoded OFDM systems reviewed in Section 7.1 corresponds to the
case when K = M = 1, in which the data rate overhead for the uncoded
OFDM systems is

(7.3.17)

N+L
N

(7.3.18)

7.3.4 Vector OFDM Systems

When the ISI channel length L+1 in (7.1.1) is large, the cyclic prefix length
I' = L in the conventional OFDM systems is large too. As a consequence,
the data rate overhead (N + L)/N is high when L is large. In this section,
we propose vector OFDM systems that reduce the data rate overhead while
the ISI channels are still converted to ISI-free channels.

The vector OFDM systems are the MC coded systems in Fig.7.2 with
the special MC G(z) = Ik « x that basically blocks the input data into K x 1
vectors and the data rate is not changed, i.e., no redundancy is added. In
other words, the MC (7.2.10) in the MC coded OFDM systems takes the
squared identity matrix, i.e., M = K in (7.2.10). Similar to (7.3.17), the
vector cyclic prefix data rate overhead is

K(NT) N+£&
N S TN (7.3.19)
Compared to the data rate overhead (N+L)/N for the conventional OFDM
systems, the data rate overhead in the vector OFDM systems is reduced by
K times, where K is the vector size.
The receiver is the same as the one for the MC coded OFDM systems
in the previous sections with K = M. In this case, the ISI-free systems
(7.2.15) at the receiver becomes

Jr(n) = HyZr(n) + &(n), k=0,1,..,N -1, (7.3.20)

where H;, are defined in (7.2.9) and (2.3.3). As mentioned in the preceding
sections, the robustness of the vector OFDM systems to spectral nulls of ISI
channels is similar to the one of the conventional uncoded OFDM systems,
since no redundancy is inserted in vector OFDM systems. In other words,
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the BER performance of the vector OFDM systems is similar to the one
for the uncoded OFDM systems. The performance analysis in Section 7.3.3
for the MC coded OFDM systems applies to the vector OFDM systems by
replacing M = K.

To reduce the cyclic prefix overhead, another simple way is to increase
the number N of the subcarriers, i.e., the DFT/IDFT size, in the con-
ventional OFDM system. In the above vector OFDM, the prefix overhead
is reduced the same as this simple way but the DFT/IDFT size does not
increase.

7.3.5 Numerical Results

In this section, we present numerical results for some theoretical and sim-
ulation curves of the BER vs. E;/Np. The number of carriers is chosen
as 256, i.e., N = 256, in all the following numerical examples. Three ISI
channels are considered:

Channel A: h = [0.407, 0.815, 0.407], which is a spectral-null channel;

Channel B: h = [0.8, 0.6]. Although it does not have spectral-nulls,
its Fourier transform values at some frequencies are small and the small
values cause the performance of the conventional uncoded OFDM system;

Channel C: h = [0.0001 +0.000135, 0.0485 + 0.01945, 0.0573 + 0.0253,
0.0786 + 0.0282j, 0.0874 + 0.04477, 0.9222 + 0.30317, 0.1427 + 0.03497,
0.0835 + 0.01575, 0.0621 + 0.00785, 0.0359 + 0.00495, 0.0214 + 0.00195],
which does not have spectral null or small Fourier transform values.

Their Fourier power spectrum (dB) are plotted in Fig.7.5. Channel A
and Channel C are selected from the examples presented in [127].

For Channel A and Channel B, six curves of the BER vs. E,/Ng are
plotted in Figs.7.6-7.7, respectively. The theoretical and simulated curves
for the uncoded OFDM system with BPSK signaling are marked by x and
0O, respectively. The theoretical and simulated curves for the MC coded
OFDM system with rate 1/2, i.e., K = 1 and M = 2, and the BPSK
signaling are marked by + and o, respectively. The simulated curve for
the MC coded OFDM svstem with rate 1/2,ie., K =1 and M = 2, and
the QPSK signaling is marked by V. One can clearly see the improvement
of the MC coding. The BER performances of the uncoded and MC coded
OFDM systems are incomparable, where, we think, the difference can not
be reached by any existing COFDM systems. The QPSK MC coded OFDM
system has the same data rate as the uncoded BPSK OFDM system while
their performances are much different. The performance improvement can
not be achieved by any existing COFDM system using the TCM or even
turbo codes.
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Figure 7.5: Fourier spectrum for three ISI channels.

From Fig.7.5, the nonspectral-null property of Channel B is better than
that of Channel A. One can see that the BER performances of all the
OFDM systems in Fig.7.7 for Channel B are better than the ones in Fig.7.6
for Channel A.

The curves for the vector OFDM with vector size K = 2,ie., K = M =
2 in the MC coded OFDM system are marked by * in Figs.7.6-7.7. One can
see that the performance for the vector OFDM system is even better than
the one for the uncoded OFDM system for these two channels. The data
rate overhead for Channel A is saved by half for the vector OFDM system
compared with the conventional OFDM system.

For Channel C, three simulation curves of the BER vs. E, /Ny are plot-
ted in Fig.7.8, where the signal constellations are all BPSK. The uncoded
conventional OFDM system is marked by o. The MC coded OFDM system
of rate 1/2 with K = 1 and M = 2 is marked by V. The vector OFDM
system with vector size 2, i.e., K = M = 2, is marked by +. Since the ISI
channel is not spectral null, the MC coding does not show too much perfor-
mance advantage. The vector OFDM system, however, still performs better
than the conventional OFDM system while the cyclic prefix data rate over-
head for the vector OFDM and the conventional OFDM are (256 + 5)/256
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ISI Channel Channel A [0.407 0.815 0.407]

BPSK uncoded OFDM: theory
—a&—  BPSK uncoded OFDM: simulation
—+—  BPSK MC coded OFDM: theory (K=1, M=2) :
—o—  BPSK MC coded OFDM: simulation (K=1, M=2) |
——  BPSK vector OFDM: simulation (K=M=2) i
—v—  QPSK MC coded OFDM: simulation (K=1, M=2)
10" I 1 1 T [—
1 2 3 [ 7 8

4 5
E/N, (dB), N=256

Figure 7.6: Performance comparison of OFDM systems: Channel A.

and (256 + 10)/256, respectively. Note that the prefix length of the vector
OFDM system is only half of that of the conventional OFDM system.

7.4 Channel Independent MC Coded
OFDM System for Frequency-Selective
Fading Channels

In the previous sections, we studied the MC coded OFDM systems in time-
invariant ISI channels. In this section, we want to study the performance of
the MC coded OFDM systems in time-variant ISI channels, i.e., frequency-
selective multipath fading channels, modeled as

L-1

y(m) = 3 hu(n)a(n — 1) +n(n), (7.4.1)

=0

where z(n) and y(n) are the input and output, respectively, and n(n) is
the additive noise as before, and L is the number of paths, i.e., the channel
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IS1 Channel B [0.8 0.6]

10°| —+—  BPSKuncoded OFDM: theory

—a—  BPSK uncoded OFDM: simulation

—+—  BPSK MC coded OFDM: theory (K=1, M=2) :
—6—  BPSK MC coded OFDM: simulation (K=1, M=2)|
—*—  BPSK vector OFDM: simulation (K=M=2)
—%—  QPSK MC coded OFDM: simulation (K=1, M=2)

10 : : : . = ;

1 2 3 ] 7 8

4 5
E /N, (dB), N=256

Figure 7.7: Performance comparison of OFDM systems: Channel B.

taps. We assume that the input information symbol sequence z(n) is i.i.d.
with mean 0 and variance E,. We also assume that the multipaths h;
are independent of each other. The main idea of the following study is to
approximate the time-variant hy(n) by using time-invariant paths in each
MC coded OFDM block and move the approximation error into the additive
noise, where the block length of the MC coded OFDM system in Fig.7.2 is
NM, N is the number of subcarriers, i.e., the DFT length, and M is the
block/vector length.

7.4.1 Performance Analysis

For convenience, we consider the frequency-selective multipath channel
(7.4.1) in the block n = 1,2,..., NM and use the center channel value
hl(%’f—) as the approximation value of hi(n), n = 1,2,..., NM, for each
!l =0,1,...,L — 1, and it is also used in the MC coded OFDM system
decoding. Then, we have

NM)

L-1 .
y(n) = Z hu( 5 z(n — 1) + m(n) + n(n), (7.4.2)
=0
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ISI Channel C, L=10, non-spectral-null

BER

: BPSK uncoded OFDM: simulation
| —— BPSKMC coded OFDM: simulation (K=1,M=2){ @
—+—  BPSK vector OFDM: simulation (K=M=2)

10 i ; ; ; - ;
1 2 3

4 5
E,/N, (48), N=256

Figure 7.8: Performance comparison of OFDM systems: Channel C.

where

L-1

m) = 3 () - (*30) ) 20 - (7.4.3)

=0

is the approximation error of the multipath channel and independent of the
additive noise n(n). Thus, the MC coded OFDM system in the time-variant
channe] (7.4.1) becomes the one in the time-invariant channel (7.4.2) and
at the receiver, the MC coded OFDM system becomes (7.2.15), where the
constant matrices H;, are from the time-invariant ISI channel h; = hﬂ%),
1=0,1,..,L -1, and the additive noise is from the original n(n) and the
approximation error 7;(n). Therefore, to study the performance, we only
need to study the noise 7;(n) + n(n) and the singular values of Hy in the
linear systems (7.2.15). Let us first study the noise 7;(n) in (7.4.3). By the
independence of h;, I = 0,1,...,L — 1, and the i.i.d. property of the input
z(n), the correlation function 7 (n) is

E(m(nni(n+7)) =
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E.0(7) Z[ (hu(n)hy n+'r))+E( (NM)h,(M))

1=0

-E (h,( )h,(N2M)) ~E (hl(NM)h, (n+'r))] , (7.4.4)

where E(-) stands for the expectation. For the Rayleigh fading channels,
we have

E(hi(n)hf(n+ 7)) = %Jg(Q?l’fmTTs), (7.4.5)

where Jo(z) is the zeroth-order Bessel function of the first kind, T is the
sampling interval length, f, = v/, is the maximum Doppler shift, v is
the velocity of the mobile user, ). is the carrier wavelength, and ; is the
mean power of the Ith path h;. Thus,

L-1

Elm(mni o+ 7)) = Badr) S 0 (10) = ho(2afnTiln = 500
= (7.4.6)
Thus, the mean power of 7; is
52 = ozt Zico % (o(0 )~ Ju(2n /Ty ) S,
and the total mean noise power is
ol + ok (7.4.8)

After the mean noise power is calculated, we now come back to the linear
systems (7.2.15) at the receiver with respect to the channel (7.4.2). Using
the SVD decomposition of Hy, (7.2.15) becomes the following equivalent
system:

Gr(n) = Ap(n)Vi(n)Ex(n) + & (n), k=0,1,..,N — 1, (7.4.9)

where Vi (n) are K x K unitary matrices, and Ag(n) are M x K matrices
of the form

diag(A1, ..., Ak)

Ar(n) = Om—K)yxK

(7.4.10)

and A1, A2, ..., Ax are K nonzero singular values of Hy.
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For convenience, in what follows we consider BPSK signaling, i.e., Zx(n)
take binary values. When K = 1, the BER of (7.4.9) is

~ NE,
P = / Q ( e )p()\)d)\, (7.4.11)

where @ stands for the @ function, E, = E, is the mean signal power per
bit, and p()) is the probability density function of the singular values A in
(7.4.10) and shall be estimated later. By taking the bandwidth expansion
of the cyclic prefix insertion into account, the BER of the MC coded OFDM
system in Fig.7.2 when K =1, is

- N E,N
= /Q (\/(072“ +a2)(N + f)> p(A)dA. (7.4.12)

When K > 1, although it is hard to have the exact BER expression due
to the fact that the K noise components in (7.4.9) after the inversion of the
matrix Vi (n) may not be i.i.d., it is not hard to derive its lower and upper
bounds as follows. The BER is lower bounded by the BER when all the K
noise components in (Vi(n))~1&x(n) are ii.d., i.e.,

E,KN
e /Q (\/7(02 +02)(N + f‘)) p(7)dv, (7.4.13)

where v is determined by the singular values Ay in (7.4.10) as

K
(7.4.14)

a-wl -

k=1

and p(7y) is the probability density function of random variable . The
BER is upper bounded by the BER when the total noise power of all the
components is in one of the K noise components in (Vi (n))~1&(n), i.e.,

EyN
heg /Q (\/ (0 +oB)(N + f)) p(7)dy, (7.4.15)

where v is as in (7.4.14).

We next want to study the probability distribution of the singular values
of the Hy in (7.2.15) when by = hy(¥) and hi(n) are Rayleigh fading.
The distributions of the singular values can be determined as follows, when
K=NorK=1.
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Theorem 7.1 The distribution of the singular values of a vector OFDM
system, i.e., K = N, in frequency-selective multipath Rayleigh fading chan-
nels is Rayleigh distribution.

Proof. The blocked channel H(z) in Fig.7.4 of H(z) has the diagonal-
ization (2.3.10). By (7.2.9), Hy = H(2)|.=exp(j2rk/N), the singular values of
H,, are the magnitudes of H(2W}})|.—exp(jork/(mny) form =0,1,..., M —1.
Since each coefficient h;(%2) in H(z) is complex Gaussian, the random
variables H(2Wr)|:=exp(jonk/(MN)), 6 = 0,1,.., N — 1 are also complex
Gaussian. This proves Theorem 7.1. =

Notice that when M = 1, the vector OFDM is the conventional OFDM
and therefore, the singular values of the conventional OFDM systems also
have the Rayleigh distribution.

Theorem 7.2 The distribution of the singular values of an MC coded OFDM
system with K = 1 in frequency-selective multipath Rayleigh fading chan-
nels is Nakagami distribution.

Proof. From the proof in Theorem 7.1, all components in each matrix
H are all complex Gaussian. When K = 1, the singular values of H,
are the norms of the the first columns of matrix Hy, which, therefore, has
Nakagami distribution. =

For the MC coded OFDM system in (7.2.15) with a general K < N,
the distribution of the singular values varies between gamma and Nakagami
distributions from our many numerical examples. Some examples are shown
in Section 7.4.2 and see Fig.7.9 and Fig.7.10.

Since, the BER bounds in (7.4.13) and (7.4.15) depend on v in (7.4.14)
and its probability density function. It is important to estimate it. Al-
though we are not able to analytically prove any distribution result for
K > 1, our many numerical results show that it is not hard to see the
distribution from the histogram of « as shown in Fig.7.10(b), where it is a
gamma, distribution.

7.4.2 Simulation Results

We now present some simulation results on the MC coded OFDM system
in Fig.7.2 in frequency-selective Rayleigh fading channels. We consider
two ray Rayleigh fading channels with equal power, i.e., L =2 and {; =
2. Each Rayleigh fading ray is generated by the Jakes’s method [127]
with the following parameters: 34 paths with equal strength multipath
components, 8 oscillators, carrier frequency f. = 850 MHz, simulation time
sample interval length T; = 41.667us. The velocities of users considered are
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v = 4 km/hour, v = 40 km/hour and v = 100 km/hour. The corresponding
Doppler shifts are 3.15 Hz, 31.48 Hz, and 78.7 Hz, respectively.

We first consider the length of the DFT/IDFT in the MC coded OFDM
system to be N = 64. The channel independent MC (7.2.10) is used. In
order to have the same update time duration length, the DFT/IDFT length
in the conventional OFDM system is 192 and thus the channel update time
duration length is 192T for both the MC coded and the conventional OFDM
systems. In the decoding, the channel values ho(96) and h;(96) are used.
In this simulation, the user moving speeds are 4 km/hour and 40 km/hour.

Let us first see the singular value distributions, which do not depend
on a Doppler shift but on the OFDM block size, the MC size, and the
DFT/IDFT size. Fig.7.9 (a) and (b) show the singular value histograms of
the conventional OFDM systems and the MC coded OFDM systems with
K =1 and M = 2, respectively. One can see that the singular values of
the conventional OFDM systems have the Rayleigh distribution while the
ones of the MC coded OFDM systems have the Nakagami distribution as
Theorems 1 and 2 claimed. The singular value histogram of the MC coded
OFDM system with K = 2 and M = 3 is shown in Fig.7.10(a) and it is a
gamma, distribution. The histogram of

_1.1
LS VISV
is shown in Fig.7.10(b), which has gamma distribution too, but with dif-
ferent parameters. It is usually the case that, the larger the singular values
are, the better the performance of the OFDM system is. From Figs.7.9-
7.10, one can see that the singular value mean of the MC coded OFDM
systems with K = 2 and M = 3 is larger than the ones of the conventional
and vector OFDM systems, and the one of the MC coded OFDM system
with K = 1 and M = 2 is larger than the one of the MC coded OFDM
system with K =2 and M = 3.

In the following BER performance simulations, we consider the MC in
(7.2.10) with K = 2 and M = 3, i.e., the MC coding rate is 2/3. We
also consider the conventional convolutionally coded (CC) OFDM with CC
rate 2/3 and constraint length 2 and 3 x 2 generator matrix [1,1+ D;1 +
D, D;1,1]. The Viterbi decoding algorithm is used after the OFDM decod-
ing in the COFDM. Fig.7.11(a) and (b) show the performance comparisons
when the moving speeds are 40 km/hour and 4 km/hour, respectively.

When the user moving speed is 100 km /hour, we consider the total block
size 48: the DFT/IDFT size for the MC coded (K = 2 and M = 3) and the
conventional OFDM systems are 16 and 48, respectively. The reason for
reducing the size is that when the Doppler shift is large, the channel update
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needs to be faster in order to maintain a certain system performance qual-
ity. The channel update time duration length in both systems is 4875. The
BER performances of the MC coded OFDM and the COFDM are shown in
Fig.7.12(a). One can see that the BER performances of the MC coded and
the convolutional coded OFDM systems are comparable while the decoding
of the MC coded OFDM system is much simpler than the Viterbi decod-
ing in the COFDM. The performances of the MC coded OFDM and the
conventional COFDM, however, differ significantly when the spectral-null
time-invariant ISI channel is considered as shown in Fig.7.12(b).

As a remark, although we only showed results in Rayleigh fading chan-
nels with two equal power rays, similar results hold with more than two
rays.
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Figure 7.9: Singular value histograms of the conventional and MC coded
OFDM systems in a two ray frequency-selective Rayleigh fading channel:
(a) K=land M =1; (b) K=1and M =2.
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Figure 7.10: Singular value histograms of MC coded OFDM systems with
K =2 and M = 3 in a two ray frequency-selective Rayleigh fading channel:
(a) singular value historgram; (b) v histogram.
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BPSK COFDM: simulation{code rate=2/3)

T T

5 10

E/N,

(a)

moving speed=4km/h,block size=192

BPSK MC coded OFDM: theory upper bound(K=2,M:

BPSK MC coded OFDM: theory lower bound(K=2,M
BPSK MC coded OFDM: simulation(K=2,M=3)
BPSK uncoded OFDM: theory

BPSK uncoded OFDM: simulation

BPSK COFDM: simulation(code rate=2/3)

Figure 7.11: Performance comparison of the conventional OFDM, MC
coded OFDM, and COFDM systems in two ray frequency-selective Rayleigh
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fading channels with moving speed (a) 40km/h and (b) 4km/h.
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Figure 7.12: Performance comparison of MC coded OFDM and COFDM

systems in (a) two ray frequency-selective Rayleigh fading channels with
moving speed 100km/h and (b) spectral-null ISI channel.






Chapter 8

Polynomial Ambiguity
Resistant Modulated
Codes for Blind ISI

Mitigation

In Chapters 2-6, both transmitter and receiver need the ISI channel infor-
mation for the MC encoding and decoding. In Chapter 7, the transmitter
does not need the ISI information but the receiver does. In some applica-
tions, however, the ISI channel information may not be available to neither
the transmitter nor the receiver. In the following chapters, we study the
MC encoding and decoding when the ISI channel is not known at the trans-
mitter or the receiver.

As a part of post equalization techniques, blind equalization attracts
much attention lately due to the recent advances in channel identification
using output diversities [134, 135, 101]. Spatial diversity (antenna arrays)
and temporal diversity (fractional sampling) are the most studied among
many others. Many blind identification algorithms exploiting either second
order cyclostationary statistics [134, 135, 90, 180, 128, 136, 35, 63, 147, 81,
98, 123, 101, 36] or algebraic structures (often referred to as the determin-
istic solutions) [90, 180] have been proposed. However, the use of output
diversities inevitably multiplies the number of data samples and therefore
causes additional computations at the receiver. A new transmitter assisted
(MC coded or precoded) blind equalization method has been studied lately
in [53, 89, 88, 171, 186, 163, 118, 172]as explained below, where the overall

185
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data rate expansion over the baud rate is not an integer multiple but a
fractional number. The filterbank precoding in [165] is generalized to the
blind equalization in [53] without much analysis on a precoder. Later, in
[118] some precoding analysis in the time domain is introduced. In [89, 88],
the concept of ambiguity resistant precoders (ARP) is first introduced in
the z-transform domain for the blind identification by injecting a minimum
amount of structured redundancy at the transmitter. The blind equaliza-
tion problem for both a baud-rate sampled single-receiver system and an
undersampled multi-receiver system is addressed in [89, 88] by casting them
into a multi-input and multi-output (MIMO) framework with more outputs
than inputs. With the existing MIMO identification methods, for exam-
ple [90, 91, 181, 98, 147], the multi-input signal can be identified up to a
nonsingular constant matrix from the multi-output signal. The ambiguity
resistant precoders proposed in [89, 88] are capable of removing the con-
stant matrix ambiguity directly from the receiver outputs. These precoders
can be thought of as a family of the precoders proposed in [165] with an
additional ambiguity resistant capability (by adding memory to the pre-
coding), which is essential to the blind identifiability. In [186, 163, 172],
ARP are systematically studied, characterized, and constructed. To resist
an ISI channel, an ARP is sufficient. However, in practical communication
systems, the additive noise has to be taken into the account. Therefore, a
natural question is which ARP is more robust to the additive noise. In [163],
such an issue is addressed, where an optimality on ARP is introduced and
some optimal ARP are characterized and constructed. In [171], the con-
cept of the ambiguity resistance is generalized from resisting only constant
matrices to any FIR polynomial matrices as shown in Fig.8.1, which are
called (strong) polynomial ambiguity resistant precoders (PARP). Based
on the definitions in [171], strong PARP not only resist the ambiguity in
the input signals but also in the FIR channel inverse, while regular PARP
only resist the ambiguity in the input signal. In [172], such (strong) PARP
are characterized and constructed. Since (strong) PARP are also MC, we
call them (strong) polynomial ambiguity resistant MC (PARMC) in what
follows.

In this chapter, we want to introduce (strong) PARMC and their ap-
plications in blind channel identification, which are are summarized from
[89, 88, 171]. The theory developed in this chapter applies to not only single
antenna systems but also multiple antenna systems as space-time coding.
As a remark, a different approach for space-time coding, called differen-
tial space-time coding, for memoryless multiple antenna channels have been
studied in [129, 60, 62, 61, 65, 66], where the channel information is not
necessary and the space-time coding is achieved by using unitary constant
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matrices. Another approach is reported in [162].

8.1 PARMC: Definitions

A polynomial matriz Q(z) of size N x K has the following form

P

Q) =) Q(m)z"™, (8.1.1)

m=0

where QQ(m) are N x K constant matrices. Q(z) is also referred to as a
matrix polynomial in some literature, see for example, [142]. A function
matrix V(2) is a matrix where all entries are functions of z~*. If Q(P) # 0,
the integer P is defined as the order of Q(z). A polynomial matrix H(z) is
invertible if it has full rank for some value z, whereas Q(z) is irreducible if it
has full rank for all z # 0 including z = co. A squared polynomial matrix is
unimodular if its determinant is a nonzero constant. When N = K, Q(z) is
irreducible is equivalent to that Q(z) is unimodular, i.e, its determinant is a
nonzero constant. Q(z) has FIR inverse if and only if Q(z) has determinant
cz™™ for some nonzero constant c¢ and integer ng. Q(z) is irreducible
implies that it has FIR inverse. Clearly, the probability of an N x N
polynomial matrix having FIR inverse is 0. On the other hand, when
N > K, Q(z) is irreducible if and only if all the determinants of all the
K x K submatrices of Q(z) are coprime, which holds with probability 1 for
an arbitrarily given NV x K polynomial matrix Q(z). It is clear that an N x K
irreducible polynomial matrix Q(z) with K < N has a K x N irreducible
polynomial matrix inverse Q~1(z), i.e, Q1(2)Q(z) = Ix, where Q71(2)
may not be unique. For more about unimodular and irreducible polynomial
matrices, we refer the reader to Kailath [71] and Vaidyanathan [142].

We are now ready to define (strong) polynomial ambiguity resistant
MC. First, let us define polynomial ambiguity resistant MC (PARMC).

Definition 8.1 An N x K irreducible polynomial matriz G(z) is rth order
polynomial ambiguity resistant (PAR) if the following equation for a K x K
function matriz V(z) has only trivial solutions of the form V(z) = a(z)Ik
for some nonzero polynomial a(z) of order at most r:

E(2)G(z2) = G(2)V(2), (8.1.2)

where E(z) is an N x N nonzero polynomial matriz of order at mostr. A
rth order PAR polynomial matriz is called a rth order polynomial ambiguity
resistant modulated code (PARMC).
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The above polynomial ambiguity resistant property only requires the
uniqueness of the right hand side matrix V(z) up to a nonzero polynomial.
Strong PARMC are defined as follows.

Definition 8.2 An N x K irreducible polynomial matriz G(z2) is strong rth
order polynomial ambiguity resistant if the following equation for an N x N
nonzero polynomial matriz E(z) of order at most r and a K x K function
matriz V(z) have only trivial solutions of the forms E(z) = a(z)Iy and
V(z) = a(z)Ik for some nonzero polynomial a(z) of order at most r:

A strong rth order PAR polynomial matriz is called a strong rth order
PARMC.

The above strong polynomial ambiguity resistant property requires a
uniqueness up to a nonzero polynomial not only for the right-hand side
matrix V(z) but also for the left-hand side nonzero polynomial matrix
E(z). Obviously, strong PARMC are PARMC. The ambiguity resistant
MC studied in [89, 88] are the strong Oth order PARMC here. It can be
easily verified that a (strong) rth order PARMC is also a (strong) (r — 1)th
order PARMC. We will see later in Section 8.3.1 that (i) the input X(z)
is blindly identifiable from the output Y(z) and the MC G(z) in the MC
coded system in Fig.8.1 if and only if the MC G(2) is PARMC, and (ii) both
the input X(2) and the ISI channel inverse H~!(z) are blindly identifiable
from the output Y (z) and the MC G(z) in the MC coded system in Fig.8.1
if and only if the MC G(z) is strong PARMC. A family of strong PARMC
is first presented in [89, 88, 171] and shall be seen in the following section.

8.2 Basic Properties and a Family of PARMC

We first see some basic properties of PARMC and a family of PARMC.
More properties and constructions will be presented later. To do so, let
us see the Smith form decomposition of a polynomial matrix. For more
details, we refer the reader to [142]. Any N x K polynomial matrix H(z)
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has the following Smith form decomposition

[ (z) 0 0 0 0]
0 m(2) 0 o 0
H(z) = W(z) 0 0 Yp(2) 0 0 | U(z), (82.1)
0 0 0 0 0
0 0 - 0 0 - 0

L J

where W(z) and U(2) are unimodular polynomial matrices with sizes Nx N
and K x K, respectively, +;(z) are polynomials of 271, v;(z) divides vi11(2),
fori=0,1,...,p— 2, ie,

7i(z)|7i+1(z): t=0,1,..,p -2, (822)
and

oy Aiga(2)
71(2) - Ai(Z) ? (823)
where Ag(2) = 1, A;(2) for 7 > 0 is the greatest common divisor of all the
i x ¢ minors of H(z). Clearly, if H(z) is irreducible and N > K, then

H(z):W(z){ Ix ]U(z), (8.2.4)

ON—K)xK

where Ix and O(n_gyxkx are K x K identity and (N — K) x K all zero
matrices, respectively.
We now want, to see some basic properties of PARMC.

Theorem 8.1 If an N x K polynomial matriz G(z) is rth order polynomial
ambiguity resistant, then

(i) there exists no N x N irreducible (unimodular) polynomial matriz
E(2) of order ry < 7/N and K x K function matriz V(z) such that
the first column of matriz E(2)G(2)V(z2) is (1,0,0,...,0)T;

(ii)) N > K;

(iii) the order of G(z), Qg4, must be greater than r/N.
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Proof. We first prove the necessity of condition (i). Assume there are
an N x N irreducible polynomial matrix E(z) of orderr; < r/N anda K xK
function matrix V(z) such that the first column in matrix E(z)G(2)V(z)
is (1,0,0,...,0)T, ie.,

1 *x * *
0 *x = *
E(2)G(2)V(z) = :

Then, by doing column elementary operations, all elements in the first
row of the above matrix can be reduced to 0 except the first one. More
specifically, there exists a unimodular polynomial matrix V;(z) such that

100 --- 0

0 * *x --- %
E(2)G(2)V(2)Vi(z) = :

0 x x *

Define
Fl = diag(2, 1, 1,- . al)NXNy and Fr = diag(2, 1, 1,- v ,1)K><K-

We have

1 0 0 0

0 % x -+ %

FRE()GR)V(E)Vi()F 1 =F] . . . I

0 x = *
1 00 0
0 * % .- %

=l. . . : = E(2)G(2)V(2)V1(2).
0 *x = *

Upon defining

E(z) = E7'(2)FE(z), and X(2) = V(2)V1(2)F, Vi 1(2)V~i(2),
(8.2.5)

we are able to establish the following equality,
E(2)G(z) = G(2)X(2). (8.2.6)
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Since the order of E(z) is less than or equal to /N and the order of E~1(2)
is at most (N — 1)r/N due to that E(z) is unimodular (square irreducible),
the order of E(z) is at most r. From (8.2.6), by the assumption that G(z) is
rth order polynomial ambiguity resistant, we have X(z) = a(z)Ig for some
nonzero polynomial a(z) of order at most r. From its definition in (8.2.5),
it is clear that E(z) is also N x N irreducible because E(z) and F; are all
irreducible (unimodular). By the condition that G(z) is irreducible, the
left-hand side E(2)G(z) is also irreducible. This forces that the polynomial
«(z) is a nonzero constant, i.e., X(z) = alx. This is, however, impossible
by the definition of X(z), which proves the necessity of condition (i).

We now prove the necessity of condition (ii). When K > N, using the
Smith form decomposition (8.2.4), G(z) can be decomposed into

G(2) = W(2)(In,Onx(x-n)) U(2),

where W(z) and U(z) are two unimodular polynomial matrices. For any
N x N irreducible polynomial matrix E(z) (E # aly where o is a constant)
of order at most r, define

W L(2)E(2)W(z2) 0

V(z) = U 1(2) 0 Ik

U(z).

Then, V(z) # alk. But
E(2)G(z) = G(2)V(2),

which contradicts with the assumption.

The necessity of condition (iil) follows from condition (i} and the fol-
lowing argument. When G(z) has its order less than or equal to r/N, its
first column can be reduced to (1,0,...,0)” by using elementary row and
column operations, and the product of the row operations has an order less
than or equal to r/N. m

Conditions (i)-(iii) are useful in constructing PARMC. Condition (ii)
implies that the bandwidth expansion is needed to resist the polynomial
ambiguity. Condition (iii) implies that a constant matrix MC G is not
polynomial ambiguity resistant, which proves the following corollary.

Corollary 8.1 Any block MC is not a PARMC.

We next present a family of PARMC that was the first family we found
in [89, 88, 171].
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Theorem 8.2 The following polynomial matriz G(z) of size N x (N — 1)
is strong rth order polynomial ambiguity resistant:

[l 0 0 0 0
1 1 0 .. 0 0
0 271 1 ... 0 0
G(z) = : . . . . (8.2.7)
0 0 0 11
0 0 0 0 2wy

for an integer r > 0.

Proof. The G(z) matrix in (8.2.7) is clearly irreducible.
Define

G/ '(2) =
1 0 0
—p—(r41) 1 0
z—2(r+1) _Z—-(r+1) 1

(_I)N—QZ(.—N+2)(T+1) (_1)N—3z(.——N+3)(r+1) (_1)N—4z(.—N+4)(r+1)

0 0 0
0 0 0
0 0 0
-zt 1 0

(N-1)xN
It is easy to check that

G 1(2)G(z) = In—1-

Let E(z) = (em,n(2))nxn be an N x N nonzero polynomial matrix with
order at most r such that E(z)G(z) = G(2)V(z). We want to prove that
E(z) = a(z)In for some scalar polynomial a(z). It is not hard to show
that E(2) = a(z)Iy implies V(z) = a(2)Ik.

By the above equations, we have V(z) = G !(2)E(2)G(z). Note that

E(2)G(z) =

e11(z) +e12(2)27™ 1 e12(2) +e1,3(2)z7 !
€1 (Z) + 6272(2),2_"_1 €22 (Z) +e23 (Z)Z_r_l

en1(z) +ena2(2)z7"! ena(z) +ens(z)z7"1
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—r—1

e1,N-1(2) + ey n(2)z
ea,N—1(2) +ea n(z)z7 "1

en,N-1(2) +enn(z)z7"!
and
G(2)G;H(2) =
1 0 cee 0 0
0 1 cee 0 0
0 0 e 1 0
(_I)N—lz(—N+1)(r+1) (_1)N—22(—N+2)(r+1) ..oz7r=1 o

we only need to compare the elements in the last row of E(2)G(z) and that
of G(2)V(z). It can be verified that by ,(2), the mth element of the last
row of the matrix G(z)V(z), is given by

bnm(z) = (-1)V ey mi1(2)z N t ey m(2)27 M+

N-1
+ Z ((_1)N~n+1en_1’m(z) + (_1)N——nen’m+1(z)) z(—N+n—1)(r+1)‘

n=2
From E(2)G(z) = G(2)V(z), we have

bn,m(2) = enm(2) + enmy1(2)27 7

When the orders of all polynomials of e,, »(2) for 1 < m,n < N are less
than r + 1, the above equalities imply the following equations

e1,m+1(2) =0, and eym(2) =0, form=1,2,..,N -1,
and
en,m(2) = epr1my1(z), form=12 ... N-1,n=1,2,..,N—1.
It is not hard to see that these equations imply that ey, .(2) = 0 for n #
m and e, (z) = e1,1(2) for all n. In other words, we have proved that
E(z) = a(z)Iy for some polynomial a(z). Since E(z) is nonzero, a(z)

is also nonzero. Clearly the order of a(z) is at most r. This proves the
theorem. m
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8.3 Applications in Blind Identification

We now discuss the application of PARMC to blind system identification
of a multi-input multi-output communication system with ISI/multipath
channels.

8.3.1 Blind Identifiability

A general ISI communication system is shown in Fig.8.1, where X(z) is the
input signal of size K x K, G(z) is the MC of size N x K, H(z) is an ISI
channel transfer matrix of size M x N, Y(z) is the output signal of size
M x K, K < N < M, and n(z) is the additive noise term of size M x K.
Herein, the goal is to identify X(z) from Y (z) without knowing the ISI
channel characteristics. Note that G(z) is by design and is thus known to
the receiver. The techniques presented here concern the exploitation of the
MC structure in removing the unknown channel effects. Notice that the K
columns in the input signal X(z) does not necessarily mean K users or K
transmit antennas. For the single user and single transmit antenna case, it
simply means that K signals are considered simultaneously.

X(z) Y (z)
G(z) | H(z)

n(z)

Figure 8.1: A general MC coded system of matrix form.

Since H(z) is almost surely irreducible, we assume it is irreducible in the
remainder of this paper. The irreducibility of H(z) ensures that its inverse
is also a polynomial matrix and thus input can be perfectly recovered from
the output using FIR equalizers.

There are essentially two problems to be studied in blind identification.
One is on blind identifiability and the other is on blind identification algo-
rithm development. For convenience, we assume a noise-free system and
set 7(z) to be zero. In the case of K = 1, the overall system in Fig.8.1 is
a single input multiple output (SIMO) system, which has been extensively
studied in [134, 135, 90, 180, 128, 136, 35, 63, 147, 81, 98, 123, 101, 36].
Therefore, in the following we only consider the case where K > 1. For a
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random input K x K signal X(z) with K > 1, the greatest common divi-
sor (ged) of all component polynomials of X(z) is almost surely a nonzero
constant and X(z) is almost surely invertible for a complex value z. Such
is assumed throughout our discussions.

We first study the blind identifiability for the input signal. Knowing
Y (2), let X;(z) and H; (2) be the candidate input and channel, respectively.
The ged of the components of X;(2) is assumed to be a nonzero constant,
whereas H;(z) is an M X N irreducible polynomial as H(z). Then, the
blind identifiability can be described by the following uniqueness:

Y (2) = H1(2)G(2)X1(z) = H(2)G(2)X(2) implies X;(z) = aX(z),
(8.3.1)

for some nonzero . The uniqueness (8.3.1) implies that the input signal
X(z) can be uniquely determined up to a scale from the output signal
Y (z) and the known MC G(z). In other words, the input signal X(z) can
be blindly identified. It should be noticed that without the MC G(z) in
Fig.8.1, the input signal X(z) can only be blindly identified up to a K x K
nonsingle constant matrix T ambiguity by using MIMO blind identification
techniques [90, 147, 81, 98, 81].

In [89, 88], blind identification is accomplished in two steps. First,
existing MIMO blind identification techniques are used to determine the
input signal within a matrix ambiguity, T, and then this constant matrix
ambiguity T is resisted through a Oth order PARMC. In this subsection,
we study the possibility of employing a proper order PARMC so that the
input signal X(z) can be directly identified from the output signal Y(z)
using a closed-form algebraic algorithm.

The input signal blind identifiability in (8.3.1) can be reformulated as
follows by pre- and post- multiplying H;!(2) and X~'(z2), respectively, to
both sides:

H'(2)H(2)G(2) = G(2)X1(2)X ' (2) implies X;(2)X ! (2) = al,
(8.3.2)

for some nonzero constant o, where H;!(2) is a left inverse of H,(2), i.e.,
H;'(2)H;(z) = In. Note that (8.3.1) is stronger than (8.3.2) since

H,(2)G(2)X:(2) = H(2)G(2)X(2)

indicates
Hi ' (2)H(2)G(2) = G(2)X1(2)X71(2)

but not vice versa.



196 CHAPTER 8. PARMC FOR BLIND ISI MITIGATION

The N x N matrix H7!(2)H(z) is almost surely a nonzero polynomial
matrix. If H ' (2)H(z) has order at most r, then as long as G(z) is rth order
polynomial ambiguity resistant, (8.3.2) implies X;(2)X71(z) = a(z)Ix,
ie., X;1(z) = a(2)X(z) for a nonzero polynomial a(z) of order at most
r. This implies that a rth order PARMC G(z) can reduce the M x N
polynomial matrix ambiguity into a scalar polynomial ambiguity. Under the
assumption that the ged of all components of X;(2) is a nonzero constant,
we can easily reduce a(z) to a scalar, a. This proves that, if a signal X; ()
with the ged of all its components as a nonzero constant, and Y(z) =
H;(2)G(2)X1(z), then X;(z) = aX(z) for a nonzero constant, in other
words, the input signal X(z) is blindly identifiable.

The above discussions imply that, when G(z) is rth order polynomial
ambiguity resistant, the input signal X(z) can be blindly identified from
the output Y(z) and the MC G(z). In order to choose a proper MC G(z),
it is important to estimate the minimal order r of the polynomial matrix
H;!(2)H(z) given the ISI channel order of H(z), Q.

It is known that the order Q,-1 of H™1(2) satisfies

NQn+N-M
M-—-N ’
see for example [91, 81]. Therefore, the total order r of H; ' (2)H(z) satisfies

S NQw+N-M NQ»
- M-N M-N’
On the other hand, if V(2) in Equation (8.1.2) has a nontrivial solution
V(z) # a(z)Ik, the inputs X(z) and X;(z) with X(z) = V(2)X1(z) and
H; (z) = H(2)E(2) satisfy

Y (2) = Hy(2)G(2)X1(2) = H(2)G(2)X(2).

Therefore, it is not possible for the identification of the input signal. The
above results are summarized in the following theorem.

Qr-1 >

+Qn=

Theorem 8.3 Assume the ISI channel H(z) is an M x N irreducible poly-
nomial matriz with order Q. If G(z) is a Tth order polynomial ambiguity
resistant MC, then the input signal X(z) in Fig.8.1 is blindly identifiable
from the output signal Y(z) and the MC G(z), where

NQ
ﬁ]. (8.3.3)

Contrarily, if the input signal X(z) in Fig.8.1 is blindly identifiable from
the output signal Y (z) and the MC G(z), then G(z) must be a polynomial
ambiguity resistant MC of a certain order.

r=I
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Similar arguments apply to the blind identifiability for both the channel
inverse H~!(z) and the input signal X(z) by using strong PARMC: Y(z) =
H,(2)G(2)X1(2) = H(2)G(2)X(2) if and only if H}(2)H(2) = a(z)In
and X;(2)X"1(2) = a(2)I}, ie., H7'(2) = a(z)H(2) and X;(z) =
a(z)X(z) for some nonzero polynomial a(z). Following the proof of Theo-
rem 8.3 about the ged division, a(z) can be found from X, (2) = a(2)X(z2),
and then H~!(2) can be found from H;'(z) = a(z)H!(2). The necessity
is also similar to the one for Theorem 8.3. This proves the following result.

Theorem 8.4 Assume the ISI channel H(z) is an M x N irreducible poly-
nomial matriz with order Qp,. If the MC G(z) is strong rth order polynomial
matriz ambiguity resistant, then, the input signal X(2) and the ISI channel
inverse H™1(2) in Fig.8.1 are blindly identifiable from the output signal
Y (z) and the MC G(z), where r is defined in (8.3.3). Contrarily, if the
input signal X(z) and the channel inverse H1(z) in Fig.8.1 are blindly
identifiable from the output signal Y (z) and the MC G(z), then G(z) must
be a strong polynomial ambiguity resistant MC of a certain order.

As a remark on the blind identifiability, since H(z) is not a square
matrix, its inverse H=1(z) is not unique. The above blind identifiability
means the unique solution (up to a nonzero constant difference) for the
input signal X(z) and a solution for the inverse H~!(z) of H(z). As such, -
although the overall solutions for X(z) and H™!(z) may not be unique
due to the non-uniqueness of H™(z), the input signal part X(z) is always
unique.

8.3.2 An Algebraic Blind Identification Algorithm

Results in the previous section suggest an algebraic algorithm for the blind
identification: solve for X;(z) in the equation Y(z) = H;(2)G(2)X1(z)
from the known output Y(z) and the MC G(z); and then remove the
scalar polynomial, a(z), from X;(z) to obtain aX(z). ‘

Although the input and output signals X(z) and Y(z) are in matrix
forms in the previous sections, they can also be column vectors by equating
corresponding columns in the matrices. To derive a time-domain closed-
form algorithm, we adopt the vector representation for the input and output
in the following discussion. More specifically, we consider

Y (2) = H(2)G(2)X(z), (8.3.4)

where X(z) is of size K x 1 and Y(2) is of size M x 1. H(z) is the M x N
irreducible ISI channel of order @, and G(z) is a strong rth order PARMC,
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where r takes the value in (8.3.3). The parameters K, N, M satisfy the
inequalities K < N < M.
It was established in the previous section that solutions of

H ' ()Y (2) = G(2)Xi(2), ' (8.3.5)

satisfy X;(z) = a1(2)X(z) and H7 1 (2)H(z) = a1 (2)1(2). Replacing Y (z)
with 2"Y (z) in the above equation yields

H;'(2)2"Y(2) = G(2)X2(2). (8.3.6)

Clearly, X5(z) = z"as(z)X(z). To exploit the MC structure and remove
the scalar polynomial from the input estimate in one shot, consider the
following equation set

Hil(2)Y() = G()X(2)
{ I:Igll(Z)ZTY(z) = 'G(Z)X(z) (8.3.7)

Then X(z) = a;(2)X(z) and at the same time, X(z) = z"as(2)X(z). Since
a1(z) and aq(z) are of order at most r, it is not difficult to show that
X(z) must be of form aX(z). Hence, the input sequence can be uniquely

identified by solving the above linear equation set in the time domain.
Denote F(z) = H™'(z). From previous discussion, the minimum order

of F(z), Qy is given by

NQr+N-M
Qs =l—Fr—x5 | (8.3.8)

Let
Qf Qg
F(z)= Y F(m)z™™ and G(2) = Y _ G(m)z™™,

m=0 m=0

Q- Q
X(z)= Y X(m)z™™ and Y(z) = Y _ Y(m)z™™

m=0 m=0

Then from F(2)Y (z) = G(2)X(2) we have,

Qs Qg
> (Z F)Y(m — l)) =y (Z G()X(m — l)) z ™,
m 1=0

m 1=0

ie.,

Qf Qg
S FQY(m-1)=Y G)X(m-1), meZ, (8.3.9)
=0 1=0
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where F(m), 0 <m < Qy, and X(m), 0 < m < Q,, are unknowns to solve.
For each m, let
fl,m
f2,m
Fmy=| " |,
fN,m
where fi  is the Ith row of the matrix F(m). Denote F a super column
vector containing all unknowns in matrices Fi(m), 0 < m < Qy, i.e.,

.7:= (fl,o,”‘ 7fN,0)f1,1)”' )fN,l)"' ’fl,Qf;"'.afN,Qf)T- (8310)

The size of F is (M N(Qs+1)) x 1. Let Y(m) be the following block matrix
of size N x (M N(Qy + 1)) for each integer m:

YT(m) --- YT(m—Qf) 0 0
0 0 yT oo YT(m —
T I
0 .. 0 0 - 0
0 0
0 0
: : : (8.3.11)
YTkm) . YT(m'— Qy)

Then, the time-domain equivalent of Equation (8.3.7) is given by

X(m)
Y(m)F = (G(0)--- G(f)) : , m 20, (8.3.12)
X(m - Q)
and
X(m)
Y(m +1)Fz = (G(0) -+ G(f)) : , m20.  (83.13)
X(m ~Qq)

Upon defining V; = [VT(i)--- YT(Q. — r)]T, we are able to combine the
above equations and establish a linear equation set with respect to all un-
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knowns as follows,

F
Yo O -G Fa
{ 0 Y. -G } X(0) =0, (8.3.14)
yO —y'r 0
X(Q:c - T)

where G is the following generalized Sylvester matrix:

g =
G) G 0 o 0 0
GQy) G@—1) G@ -2 - GO 0 - 0
0 G(Qg) GQ,-1) --- Q1) G@O) --- 0
| o 0 0 - 0 G@) - GO ]

(8.3.15)

The input signal as well as the 0-delay and maximum-delay zero-forcing
equalizers can be readily determined. It can be easily verified that when the
number of data vectors increases, there are more equations than unknowns
in the above linear homogeneous system, which renders an overdetermined
system with a unique solution.

8.4 Applications in Communication Systems

In this section, we will apply the theory previously developed to the blind
identification of a baud-rate sampled communication system and an under-
sampled system with multiple receivers (antennas). - The application to the
space-time coding discussed in Chapter 6 for multiple transmit and receive
antennas follows automatically by considering the general MIMO system
in Fig.8.1. Contrasting to most existing blind identification techniques, the
use of PARMC allows the blind identification to be accomplished without
output diversities.
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8.4.1 Applications in Single-Receiver, Baud-Rate Sam-
pled Systems

A MC coded single-receiver communication system is shown in Fig.8.2 ,
where the baud-rate sampled ISI channel is characterized by a polynomial
H(z) of order g

MC channel

binary complex

= i X (n)
data ECC data serial to| X(m)f ~ Z

M / parallel 9 G (z)—p
OD x{n}

z(n) y(n)

parallel ) H(z)

to serial

n(n)

Figure 8.2: A single-receiver communication system with baud-rate sam-
pling.

MC channel
binary got\plex x(n) Z(n) Y(n)
data | ECC/| @8t serial to| £{nJ| ~ ol
e oo P paratiel | & (z)—H (2)
MxK MxM
n(n)

Figure 8.3: A blocked single-receiver system with baud-rate sampling.

To apply the blind techniques developed in the previous section, we
need to formulate the above system and transfer it into the one shown in
Fig.8.1. To achieve this, we block the output signal y(n) with block size
M (from serial to parallel) into an M-element vector, Y (n). The system
in Fig.8.2 can then be represented as in Fig.8.3, where H(z) is the blocked
version of the channel H(z) in Fig.8.2, as we have seen in Section 2.3:

Ho(z) 27'Hp1(2) --- 27 Hy(2)
Hy(z) Ho(2) < 27 Ho(2)
H(z) = : : : : ,  (8.4.1)
HM_z(Z) HM_3(Z) Z_IHM_l(Z)

HM_l(Z) HM..z(Z) Ho(z)
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where H;(z) is the Ith polyphase component of H(z) as follows

H(z) =) HMn+1)z™", 0<I<M~1. (8.4.2)

The matrix H(z) is pseudo-circulant and can be diagonalized the same
as in (2.3.10). Let W), be the M x M DFT matrix, i.e.,

A
W £ (Wifo<iksm-1,

where
WM — e—2n\/:T/M;

A (2z) the diagonal polynomial matrix
AM(Z) é dla‘g (1’ Z~11 e vZ_M+1) H

and V(z) the following diagonal polynomial matrix in terms of the polyno-
mial H(z):

V(z) £ diag (H(2), H(zWar),--- , HEWM1). (8.4.3)
Then,
H(zM) = (WA (2)) " V() WiAu(2). (8.4.4)

For an MC to resist the polynomial ambiguity, G(z) and H(z) must be
rearranged so that the channel becomes a tall and irreducible polynomial
matrix. Clearly, when H(z) is not a nonzero constant, the polynomial
matrix H(z) is not irreducible. Although this is true, it was proved in
Section 2.3 that any M x N submatrix of H(z) is irreducible as long as
two rotations of the zero set of the polynomial H(z) at the angles W}
for 0 < m < M — 1 do not intersect (Theorem 2.1). Since this condition
is satisfied almost surely for a polynomial H(z), we may assume that all
M x N submatrices H(z) of H(z) are irreducible when N < M. Hence we
can design the M x K MC in Figs.8.2-8.3 to be

In

0NN J G(z), (8.4.5)

G = |
where G(z) is an N x K PARMC studied previously. Consequently, the
system in Fig.8.3 can be described as follows:

Iy

Y(2) = H(2)G(2)X(z), and H(z) = H(2) [ Om—nyxN

] ., (8.4.6)
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where H(z) is actually an M x N submatrix of the M x M pseudo-circulant
matrix H(z) in (8.4.1), which is irreducible. From (8.4.6), it is clear that
the system in Fig.8.3 is reduced to the one in Fig.8.1. The theory/algorithm
developed in the previous section becomes readily applicable to the above
single-receiver system in Fig.8.2.

Given the order of the ISI channel polynomial H(z), gs, the order of
MC G(z), r, can be determined as follows. From (8.4.1)-(8.4.2), the order
of the pseudo-circulant matrix H(z) and its submatrix H(z) is

Qn=[121.

From (8.3.3), the corresponding parameters of the MC in (8.2.7) can be set
as
N[Z]
— M
r=lw=xN

1, K=N-1, and M >N, (8.4.7)

With these parameters, the output data rate relative to the input signal
rate for the above MC coded single-receiver system is (N/K)(M/N) =
M/(N —1), where M can be chosen as N + 1. Thus, the relative data rate
increase is 2/(N — 1), which approaches 0, i.e., no expansion, when N is
large. This proves the following theorem.

Theorem 8.5 For any ¢ > 0, there exists a positive integer N for the
MC G(z) in (8.2.7) such that the overall data rate expansion for the single
antenna receiver system in Fig.8.2 is less than € and at the same time, the
input signal X(z) can be blindly identified from the output Y (z) using the
closed-form algorithm in Section 8.3.2. )

Notice that the existing blind identification techniques require the data
rate to be at least twice the input symbol rate at the receiver.

8.4.2 Applications in Undersampled Antenna Array
Receiver Systems

Having shown that blind identification can be accomplished with a mini-
mum amount of bandwidth expansion using MC coding techniques, we now
study the possibility of perfect signal recovery when the received signals are
undersampled.

Without loss of generality, an undersampled antenna array system is
shown in Fig.8.4, where H;(z) for | = 1,2, ..., M are the ISI channel transfer
polynomials of the M antennas, and N | means downsampling by factor
N, ie., taking one sample from each N samples. Clearly, only partial
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information of the input is available in each antenna output. It was proved
in [89, 88] that it is impossible to recover the input blindly from the M
outputs without using any assistance at the transmitter.

MC
binary complex
; )
data_ | Ecc /| data serial to| X{n)f~ Z(n) | raliel
— MOD _m')» parallel |G Z)_'»‘ to serial
MxK
channel
y,(n)
) ?’ Ny
. n,(n)
x ()
. Nfz)«?—» N*
Nyn)

Figure 8.4: An undersampled antenna array system.

The system in Fig.8.4 can be converted to the one in Fig.8.5, where H(z)
is the M x N polyphase matrix of the M polynomials H;(z), 1 <! < M:
H(Z) = (Hl,n(z))MxN. Here

Hin(z) = Z Hy(Nk +n)z~F
k
is the nth polyphase component of the /th polynomial

Hi(z) = Z Hi(m)z™™,

and Y (n) = (y1(n),y2(n), - ,ym(n))T. As discussed before, when M > N
this matrix H(z) is almost surely irreducible. From Fig.8.5, one can see that
the undersampled antenna array receiver system in Fig.8.4 can be cast into
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MC channel
binary complex
i Z{n) Y (n)
data [ECc/|data serial to| X(n) G(z)
MOD | xm) |Parallel —— H(z)
’ NxK MxN
n(n)

Figure 8.5: An equivalent undersampled antenna array system.

the exact same framework of Fig.8.1, allowing direct applications of the
theory/algorithm developed in Section 8.2 and Section 8.3.

Assume gy, is the maximum of the orders of the M polynomials H;(z)
for the M antennas. The order Qp of the polyphase matrix H(z) is

Qn = f%]-
For blind identification, the parameters for the MC G(z) in (8.2.7) can be
chosen as
_ (NI%]
r=I-n

It should be noticed that the number of antennas, M, in a system is
usually fixed. Because N < M is required, this seems providing a lower
bound for the data rate expansion in the transmitter, which requires 0 <
K < N < M. With the minimum bandwidth expansion setup: K = N —
1,N = M —1, at least 1/(M — 1) data rate increase is needed for the blind
equalization given the number of antennas, M. In the following, we show
that this limitation can be lifted by blocking the vector output sequence
Y(n) = [y1(n),y2(n), - - ,ym(n)]T in Fig.8.5 similar to the method for the
single antenna system studied in the previous subsection. The blocked
equivalent system of the undersampled antenna array receiver system in
Fig.8.5 is shown in Fig.8.6, where the block size is L and the matrix [H(z)],
is the blocked version of the matrix H(z) in Fig.8.5:

1, K=N-1, and M > N. (8.4.8)

Ho(z) Z_IHM_l(Z) s Z_IHl(Z)
H;(2) Hy(z) s z71Ha(2)
[H(2)] = : : : : , (849
Hpuo(z) Hpyz(z) - 27 Hpy—1(2)

Hpy1(z) Hup2(2) - Hpy(2)



206 CHAPTER 8. PARMC FOR BLIND ISI MITIGATION

where the notation H(z) = [H(2)]; was used in Chapter 6. Here, H;(2) is
the Ith polyphase component of the matrix H(z) as follows

Hy(z) =) H(In+1)z", 0<I<L-1,

where H (m) are the M x N constant coefficient matricesin H(2) = 3_,, H(m)z™™
Matrix [H(z)]; is block pseudo-circulant. [Y]r(n) and [n]r(n) with size

NL x 1 in Fig.8.6 are the blocked forms of the vector sequences Y (n) and
n(n), respectively. Correspondingly, the minimum rate-increase MC G(2)

has size NL x (NL — 1). Therefore, if the blocked channel polynomial ma-

trix [H(2)]p in Fig.8.6 is still irreducible, then the system in Fig.8.6 is cast
again to the one in Fig.8.1.

MC channel

binary complex
data ECC/ data serial to| ¥(n) Zin) [Y(n)lL

— MOD T(r:')‘» parallel [P G(z) [H(Z)]L
NLxKL MLXNL

fr](n)]L

Figure 8.6: A blocked undersampled antenna array system.

Before proving the irreducibility of the matrix [H(z)]L, let us investi-
gate the effects of the blocking operations above. Notice that the overall
data rate expansion in Fig.8.6 is 1/((M — 1)L) by choosing N = M —1
and K = NL — 1, which approaches zero when the block size L is large.
The advantage is that the data rate expansion at the transmitter can be
reduced by employing the above blocking procedure, even when the number
of antennas is fixed.

We now need to prove that the blocked version [H(z)]r of H(z) is ir-
reducible when H(z) itself is irreducible. Since [H(z)]r is block pseudo-
circulant, by permuting its rows and columns, it can be converted into the
block matrix with M N blocks and each of the blocks, By, n(2), is an L x L
pseudo-circulant matrix:

[H(Z)]L = H(Bm,n(z))MxNPra

where P, and P, are the row and column block permutation matrices. Sim-
ilar to (8.4.3)-(8.4.4) the L x L pseudo-circulant matrix B n(2%) can be

diagonalized as
Brn (2 L) =
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(WZAL (z))_ldiag(Hm,n(z): Hm,n(ZWL): e aHm,n(ZWf_l))WzAL (z)a

where H,, »(z) come from matrix H(z) = (Hm n(2))mMxn~- Therefore,
[H(=")e
= PI[W]ZI (diag(Hm,n(z)a Hm,n(ZWL)’ Tt aHm,n(ZWLL_l)))MxN [W]LPT‘

where
(W] = diag(W7AL(2), - ,WLAL(2)).

By implementing the same permutations,
[H(z")], = B[W];' Pdiag(H(z), H(zWy), - ,HEW, ™)) P [W]LP,.

Since matrices P,[W];' P, and P.[W]P, are irreducible, matrix [H(z)]z
is irreducible if and only if H(z) is irreducible. This proves the following
lemma.

Lemma 8.1 The blocked version [H(z2)]r in (8.4.9) of H(z) is irreducible
if and only if H(z) is irreducible.

This lemma and the previous discussion on data rate expansion in the
transmitter lead to the following result.

Theorem 8.6 For any € > 0, there exists a positive integer N for the
MC G(z) in (8.2.7) such that the data rate expansion at the transmitter
for the antenna array system in Fig.8.4 is less than € and at the same
time, the input signal X(2) can be blindly identified from the undersampled
outputs yi(n), 1 <1 < M, of the M antennas with the undersampling factor
N = M — 1 using the closed-form algorithm in Section 8.3.2.

It should be noticed that, although the blind identifiability in the above
two theorems hold theoretically for an arbitrary small amount of data (or
bandwidth) expansion, the implementation of the closed-form algorithm in
Section 8.3.2 may become prohibitive when the sizes of the MC get larger.
This is also due to the possibility of a linear system being ill-posed when
its size gets larger. We want to emphasize that the focus of this chapter
is on feasibility studies rather than algorithm development. There is an
evident need for more sophisticated MC coding-based blind identification
algorithms which are of practical importance.

Another remark we want to make here is the following observation.
When the order @, of the ISI channel H(z) is large, the size of the linear
system (8.3.14) is also large due to the large number of unknowns in F in
(8.3.10) for H™1(z). In this case, it might be better to use a current MIMO
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blind identification method to reduce the large order ISI channel H(z) into
a nonsingular constant matrix, i.e., a zero order ISI channel T. Then, the
technique developed in [89, 88], or Oth order polynomial matrix ambiguity
resistant MC in this paper can be used to blindly identify the input signal
and the constant ambiguity matrix T. The trade-off between these two
approaches is under our current investigation.

Last but not the least, we want to point out that the MC proposed
in (8.2.7) have some interesting features which are essential to practice
applications. For example, assuming that the input data to the MC are
modulated complex values, such as e/2™%/4 k = 0,1,2,3, in QPSK mod-
ulation, since the MC in (8.2.7) only sums the current sample X (n) and
the past X(n —r —1) as X(n) + X(n —r — 1), the output data Z(n) from
the MC, which are to be transmitted after a pulse shaping filter, preserves
the modulation symbol patterns except some occasional 0 symbols. This
implies that the MC coding in Fig.8.2 and Fig.8.4 can be implemented
without introducing undue complexity.

8.5 Numerical Examples

In this section, we want to present two numerical examples to verify the
theory/algorithm developed in the previous sections. Simulated outputs
from a baud-rate sampled single-receiver system and an undersampled an-
tenna array system are used for blind identification. The results presented
here are to illustrate the feasibility rather than efficiency of the proposed
MC coding and blind identification techniques, although some robustness
in handling noisy data is demonstrated by the proposed algorithm.

8.5.1 Single Antenna Receiver with Baud Sampling
Rate

In this example, we set the order of the baud-rate sampled ISI channel to
be 4. The ISI channel is randomly selected, which in this example is

H(z) = 0.9275 — 0.5174z"1 + 0.2343272 + 0.79552 % + 0.1551z*.

The parameters in Fig.8.2 and Fig.8.3 and (8.4.5)-(8.4.6) are K = 2,N =
3, M = 4. In this case, the channel matrix H(z) in (8.4.6) is

H(z) =
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Received signals
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Figure 8.7: (a) ISI channel outputs with baud sampling; (b) recovered signal
after blind identification using MC coding techniques.
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Figure 8.8: (a) Undersampled antenna outputs before blind identification;
(b) recovered signal after blind identification using MC coding techniques.
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0.9275 + 0.1551z~1  0.7955z~! 0.2343z7!
—0.5174 0.9275 + 0.1551z~1 0.7955z 1
0.2343 —0.5174 0.9275 + 0.1551z~1
0.7955 0.2343 -0.5174

The order of H(z), Q4, is thus 1. Based on (8.4.7), it is adequate to use
r = 3 for the MC G(z) in (8.2.7). Theorder of G(2) isr +1=4. G(z) is
capable of resisting any 3rd order polynomial matrix ambiguity.

QPSK signals are used as the input signal in this example. The received
data without identification is shown in Fig.8.7(a). The processed data
after applying the proposed blind technique is shown in Fig.8.7(b). In this
particular example, we use noise-free observations to demonstrate that the
proposed techniques can provide closed-form solution with a finite number
of data samples.

8.5.2 Undersampled Antenna Array Receivers

In this example, we use 4 antennas and undersampled the received signals
by a factor of 3, i.e., M = 4 and N = 3 in Figs.8.4-8.5. Four ISI channels
Hy(z),1=1,2,3,4, are randomly chosen, which in this example are

Hi(z) = (0.3323+ 0.34465) + (—0.2337 + 0.77825)z1
+(0.1551 + 0.25115)2~2 + (—0.5945 + 1.1582;) 273
+(—0.5398 — 1.29975)2~* + (—1.5044 — 2.79605)25;
Hy(z) = (0.5589 — 0.72335) + (1.4499 + 2.18055)z !
+(—0.9646 — 0.31055)2~2 + (0.1302 + 0.8625;)z 3
+(1.8800 + 0.30665)2~* + (—0.0954 + 0.69673)25;
H3(z) = (0.8999 + 1.26825) + (1.8361 + 0.43785)z~!
+(0.0388 — 0.92305)2 % + (0.0350 — 1.03475)2 3
+(—1.0038 + 0.9690;)2~* + (0.3967 + 3.2069;)2~%;
(—0.2009 — 0.03125) + (—0.3829 + 1.3333;)2!
+(0.7655 — 0.3848;)272 + (—0.6247 — 0.19275)z~%
+(—0.4974 — 0.74735)2~* + (=0.5271 + 0.5360;)2°.

H4(Z)

In this case, the channel matrix H(z) in Fig.8.5 is of order @, = 1.
Similar to the previous example, the parameter r in (8.2.7) is set to be
3, which enables the MC G(z) to resist a 3rd order polynomial matrix
ambiguity.

Instead of noise-free data, we apply the proposed blind identification
algorithm to a minimum amount of cutput vectors, 50, under 30dB SNR.
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The signal patterns before and after the identification are compared in
Figs.8.8(a) and (b).



Chapter 9

Characterization and
Construction of
Polynomial Ambiguity
Resistant Modulated
Codes

In Chapter 8, we introduced PARMC that were channel independent and
used at the transmitter such that the receiver is able to blindly identify
the input signal no matter what the input symbol constellation is. In this
chapter, we present more properties, characterizations, and canonical forms
of PARMC, which are useful in the PARMC construction. The results in
this chapter are from [186, 172]

9.1 PAR-Equivalence and Canonical Forms
for Irreducible Polynomial Matrices
Let us first see an equivalence for PARMC, which is first introduced in

[186] for the ambiguity resistant precoder canonical forms. Let My yk(2)
denote the set of all N x K polynomial matrices.

Definition 9.1 The transformation Tp,q of Mnxk(2) defined by
Tr q(A(2)) = PA(2)Q(z), V A(z) € Mnxk(2),

213
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where P is an N x N nonsingular constant matriz and Q(z) is a K x K
unimodular polynomial matriz, is called a PAR-equivalence transformation,
and Tp,q(A(2)) and A(z) are called PAR-equivalent.

One can see that a PAR-equivalence transformation includes all three
row elementary operations with constant multipliers and all three column
elementary operations where an operation of multiplying a nonzero degree
polynomial to a column is not included. From the PAR-equivalence defini-
tion, we have the following result.

Theorem 9.1 A PAR-equivalence transformation preserves the (strong)
rth PARMC property, i.e., an N x K polynomial matriz G(z) is (strong)
rth PARMC if and only if PG(2)Q(z) is (strong) rth PARMC for any N x
N nonsingular constant matriz P and any unimoduler polynomial matriz

Q(2).
Proof. Consider equation
E(2)PG(2)Q(z) = PG(2)Q(2)V(2).

Then
P'E(2)P - G(2) = G(2) - Q(2)V(2)Q(2) "

If G(z) is (strong) rth PARMC, then we have
(P'E(2)P = a(2)In), Q(2)V(2)Q(2)™" = a(2)Ik
for some polynomial a(z) of order at most r, i.e., PG(2)Q(z) is (strong)
rth PARMC.
On the other hand, if PG(z)Q(2) is (strong) rth PARMC, then from
E(2)G(z) = G(2)V(2)
we have
PE(:)P~! - PG(-)Q(2) = PG(2)Q(2) - Q(2) 'V (:)Q(2).

So, we have (PE(2)P~! = a(z)Iy), Q(2)"'V(2)Q(z) = a(z)Ik for some
polynomial a(z) of order at most r, i.e., G(z) is (strong) rth PARMC. =
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Lemma 9.1 Any polynomial matriz A(z) € Myxk(z) with rank = K is
PAR-equivalent to

( gl,l(z) 0 0 c 0
92,1(z) 92,2(Z) 0 T 0
g3.1(2)  g32(2) g33(2) - 0
(9.1.1)
gr1(2) 9k2(2) grs3(z) - g k(2)
| gvi(z) gn2(2) gns(z) - gnk(2) |

where deg(g1,1(2)) < deg(g2,2(2)) < --- < deg(gk,k (2)). Furthermore,
deg(g:,j(2)) < deg(g:i(2)) for any j <.

Proof. Let A(z) be an N x K matrix with entries a;;(2). Let di(z) =
ged(ain (2), -+ ,aik(2)). By row permutation only we may assume that
d;(z) # 0 and degd; is nondecreasing with ¢ for ¢ = 1,--- , K. Now A(z) is
PAR-equivalent to (by only column transforms)

dy(z) 0 0

b21 (Z) bQQ(Z) e bQK(Z)

bni(z) bn2(z) - bnk(2)
Furthermore, for i = 2,--- , N,

deg(ged(biz(2), -+ -, bik (2))] = deg[ged(bir (2), - -, bik (2))]
> degd; > degd; (2).
Similarly we can deal with the submatrix

bzz(z) sz(Z)
B(z) =

bNg(Z) bNK(Z)
with rank(B) = K — 1. By induction the lemma is proved. m
Lemma 9.2 For L polynomials f1(2) #0, f2(2), -, fr(2), if

deg(ged(cfr + f2, f3,+--, fr)) > deg fi

for any constant ¢, then fi|fs, falfs, -+, filfL-
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Proof. We first prove the case L = 3. It is obvious if f; is a constant.
Now suppose deg f; > 1 and d.(z) = ged(cfi + f2, f3). Then degd, > 1.
Let d = ged(fi1, fa, f3)- Then

fr =dg1, f2 = dgs, f3 = dgs,

ng(glag27 93) = ]-v

and
deg(ged(cg: + g2,93)) > degg.

Let ay,-- - ,ax be the all zeroes of gs. If g1 (a;) = O for some j € {1,--- ,k},
then go(a;) #0. Let C2 > 0 such that

l92(a;)| < C2
for any 1 < j < k and let C; > 0 such that

i Y >C
glgglﬂﬂgl(%)ﬁ 1

(if g1(a;) =0 for 1 < j < k, we can take any C; > 0). Take

For any a;, we have two cases: if g;(a;) = 0, then
cgi(a;) + 92(a;) = ga(ay) # 0;

if g1(o;) # 0, then

C
legi(@;s) + g2(a;)| > C—j C1-C2=0.

Hence the above two cases mean gcd(cg: + g2, 93) = 1. Therefore we have
ged(efi + f2, f3) = de = d x ged(cgr + g2, 93) = d.

Now degd > deg f; and d|f; imply d(z) = cfi(z) for some nonzero constant
c. Hence fi|f2, fi|fs. For general L we know

deg(ng(cfl + f27 f3)' o ’fL)) = deg(ng(cfl + f2,ng(f3)' . 7.fL)))

Bythe aboveproof, f1|f2af1|ng(f31"' ’fL)- Hence f1|f27f1|f3:"' 7f1|fL-
]
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Lemma 9.3 If G(z) = (gi;(2)) is a nonzero matriz in Myxk(z) of the
form (9.1.1) and if g11(2) # 0 is an element of G(z) with m = deg(g11) <
deg(gi;) for any gij(z), then either g11(z) divides all g;j(z) , or else there
ezists a PAR-equivalence transform T such that

T(G(2)) = Q(2) = (g:5)
has the form (9.1.1) and q11(2) # 0 is of degree less than m.

Proof. Suppose gi1(z) does not divide every element of G(z). By
Lemma 9.2, there exists a constant ¢ and 7,2 < ¢ < N such that

deg(ged(cgur + git, giz, -+ 1 Giir *+ » 9ik) < deg g = m.
This means that G(z) is PAR-equivalent to a matrix with i-row
(cgr1 + g1, Gizs~++ , Giis "+ 5 GiK)-

Now Lemma 9.1 guarantees that G(z) is PAR-equivalent to Q(z) of form

(9.1.1) with degqu1 < deg(ged(cgir + g1, giz, =+ , iy *+ ,9ik)) <™. ®
Combining Lemma 9.1 and Lemma 9.3 we obtain the following result.

Theorem 9.2 Any nonzero matriz A(z) € Mnyxk(z) with rank = K is
PAR-equivalent to a matriz of the following form

g11(2) 0 0 cee 0 0 --- 0
g21(2)  g22(2) 0 e 0 0 -~ 0
gr1(2)  gr2(2) ge3(z) -+ gw(2) O -+ 0O
gni(2) gna(2) gns(z) - gwe(z) O - O

with gii|g(iy1)(i+1), Gislgsi for anyi=1,2,--- k-1 and j > 4.

Proof. Obviously, A(z) is PAR-equivalent to a matrix of form [B 0]
where B is an N X k matrix with rank(B) = k. By Lemma 9.1, we have
that any nonzero matrix is PAR-equivalent to a matrix as above such that
911(2) has the minimum degree. If g;;(z) divides all gi;(2) for any k,l > 1,
Theorem 9.2 is proved. If g;;(z) does not divide some gri(z) for some
k,l >'i, we then consider the submatrix:

gii(z) 0 0 e 0
g(i+1)i(z) G(i+1)(i+1) (2) 0 T 0
gri(2) ) (2)  GrGr)(2) -0 gre(2)

gni(2) gnG+1(2)  gnGe)(2) o gnk(2)
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Therefore, by Lemma 9.3, under PAR-equivalence we have that g;;(z) di-
vides all ggi(2z) for any k,l >i. =

By the above theorem, for irreducible matrices, we have the following
result.

Theorem 9.3 Any irreducible matriz in Mpyxk(z) is PAR-equivalent to
a polynomial matrix of the following form

[ 1 0 0 s 0 0
0 1 0 cee 0 0
0 0 0 - 1 0 (9.1.2)
gk1(2) gk2(2) gk3(z) -+ grm-1(2) 9xk(z)
L gni(2) gn2(2) gws(2) - gnv-1)(2) gnk(2) |
with
gcd(9r K, g(k+1)K, " »INK) =1
and

deggrr < deggrink < - <deggnk.

Furthermore, gii(z) can be either 0 or a nonconstant polynomial (i.e.,
deggr >1)for K<k<Nandl1<I<K-1, and

gn1(2) =+ = gn@-1)(2) =0, 1 < deggnr < --- < deggnk
for some L with 1 < L< K.

Proof. By Theorem 9.2, if g;; is not a nonzero constant, then there
exists « such that g;;{(a) = 0. So g;i(a) =0 for any j =1,2,--- , N which
contradicts with the irreducibility of G(z). Similar arguments can prove
that ged(9rk, 9(k+1)K: - »9nk) = 1. When g4(2) is a nonzero constant
for some k,l with K <k < Nand1<1[< K —1,it can be reduced to zero
by implementing a constant elementary row operation, i.e., gr(2) can be
reduced to zero by an AR-equivalence transformation. m

Remark, The result in Theorem 9.3 is the simplest form we can have,
which can not be improved further. For example, we can directly check

that
1 0
21 52
272 z7341

is an irreducible matrix, we can not simplify it further under AR-equivalence
transformations. This polynomial matrix is actually a strong Oth order
PARMC from Theorem 9.8 to be shown later.
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Definition 9.2 If A(z) is PAR-equivalent to G(z) of the form (9.1.2), then
G(z) is called the canonical form of A(z). If gxx = 1, we call G(z) the
systematic form of A(z).

With the above canonical form, to consider a PARMC we only need to
consider a PARMC of the form (9.1.2).
To conclude this section, we generalize the linear independence as fol-

lows.

Definition 9.3 A set of polynomials {g:(2)}1<i<n are called rth order lin-
early independent (rth LID) if

z:e1 2)gi(z2) =0 <> e;(2) =0, i =1,2,--- ,n,
where {e;(2) }1<i<n are polynomials of orders at most r.

9.2 (Strong) rth PARMC with N > K

In this section, we want to present a relationship between rth PARMC and
strong rth PARMC. We also derive a sufficient condition for the strong rth
PARMC with N > K.

Theorem 9.4 Let G(z) be of the canonical form (9.1.2). If G(z) is rth
PARMC, then

maxk <i<n(deg gix) > .

Proof. If deg g;x < r for any ¢ with K <i < N, let

1 0 0 0 ... 0
0 1 0 0 .- 0
Ez=| o0 0 - 1 0 - 0
9xk(z) gxk(z) -+ gkk(z) 1 -+ 0
| 9vk(2) gnk(2) -+ gnk(z) O 1 J
and
1 0 0 0
0 1 0 0
V(z) =
0 0 1 0

[a—y
[a—y
ok
[y
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Then we can check that E(2)G(z) = G(2)V(z2), and E(z) is an N x N
polynomial matrix of order at most r. This is contradictory to the rth

PARMC of G(2). o

From this theorem, one can clearly see that any constant matrix can
not be PARMC of any order. If we have a rth PARMC G(z) of size N x K,
it is easy to construct rth PARMC of size M x K with M > N.

Theorem 9.5 If an M x K polynomial matriz A(z) is PAR-equivalent to

oo

Om-myxk |’

and G(z) is rth PARMC, then A(z) is also rth PARMC. However, A(z)
must not be strong rth PARMC, even when G(z) is strong rth PARMC.

Proof. From the equation

Eii1(z) Ej2(2) ] [ G(2) } — [ G(2) ]V(z),

Eji(2) Ea(z) O(m—NyxK O(rmr—Nyx K

we have Eq1;(2)G(z) = G(2)V(z). Since G(z) is rth PARMC, so V(z) =
a(z)Ik for some polynomial a(z) of order at most r, i.e.,

Lo

O(m—NyxK

is rth PARMC. However, since

102 1= [0, )

where E(2) is not equal to any «(2)Iy, i.e.,

[ G(z) ]
Om—NyxK
is not strong 0th PARMC. So it is not strong rth PARMC either. m
We now see a connection between rth strong PARMC and rth PARMC.

Theorem 9.6 Suppose that G(z) has the form (9.1.2) with N > K. If
G(z) is rth PARMC, and {9k kK, -+ ,gnK} are rth order linearly indepen-
dent, then G(z) is also strong rth PARMC.
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Proof. G(z) can be written as

6@ =] &) ane |

where

| gr1(2) - gK(r-n)(2) 9k (2)
Gll(z): and G12(z)=
gnvi1(2) - gnk-1)(2) gnk(2)

Consider the equation

Ik 0
E11(2) Eq2(2) Tk 1 0 =
B Gqu—{gﬁéz Si:%ii}"‘z”

where E11(2), E12(2), E21(2) and E2(z) are polynomial matrices of orders
at most r. If G(z) is rth PARMC, then V(z) = a(z)Ix for some polynomial
a(z) of order at most r. Therefore,

E11(2) + E12(2)G11(2) = a(2)Ig-1, (9.2.1)
Ej (2) + Exa(2)Gii(z) = a(2)G1(2), (9.2.2)
Ej2(2)Gi2(z) = 0, (9.2.3)
E22(2)Gi2(2) = a(2)Gy2(2). (9.2.4)

Since {9k kK, - ,9nk} are rth LID, so from (9.2.3) and (9.2.4), we have
E12(z) = 0 and Eg2(2) = a(z)In—Kk+1. Substituting E;5(z) and Ejs(2)
into (9.2.1) and (9.2.2), we obtain Eq;(2) = a(z)Ix-1 and Ej1(2) = 0. So
G(z) is strong rth PARMC. m

Theorem 9.7 Suppose that G(z) has the form (9.1.2) with N > K. If

A
A i = {gmK G ks InK 95 K ImK (G:0019i0 K — 9:219:0 K ),
1SlgK—l,Kgm,nSN,andn7&i(1)}

are rth order linearly independent for some i) and i® with K < it <
i < N, then G(z) is strong rth PARMC.

Proof. Consider equation E(z)G(z) = G(2)V(z), where E(z) is an
N x N nonzero polynomial matrix of order at most r, and V(z) is a K X K
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polynomial matrix. Denote E(z) = (e;;)nxn and V(z) = (vij)kxk, then

we have the following equations:

N
eij + Z €imGmj = Vij, 1<4,j<K~1,
m=K
N K
€5 + Z €imdmj = Z'Unjgin7
m=K n=1

K<i<N,1<j<K-1,

N
Z eimgmK = Vik, 1 <i< K -1,

m=K

N K

Z €imdmK = Zvanin, K S ) S N.
m=K n=1

From (9.2.8) we have

N K-1
Z €iymImK — Z UnK9in | i K
m=K

n=1

N K-1
= E €;2)ymgmK — E UnkGi2n | §iO K-

m=K n=1
Substituting (9.2.7) to (9.2.9), we get

N K-1 N

E CiMmImKGiD K — E Z EnmImKIi)nJi K
m=K n=1 m=K
N K-1 N
= E €;ymImKIiOK — E E : EnmImKIiDnGiO K,
m=K n=1 m=K
Le.,
(eimi1) — €)@ )9 K i K
N N
+ E e mImKGiDK — E €2 mImK i) K
m=K m=K
m#£4(1) m#i(2)
K-1 N

=Y Y eamImk (gingik — Jirngivk) = 0.

n=1 m=K

(9.2.5)

(9.2.6)

(9.2.7)

(9.2.8)

(9.2.9)
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Since Ai(l),i(2) are rth LID, so €;(1)i(1) = €;2)i(), €y = 0 and e, =0
for K <m,n < N withm # iV andn #i? and e;; = 0for 1 <i < K—1
and K < j < N. Also we can obtain vgg = €;1);1) = €;2)42 and v;xg =0
for1<i<K-1.

Now from (9.2.5) and (9.2.6) we have

eij = vij, 1 <4, < K -1, (9.2.10)
K

e+ e gy = Zvnjgi(l)n, 1<j<K-1, (9.211)
n=1
K

€i2); 1 €22 gi2; = Zvnjgm)n, 1<j<K-1. (9.212)
n=1

From (9.2.11) and (9.2.12) we get

K-1
6i<1>j+€imi(1)gimj—§ Unjgitin | i Kk

n=1

K-1
= | iy T e@un gy — Z UnjGin | itk

n=1

forany j with 1 <j < K —1, ie.,

€9k — €9k + (Emim — €5)(9iw ;9 K — g i k)

K-1
=D eni(ginGiok — GionGing) =0, 1Sj <K -1 (9.2.13)

n=1

n#j

The rth LID of A;a) ;2 implies that {g; x 9:0) k> 9%2) o> 9 K (Gi01 ik —
gienging),1 <1< K — 1} are rth LID, ie., {g0k, gin k> Gingim g —
gienging,1 <1 < K —1} are rth LID. So from (9.2.13) we have e;a);a0) =
€jj, €ij; = €i2; = 0 and ep; = 0for 1 < j#n < K —1. Thus we get
V(z) = e;my;0 Ik, ie., G(z) is rth PARMC.

From the rth LID of A;q) ;=) again, we know that {gmkxg;1) g, K <m <
N} are rth LID, ie., {gkk,9k+1)k, - » 9Nk } are rth LID. According to
Theorem 9.6, G(z) is also strong rth PARMC. m

The above theorem provides us a new and more general sufficient con-
dition for constructing N x K strong rth PARMC for a general N with
N> K.
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9.3 (Strong) rth PARMC with N = K +1

In this section, we discuss polynomial matrices only with N = K + 1. The
following sufficient condition for strong Oth PARMC with N = K + 1 was
obtained in [186).

Theorem 9.8 Let G(z) have the canonical form (9.1.2) with N = K + 1.
If gni(2) = -+ = gnp-1)(2) = 0 and 1 < deggnr < -+ < deggnk for
some L, 1 < L< K, and if

{1,9k1,9K2," "+ , 9K(L~1), INL>*** »IN(K-1)}
are Oth order linearly independent, and Wy N Wy = {0}, where
Wi = span{gnk,gNKgK1, " »INKIK(K-1)}>

W2 = span{gkk, 9xkgK1," »y9KKIK(L-1)9KKYNL, " "* agKKgN(K—l)}a

where span means the set of all linear combinations with constant coeffi-
cients, then G(z) is strong Oth order PARMC.

Proof. By EG(z) = G(2)V(z) we get the following equations:

eij +eixgk;i(2) + eingni(z) = wvi(2),
1<ij<K-1, (93.1)
K
ex; +exk9k;(2) + exngni(z) = Y grm(2)vmi(2),
m=1
1<j<K-1, (9.3.2)
K
en; +enkgki(z) + enngni(z) = Y gvm(2)vmi(2),
m=1
1<j<K-1, (9.3.3)
eik 9k (2) +eingnk(2) = vik(z),
1<i<K-1, (9.3.4)
K
exk9kk(z) + ekNgNK(2) = Z 9km(2)vmi(2), (9.3.5)
m=1
K
enk9Kkk(z) +enngnk(z) = Z INm(2)vmK (2). (9.3.6)
m=1

Substituting (9.3.4) to (9.3.6) we obtain

enk9kk(2) + enngnk(2)
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= Z Inm(2)(emk 9k K (2) + emngnk (2)) + Ve K (2)9NK(2),

ie.,

K~
(eNN —vik(z Z emNINm(2 ) gnk(2)

K-1
= <Z emkgNm(z) — eNK) gx K (2)-
m=1

So ged(gvk, 9x k) = 1 implies

gNk(z Z emkgNm(z) — ENK)-

Hence 1 < deggnr < -+ < deggnk implies exx = 0 and e;x = 0 for
t=L,---,K—1and

K-1
'UKK(Z) = ENN — Z emNgNm(z). (937)

m=1

Plugging (9.3.4) and (9.3.7) into (9.3.5) we get

K-1
(eKN - Z emNgKm(Z)> vk (2)

m=1

K-—1
= <6NN —eKK + Z(engKm _emNgNm(z))> gKK(Z),

m=1

or

K—1
(eKN - Z emNgKm(z)) gNk(2)

m=1

L—-1 K-1
= (eNN —exK + Z emKGKm — Z emNgNm(Z)> 9kk(2). (9.3.8)

m=1 m=L

Now W; N Wy = {0} and the Oth LID of

{191, ,9K(L-1),9NLs*** 1 IN(K~1)}
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mean ek = enn,eix =0fori=1,--- ,L-1, ey =0form=1L,.--- | K—
1. So
K—-1 L-1
EKN — }: emNgKm(2) = exkN — Z emNgkm(z) =0
m=1 m=1
implies exky =0, e;uy =0 for m = 1,--+ | L ~1 by the linear independence

of {1,9k1, - ,9K(—1)}- Hence we obtain e;y = 0 for ¢ = 1,2, , K,
exkNn = 0,exx = enn,eixk = 0fori = 1,2,--- K — 1. Then (9.3.1)
becomes

’Uij(Z):C,'j, Z)J:1127 )K_l, (939)
(9.3.2) becomes
K
ex; +exrgri(2) = Y grm(2)vmi(2), 1<j< K -1, (9.3.10)
m=1

(9.3.3) becomes

K
en; +enngn;i(2) = Z INm (2)Vm;(2)

m=1

K
=Y gNm(2)vmi(z), 1<j<K-L (9.3.11)
m=L

Plugging (9.3.9) into (9.3.11) we get enn = €j; = Vjj, vij(2) = e;; = 0 for
i=L,---,K,j=1,2,--- ,K —1,i # j. In this case (9.3.10) becomes

L-1 K
e +exxgxi(2) = Y gkm(2)emi + Y Grm(2)em;.
m=1 m=L
This means that e;; =0ifi=1,--- ,L—-1,j=1,2,--- ,K — 1,4 # j. This
proves that E = ey Ix41,V(2) =e11lx. m
Note that the above conditions are not necessary from the following
counter example:

1 0 0
0 1 0
G(Z) = z_l 2—2 1 + 2_3 (93.12)

0 2! 275

Clearly, {1, 931,942} are not linearly independent, but G(z) is actually
strong Oth PAR as we will see later.
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Theorem 9.9 Let G(z) have the form (9.1.2) with N = K + 1. Then
G(z) is rth PARMC if and only if G(z) is strong rth PARMC.

Proof. The sufficiency is obvious. Now we prove the necessity. If
G(2) is rth PARMC, according to Theorem 9.6, we only need to prove that
{9kxK,gnK} are rth order linearly independent (rth LID).

If there exist polynomials e;(z) and ez(z) of orders at most 7 such that

e1(2)gx K (2) + e2(2)gnk (2) =0,

since ged(grk,9nk) = 1 from the canonical form, we have gnk(2)/e1(2)
and gk k(z)/e2(z). According to Theorem 9.4, max(deg gk i, deg gnk) >
r. So e;(z) = 0 and e2(2) =0, ie., {gxKk,gnk} are rth LID. This proves
the necessity. m

The following theorem can be derived from Theorem 9.7 directly.

Theorem 9.10 Suppose that G(z) has the form (9.1.2) with N = K + 1.
If

A
AK,N = {QKKgNKag%(Kag%VKagKK(gNKgKn - gKKgNn)a

INK(INKIKn — JKKINn), 1 Sn < K —1}
are rth order linearly independent, then G(z) is strong rth PARMC.

As a remark, the condition in Theorem 9.10 is sharper than the condi-
tions in Theorem 9.8. Let us see the example in (9.3.12). We know G(z)
does not satisfy the conditions in Theorem 9.8. But

N
Az = {278 4+275 2754273 41,2719,

279 26, p7I0 L gpmt _ pml UL -2 -9 -5y

are actually Oth LID, i.e., G(z) is strong Oth PARMC by Theorem 9.10.
Moreover, we can show that Ax n are Oth LID if the conditions in Theorem
9.8 are true. In fact, if there exist constants a, b, ¢, d, and e, (1 < n <
K — 1) such that

K-1 :
agrkgNK + bk K + CoNK + Z dngk k (INK9Kn — KK INn)
n=1

K-1
+ > engNk(INKgKn — GKKINR) =0,

n=1
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then
INK

K1 :
(bgfa( - 2_:1 anf{KQNn)

From the assumption in Theorem 9.8, we get b = 0,d, =0for L < n <
K —1,and

L-1 K-1
agkk + cgNK + Y dngKKGKn + ) en(INK9Kn — GKKINR) =0,
n=1 n=1

ie.,

K-1 L-1 K-~1
(C+ Z engKn> INK = 9K K (—a - Z dngrn + Z engKKgNn) .

n=1 n=1 n+L

Since Wy NW, = {0} and {1,gK1, ct 5 9K(L-1)>9NL," " agN(K—l)} are Oth
LID, we get c=0,a=0,d, =0and e, =0(1 <n < K-1). So Agn
are Oth LID.

The rth LID of Ak n implies that

{9k K, INK, INKIKn — 9K KINn, 1 < < K — 1}
is rth LID. In fact, the rth LID of

{9k K, 9NK,gNK9Kn — KK GNn, 1 <n < K — 1}

is also necessary for the rth PARMC of G(z), and is certainly necessary
for the strong rth PARMC of G(z).

Theorem 9.11 If G(z) has the form (9.1.2) with N = K + 1, and G(2)
is rth PARMC, then {gKK,gNK; INK9Kn — 9KK9Nn, 1 <n < K — 1} are
rth order linearly independent.

Proof. Assume that {gxk,gnvK,gNKgkn — gkKgNn, 1 <n < K — 1}
are not rth LID, then there exist polynomials ¢, band ¢,, 1 <n < K -1,
of order at most r such that

K-1
“agkk +bgnk + Y cn(9NKGKn = 9KKINR) =0,

n=1

ie.,

K~1 K-1
<b+ Z CngKn) INK = KK <-a+ z cngN'n.) .

n=1 n=1
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So
9JKK gNK
o1 and ] .
(b + Z cngKn) (_a’ + Z cngNn)
n=1 n=1

Now let E(z) = (ei;)NxN, where eny = ek, enx =0,exn =0, exxg =0
and e,y =0for1<n<K-1,andforany jwithl1 <j<K-1,e; =
eKK — Cj,exj = b, enj = —a,and ep; = —¢p, L <n < K —1forn #j.
Let V(z) = (vij)kxk, where vkx = enn, vi; = €55 for 1 <4, < K -1,
and for any j with 1 <j < K -1,

K-1 K-1
(b+ Z cngKn) <—a+ z CngNn)

n=1 n=1
Vg = or
9KK gNK

We can check that E(z)G(z) = G(2)V(z). It is obvious that V{(z) #
a(z)Ik. This is contradictory to G(z) is rth PARMC. =
Combining Theorems 9.10 and 9.11, we have the following corollary.

Corollary 9.1 If G(z) has the systematic form, i.e.,

G(z) =
1 0 0 0
0 1 0 < 0
0 0 1 e 0
0 0 0 e 1
gk+01(2)  gk41)2(2)  9k3(2) - gk ] gepayer
then G(z) is strong rth PARMC, if and only if
{Lgk+1)1, 9(K+1)2, > I(K+1)K )

are rth order linearly independent.

Proof. The necessity comes from Theorem 9.11 immediately. Now we
prove the sufficiency. According to Theorem 9.10, we need to prove that

{1, 9k +1)m 9(K+1)KI(K+1)ns 1 <1 < K}

are rth LID.
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With PAR-equivalence transformations, we can assume deg g(x41)n <
deg g(k4+1)k for 1 < n < K — 1. If there exist polynomials a, b, and c,,
1 < n < K, of orders at most r such that

K K
a+ Z brg(k+1)n + Z Cng(K+1)K9(K+1)n = 0, (9.3.13)
n=1 n=1
then oy
K-1 ’
(a =+ 21 bng(K+1)n)

From the rth LID of {1, g(x41)1, 9(k+1)2>** - »9(k+1)K }, We have a = 0 and
b, =0for1 <n < K-—1. Using (9.3.13) again, we have bx =0 and ¢, =0
for 1 <n < K. So {1, 9(k+1)1,9(K+1)2>"** »9(k+1)Kk } are rth LID. m

The special case when r = 0 in the above corollary was obtained in [186].
The following corollary can be checked easily by using Theorem 9.10, which
provides a convenient way to construct nonsystematic strong rth PARMC
with N = K + 1.

Corollary 9.2 Suppose that G(z) has the form (9.1.2) with N = K + 1.
Ifgni(2) = - = gn(z-1)(2) = 0 for some L(1 < L < K), and

deggKn < deggK(n+1) + 7, 1 S n<L-— 1,

deggNn < deggN(n-I—l) +r, L S n< K7
and deg gx(1,—1) < deggnyr + 7, then G(z) is strong rth PARMC.



Chapter 10

An Optimal Polynomial
Ambiguity Resistant
Modulated Code Design

In Chapter 9, we characterized and constructed PARMC. Although any
PARMC is good enough in theory to be used to blindly cancel the ISI
without additive noise, different PARMC may have performance differences
when there is additive noise in the channel. The question, then, becomes
which PARMC performs “better,” where “better” means better symbol
error rate performance at the receiver after equalization. In this chapter,
we propose a criterion for PARMC design by introducing a distance concept
for a PARMC and then study the optimal design based on the criterion.
The results in this chapter are summarized from [163, 177].

10.1 A Criterion for PARMC Design

If the ISI channel is known, the criterion for the optimal MC is to maxi-
mize the free distance of the combined MC of the encoder MC and the ISI
channel. However, when the ISI channel is not known, this criterion and
the criterion in Chapter 4 using the joint DFE do not apply to PARMC.
In the following, we propose a different criterion for the PARMC design
for resisting both ISI and additive noise, which is to maximize the mean
distance of all the different PARMC encoded symbols. The motivation is
as follows.

Consider the general MIMO system in Fig.8.1, where X(z) is the K x

231
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1 polynomial matrix of the z-transform of the input vectors, G(z) is an
(N, K) PARMC, H(z) is the M x N polynomial matrix of the ISI channel,
7(z) is the M x 1 polynomial matrix of the z-transform of the additive white
noise vectors, and Y (z) is the M x 1 polynomial matrix of the z-transform
of the channel output vectors. Let

e Qn
G(z) =Y Gz, HE) =Y Hm)z™,
n=0

n=0

X(z) =) X(n)z™", Y(z) =) Y(n)z™"

Let A
V(z) £ G(2)X(z) = ) V(n)2",

the z-transform of the PARMC output vector sequence, and

U(z) £H()V(2) = Y Un)z ™",

the z-transform of the ISI channel output vector sequence. Notice that all
X(n),Y(n),V(n),V(n),n(n) are constant column vectors while G(n), H(n)
are constant matrices. The performance of the above system in resisting
the additive noise depends on the minimal distance of all the sequences
of U(n), which clearly depend on the unknown ISI channel H(n). There-
fore, it is not possible to consider the minimal distance if the ISI channel is
not known. The next candidate is the mean distance between all different
sequences U(n) by assuming the ISI channel H(n) random, which is ba-
sically determined by the mean power of the PARMC encoded sequences
and therefore is fixed for a normalized PARMC. We now consider the mean
distance between all possible symbols U(n) rather than sequences.

To study the mean distance for the output symbols in U(n), let us
use matrix representations for linear transformations. By concatenating all
vectors X (n) together, all vectors V(n) together, all vectors U(n) together,
all vectors n(n) together, and all vectors Y (n) together, we obtain larger
block vectors X = (z(n)), V = (v(n)), U = (u(n)), n = (n(n)), and Y =
(y(n)), respectively. Let G and H denote the generalized Sylvester matrices,
respectively:

G@Qs) =+ GO - 0
O

?

0 - GQe) - GO
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HQm) - H©) - 0
H= : ' . (10.1.1)
0 - H@u) - H()
Then,
V=GX, U=HV, Y=U+n. (10.1.2)

In what follows, for convenience we assume the input signal z(n) is an
ii.d. random process with mean zero and variance o2. Thus, random
processes v(n) and u(n) have mean zero. We also assume all coefficients
in the ISI channel H(z) are i.i.d. with mean zero and variance 0% and
they are independent of x(n). Notice that this assumption is only used to
simplify the following analysis and it does not apply to the single receiver
system in Fig.8.2, where the corresponding channel matrix H(z) has the

pseudo-circulant structure in (2.3.3).
The mean distances between all values of u(n) and all values of v(n) are

1/2 1/2
d, £ (E(Z lu(m) — v(n)|2)> , dy 2 (E(Z lu(m) — u(”)|2)> ,
™" - (10.1.3)

respectively. By the i.i.d. assumption on the coefficients of H(z), it is not
hard to see the following relationship between the mean distance d,, of the
ISI channel output values u(n) and the mean distance d, of the PARMC
output values (or the ISI channel input values) v(n):

dy = opd,. (10.1.4)

Based on the above mean distance formula, we have the following defi-
nition for optimal PARMC.

Definition 10.1 A normalized (N, K) PARMC G(z) is called optimal if
the mean distance d, of all the PARMC output symbols is the mazimal
among all normalized (N, K) PARMC.

The squared mean distance d, can be calculated as

dj = Elv(m) - v(n)|*

=2(LN -1) Y E(lv(n)]*) -2 > E(w(m)*(n)), (10.1.5)
n m¥#En
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where L is the length of the PARMC output vector sequence V(n) and N
is the PARMC size. Let R(m,n) be the correlation function of the random
process v(n), i.e.,

R(m,n) = E(v(m)v*(n)).

Let R be the correlation matrix of v(n), i.e.,
R = (R(m,n)) = E (gx (gX)f) = GE(YX)tGt = o26G6",  (10.1.6)

where ' means the conjugate transpose. One can see that the first term
and the second term in the right hand side of (10.1.5) for the distance d,
are the sum of all the diagonal elements, i.e., the trace, of the matrix GGt
multiplied by 202, and the sum of all the off diagonal elements of the matrix
GG multiplied by 202, respectively. The trace of GG! of a normalized MC
is nothing else but N from (2.1.5). In formula, the squared mean distance
d, can be calculated as

d? = 202 ((LN — Dtrace(GG") = ) (ggf)mn)

m#n

=202 (LNtrace(ggT) - Z(ng)mn) (10.1.7)

m,n

where (GG'),.» denotes the element at the mth row and the nth column of
GG'. We next want to further simplify d, in (10.1.7). For a PARMC G(z),
define
Dqg £ sum of all coefficients of
all coeficient matrices of G(2)G'(1/z2), (10.1.8)

e 2 sum of all magnitude squared coefficients
of all coefficient matrices of G(2), (10.1.9)

where G1(z) means the conjugate transpose of all coefficient matrices of
G(z). Then, by (10.1.1), it is not hard to see that

trace(GG') = LEg, and Y (GG')mn = LDo. (10.1.10)
Therefore,
d? =202 L(LNEg - Dg). (10.1.11)

Based on formula (10.1.11) on the mean distance d, of the PARMC
output symbols, we define the distance for a PARMC as follows.
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Definition 10.2 For an (N,K) PARMC G(z), its distance is defined by

dG) A N- %,

where Dg and Eg are defined in (10.1.8)-(10.1.9).
Based on Definitions 10.1 and 10.2 and (10.1.11), a PARMC is optimal
if and only if its distance is maximal.

Let us see an example. Consider the PARMC G(z) in (8.2.7). It is not
hard to see that Eg = 2(N — 1), and when N > 2,

G(2)G'(1/2)
[ 1 Zm 0 0 0 0
271 2 P 0 0 0
0 71 2 0 0 0
0 0 0 z7r7l 2 gl
o 0 0 e U
Thus, when N > 2, Dg = 4(N — 1). Therefore, when N > 2,
4(N - 1)
=N—- - = — 2.
d(G) SN=1) N -2

Since the PARMC output vector length L, the PARMC size N, and the
input signal variance o2 are fixed, the following theorem is straightforward
from (10.1.11).

Theorem 10.1 An (N, K) PARMC G(z) is optimal if and only if the total
sum Dg of all the coefficients of all the coefficient matrices of the product
matriz G(2)G1(1/z) is minimal when the total sum Eg of all the magnitude
squared coefficients of all coefficient matrices of G(2) is fized.

We now want to find a family of column operations of a PARMC so
that they do not change the distance property.

Corollary 10.1 Let U(z) be a K x K paraunitary matriz with
U(2)Ut(1/2) = Ix.
If G(2) is an (N,K) PARMC with distance d(G), then G(2)U(z) is also

a PARMC with distance d(G), i.e., d(GU) = d(G). If G(z) is an optimal
N x K PARMC, then so is G(z)U(z).
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Proof. From (10.1.8), clearly Dg = Dgy. Since the sum of all mag-
nitude squared coefficients of all coefficient matrices of G(z) is equal to
the sum of all diagonal elements of the coefficient matrix of the constant
term 270 in the matrix G(2)G1(1/z) and G(2)U(2)U'(1/2)Gt(1/2) =
G(2)G1(1/z), we have Eg = Egy. Thus, we have d(G) = d(GU). m

Notice that

2
> 0.

Z v(n)

n

02LDG =02 Y (GG )mn =Y E(v(m)v*(n)) =E
o o (10.1.12)

Using (10.1.11), the following upper bound for the mean distance d, is
proved.

Theorem 10.2 The mean distance d, of the PARMC output symbols for
an (N, K) PARMC G(z) is upper bounded by

d, < 0,LV2N+\/Eg, (10.1.13)

where o2 is the input signal variance, L is the length of the PARMC output
vector sequence, and Eg is defined by (10.1.9), i.e., the total energy of
all coefficients in G(z). The upper bound for the distance of an (N, K)
PARMC G(z) is d(G) < N.

Now the question is: can the above upper bound be reached? Clearly
the PARMC that reach the upper bound in (10.1.13) are the optimal. In
the next section, we will answer this question positively. Notice that when
there is no MC coding, i.e., G(2) = I, we have

> v(m)

n

E

2
=Y Elp() =) Elz(n) = LKa2 >0,
the mean distance of the PARMC output values is
’ 1/2
d, = (Z Elv(m) — v(n)|2) =0,1/2(LK — 1)LK,

and the PARMC distance is d(G) = K — 1 in this case.

10.2 Optimal Systematic PARMC

In this section, we determine all optimal systematic PARMC by using the
criterion proposed previously. We have the following result.
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Theorem 10.3 An N x (N — 1) systematic PARMC G(2) in (9.1.2) with

ng
gnk(2) = Zaktz_l, Ok, #0,1<k<N-1,n1>n2> - >ny_y > 1,
=0

(10.2.1)
is optimal if and only if
ng
Y au=-1, fork=1,2,.,N-1 (10.2.2)
1=0

Moreover, for the above optimal PARMC, the mean distance d, of the
PARMC output symbols and the PARMC distance d(G) are

d, = 0, LV2N+\/Ep, and d(G) =N, (10.2.3)

where o2 is the variance of the input signal, L is the length of the PARMC
output vector sequence and

N—-1 ng

Eg=N-1+> > laul* (10.2.4)

k=1 I=0

Proof. Eg in (10.2.4) is clearly the total sum of all the magnitude
squared coefficients in all coefficient matrices of the PARMC G(z). To
calculate Dg in (10.1.8) for G(z), the product matrix G(2)G'(1/z) is

G(2)G'(1/2)
1 0 0 gn1(1/2)
0 e 0 9nv2(1/2)
0 0o - 1 gn.n-1(1/2)
gni1(2z) gn2(2) - gnN-1(2) go(2) NxN
where
N—-1
gae(1/2) =Y a?,
1=0
and

N-1
go(z) = Z gnk(2)gne(1/2) = Z akllazlzz_(h_h).

k=1 k=1 l1=012=0
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Thus, it is not hard to see that

N—-1 ng N-1 np ng
Do = N-1+43 Y (au+ai)+ Y, >, D amaj,
k=1 1=0 k=1 [,=01,=0
N-1] ng 2
= Z ag; + 1
k=1 [1=0

Therefore, the minimum of D¢ over all G(z) in (10.2.1) is reached if and
only if Dg = 0. In other words, D¢ is minimal if and only if (10.2.2) holds,
where Eg in (10.2.4) is fixed.

When Dg = 0, i.e., the PARMC G(z) is optimal, the optimal mean
distance formula (10.2.3) for the PARMC G(z) follows from (10.1.11). m

This theorem also implies that there exist PARMC that reach the upper
bound (10.1.13), i.e., Dg = 0. By (10.1.12), the following corollary is
straightforward.

Corollary 10.2 The following statements are equivalent:
(i) An N x K PARMC G(z) is optimal;

(ii) Dg =0, i.e., the total sum of all coefficients of all coefficient matrices
of G(2)G1(1/z) is zero;

(iii) The distance of the PARMC G(z) is d(G) = N.

Given size N, the simplest optimal N x (N — 1) systematic PARMC are

1 0 0
0 1 0
. (10.2.5)
0 0 1
—z—m —z N2 —z MN-1

whereny >ny > - >ny_; > 1.

10.3 Numerical Examples

In this section, we want to present some examples to illustrate the theory
obtained in the previous sections. Since all numerical simulations in this
section are only used to prove the concepts of resisting additive channel
random errors, some simplifications are made. These simplifications include
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that an MIMO system identification algorithm has been implemented, i.e.,
there is only a nonsingular constant matrix ambiguity in the ISI channel.
We consider the undersampled communication system in Fig.8.4 with 5
antennas, and downsampling by factor 4. After an MIMO system identifi-
cation algorithm is implemented, the ISI channel matrix becomes a 4 x 4
nonsingular constant matrix. Thus, we simply assume the ISI channel ma-
trix as a 4 x 4 nonsingular constant matrix and then a white noise n(n)
is added to the ISI channel output, as shown in Fig.10.1(a). Notice that
the 4 x 4 ISI channel constant matrix corresponds to 4 antenna array re-
ceivers, where each channel has 4 tap ISI by using the interpretation of the
combination of the polyphase components {142}, as shown in Fig.10.1(b).

We now consider the following five {(4,3) PARMC:

1 0 0 1 0 0
21 1 0 0 1 0
Gile)=| "9 1 1 |»&E@&=] o o 1 |
0 0 =zt z73 z72 71
1 0 0
0 1 0
Ga(z) = 0 0 1 ’
7@ 427 S+ ST+
1 0 0
0 1 0
G4(Z)= O 0 1 E]
_pm3 =2 -1
1 0 0
0 1 0
Gs(2) = 0 0 1|
az 3 +b272 ez ?4dzt -z
where
__V3+3 , _vB-1 _ VB+1 . V3-3
- 4 77 4 7T 4 7 4

By Theorem 10.3, the PARMC Gy4(z) and Gjs(z) are optimal. All Eg, =6
fori=1,2,...,5 for all these PARMC. Their distances are

d(Gy) = d(G2) = 4 — 2 = 2,d(G4) = d(Gs) = 4
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OPSK Me ISI chénnel
modulated i
data x(n) X (n) A r{U(n) Y(n)

serial to

> parallel [P G(z)

3x1 4x3

(a)

equivalent ISI channel

.

(b)
Figure 10.1: Simplified undersampled antenna receiver system.

and
3(vV2+1)2  5-2V2
6 T2
QPSK signaling is used for the input signal of the PARMC. The linear
closed-form equalization algorithm developed in Section 8.3.2 is used for the
decoding. For more about closed-form blind equalization, see for example
[90]. Three hundred Monte Carlo iterations are used. Fig.10.2 shows the
QPSK symbol error rate comparison of these five PARMC via the SNR for
the additive channel white noise. Clearly, the two optimal PARMC G4(z)
and Gj(2) outperform the other nonoptimal PARMC G;(z) for i = 1,2, 3.
Since d(G1) = d(G2), theoretically these two PARMC should have the
same symbol error rate performance. From Fig.10.2, one can see that the
performance difference between these two MCs is small. Notice that the

d(G3) = 4 — ~ 1.0858.
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theory developed in Chapters 8, 9, and 10 holds for general modulation
schemes as mentioned earlier.

symbol error rate comparison

ymbol error rate

8§
-
<

10° L
1

SNR (dB)

Figure 10.2: Symbol error rate comparison: Solid line with * is for G (2);
solid line with + is for Gz(z); solid line with o is for G3(z); dashed line
with x is for G4(z); solid line with x is for Gs(2).






Chapter 11

Conclusions and Some
Open Problems

In this book, we introduced modulated codes (MC) for ISI channels. MC
are convolutional codes defined over the complex field and can be naturally
combined with an ISI channel and therefore can be optimally designed for a
given ISI channel. We introduced several optimal MC design methods. An
optimal design method usually depends on a decoding method at the re-
ceiver. There are two classes of such methods. One class of methods are the
optimal MC design methods that depend on the input signal constellations,
such as the joint MLSE design method using the joint MLSE decoding as in
Chapter 2 and Chapter 3. The design complexity of this class of methods
is usually high. However, the performance is optimal. The other class of
methods are the optimal MC design methods that do not depend on any
input signal constellations, such as the joint DFE design method using the
joint DFE decoding at the receiver as in Chapter 4. The design complexity
of this class of methods is usually low as we have seen in Chapter 4 but
its performance is not as good as the ones when the signal constellation is
considered.

In Chapter 2, we have shown that an MC does not provide any coding
gain (i.e., advantage), in the AWGN channel over the uncoded system,
however for any finite tap ISI channel there always exists an MC with coding
gain compared to the uncoded AWGN channel. In Chapter 5, we have also
shown that the MC coded ISI channel may have higher information rates
than the original ISI channel does at low channel SNR, which implies that
the achievable transmission data rates of the MC coded ISI channel may
be higher than the ones of the original ISI channel. Our simulation results

243
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have confirmed this theoretical result by employing the turbo coding before
the binary-to-complex mapping. Surprisingly, by using a turbo code and a
proper MC for an ISI channel, the performance may be above the capacity
of the AWGN channel at low channel SNR. "

Another advantage of the MC combined with an ISI channel is that it
is possible to design channel independent MC such that the receiver is able
to blindly identify the input signal. Such MC have been named polynomial
ambiguity resistant MC (PARMC) and were studied in Chapters 8-10. We
have shown that an MC to be a PARMC is necessary and sufficient for
the blind identifiability. Surprisingly, we have shown that any block MC is
not a PARMC. In other words, using a block MC at the transmitter, the
receiver is not able to always recover an input signal, where the input signal
constellation is not in the consideration. We have characterized PARMC
in many cases and introduced an algebraic blind identification algorithm.

Using an optimally designed MC for a given ISI channel, both the trans-
mitter and the receiver need to know the ISI channel. Using a PARMC,
neither the transmitter nor the receiver needs to know the ISI channel.
We have also introduced a channel independent MC coded OFDM system,
where the MC encoding may be able to remove some of the spectral nulls
and therefore improve the OFDM system performance for spectral null
channels and wireless frequency-selective multipath fading channels. For
the MC coded OFDM system, the receiver, however, needs to know the ISI
channel in the decoding.

Since in the optimal MC design, the ISI channel information is needed,
which is certainly possible when the ISI channel is known in priori, such as
storage channels and some wireline channels. It is also expected, however,
that the MC introduced in this book may be useful even in wireless chan-
nels since the simplicity of the MC encoding may be able to provide the
convenience updating the MC at the transmitter and the receiver.

The results in this book are mainly summarized from our last few year’s
research work on MC. There are still many important open problems to be
solved. We list a few of them as follows.

Open Problem 1: Fast optimal MC searching algorithm for a given
ISI channel.

We have introduced an efficient searching algorithm of the optimal MC
for a given ISI channel in Section 3.4. However, this algorithm is still slow
for a reasonably long ISI channel or large-sized MC. The complexity comes
from the large size of an error-pattern trellis due to the large size of the
difference symbols of the input information symbols. It is very important
to have a fast searching algorithm for the optimal MC in applications.

Open Problem 2: The higher rate MC existence with coding gain
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compared to the uncoded AWGN channel.

Although it has been proved in Chapter 2 that for any finite tap ISI
channel there exists an MC with coding gain compared to the uncoded
AWGN channel, the rates of the MC in the proof are mainly either 1/T or
2/T, where I is the ISI channel length. It will be interesting to prove that,
for any rate r and any finite tap ISI channel there always exists a rate r
MC with coding gain compared to the uncoded AWGN channel, which is
conjectured true.

Open Problem 3: Sharper upper bounds of the coding gain of the
MC in ISI channels.

In Section 2.4, we have shown that the coding gain of any MC in an ISI
channel compared to the uncoded AWGN channel is upper bounded by the
length of the ISI channel. This upper bound is sharpened for some special
cases in Section 2.5. A general sharper upper bound of the coding gain or
the proof of the tightness of the ISI channel length will be interesting.

Open Problem 4: Improved blind identification algorithm using a
PARMC over the least square solution algorithm.

In Section 8.3.2, we introduced a least square solution algorithm for
blindly identifying the input signal using a PARMC. This algorithm, how-
ever, may not perform well when the channel SNR is not high. Any im-
proved blind identification algorithm is certainly interesting.






Appendix A

Some Fundamentals on
Multirate Filterbank
Theory

In this appendix, we want to briefly introduce some basic concepts and
properties of multirate filterbank theory that was used as a precoding for
an ISI channel in, for example, [165, 53, 89, 88, 171, 172, 77, 118]. For
more details on multirate filterbank theory, we refer the reader to [32, 141,
2, 142, 46, 152, 126, 95, 13, 148, 106, 104, 26, 31, 99, 124, 125, 149, 150,
151, 140, 139, 38, 102, 146, 103, 73, 145, 143, 144, 96, 94, 87, 174, 173, 105).
References listed here are some early works on multirate filterbank theory
for one dimensional signals and do not cover recent developments on the
subject, such as multidimensional multirate filterbank theory and time-
varying filterbank theory.

A.1 Some Basic Building Blocks

We first want to introduce some basic building blocks in multirate filterbank
theory. Before going to the details, let us first introduce a notation for
polynomial matrices. For a polynomial matrix H(z), its tilde operation
H(z) denotes H(1/2%), i.e.,

H(z) = ZHLz", if H(z)= Zan'".

n
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A.1.1 Decimator and Expander

An M-fold decimator (or downsampling) and L-fold expander (or upsam-
pling) are depicted in Fig.A.1(a) with an example in Fig.A.1(b), and Fig.A.1(c)

with an example in Fig.A.1(d), respectively, where

and

x(n) yp ()
— My

(a)

x(n) yE(n)
— LT

(c)

ye(n) = { g,[n/L],

yp(n)= z(Mn),

if n is a multiple of L,
otherwise.

I]hro, 1

Wy -

i
L. 1]

0

Figure A.1: Decimator and expander.
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X(3®) Y (&) ¥ (')
M=2 L=2
\A/T\J/> M/\/. | 1
-n 0 P ® - 0 T ® - 0 T ®
(a) (b) (c)

Figure A.2: The frequency domain representation examples of the decima-
tor and expander.

In the frequency and z-transform domains, see for example [142],

M-1
, ) 1 )
Yp(e/) = }n:yD(n)e-Jw" == Y X(JlT2RM), (A.1.1)

k=0

and

YE(Z) = ZyE(n)z_" — X(ZL), and YE(ejw) - X(CjWL).

The graphical meaning for the expander is that the DTFT of the expanded
yg(n) is an L-fold compressed version of the uncompressed X (e’*) shown
in Fig.A.2(a),(b). The graphical meaning for the decimator is the following
(shown in Fig.A.2(a),(c)):

(i) Stretch X (e?*) by a factor M to obtain X (e/</M);

(ii) Create M — 1 copies of this stretched version by shifting it uniformly
in successive amounts of 27;

(iii) Add all these shifted and stretched versions to the original unshifted
and stretched version X (e/“/M), and divide by M.

The M — 1 shifted and stretched versions of X(e’) in (A.1.1) are the
aliasing created by the downsampling.

A.1.2 Noble Identities

The following two Noble identities play important roles in the multirate
filterbank theory. They tell us when the orders of the decimator/expander
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and an LTI system can be switched. The two Noble identities are shown in
Fig.A.3, where y;(n) = y2(n) and y3(n) = y4(n).

v, (@)

<(n) Yz(n)
——>K+ -1 H(Z) [—

x(n)
—»H(zx)—>K+ P

(a) Noble identity for decimator

Y, (n)

Y, (n)
x(n)
H(z) N*'—»

x(n)
—>Nf—>H(zN)

(b) Noble identity for expander

Figure A.3: The Noble identities.

A.1.3 Polyphase Representations

The polyphase representation was first invented by Bellanger et. al. [13]
and Vary [148] and later recognized by Vaidyanathan and Vetterli in the
simplifications of multirate filterbank theory studies. It can be briefly de-
scribed as follows. For any given integer N, any filter H(z) can be decom-
posed into

N-1

H(z)= Y 27'Bi(2N), (A.1.2)

=0

where
E; (z) = Z h[N’I’L + l]Z_",

and h[n] is the impulse response of H(z). The decomposition (A.1.2) is
called the Type 1 polyphase representation of H(z). Meanwhile, H(z) can
also be decomposed into

N-1
H(z) = 2 NHHR (2N), (A.1.3)

=



A.2. M-CHANNEL MULTIRATE FILTERBANKS 251

where R;(z) = En—1-1(2), which is called the Type 2 polyphase representa-
tionof H(z). Forl =0,1,..., N—1, E;(z) and R;(z) are called the [th Type
1 and Type 2 polyphase components of H(z), respectively. We will see later
that the Type 1 polyphase representation is for the analysis bank and the
Type 2 polyphase representation is for the synthesis bank in a multirate
filterbank.

The main purpose for introducing the above polyphase representations
is to move the decimator from the right side of an LTI filter to the left
side (expander from the left side of an LTI filter to the right side) by using
the Noble identities in Fig.A.3. In the Noble identities, the power of the
variable z in an LTI filter needs to rise, which usually does not hold for
an LTI filter but holds for the polyphase representations of an LTI filter as
shown in (A.1.2)-(A.1.3).

A.2 M-Channel Multirate Filterbanks

A general M-channel multirate filterbank is depicted in Fig.A.4, where the
left side is an analysis bank and the right side is a synthesis bank, each of
which has M LTI filters. In many applications, such as frequency division
multiple access (FDMA), these M LTI filters occupy M different frequency
bands as shown in Fig.A.5.

x(n)
H, (z) MO*———bNO*—» F,(z)

H, (z) ——>M1+———>Nl*—> F,(z)

° . M : .

I g x(n)
H, , (z )—P-MM_&—> NM-A_» Fy, (2)
analysis bank synthesis bank

Figure A.4: A general M-channel multirate filterbank.

There are several cases for an M-channel multirate filterbank in Fig.A .4:
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Y Y\ VD

0 27 ®

Figure A.5: M-channel analysis filter frequency response example.

(1) when Mo :Ml = e ZMM_l :No =N1 = - ZNM_I =M, the
filterbank is called maximally decimated;

(ii) when My =My = =Mpy_1 =Nog=N; =--- = Npy_1 < M, the
filterbank is called nonmaximally decimated;

(lll) when Mog=My = =My 1=No=Ny=---=Npy_; > M, the
filterbank is called over decimated;

(iv) when M} and N are not all equal, the filterbank is called nonunifor-
mally decimated.

In this section, we focus on the first case for convenience, i.e., maximally
decimated multirate filterbanks.

A.2.1 Maximally Decimated Multirate Filterbanks:
Perfect Reconstruction and Aliasing Component
Matrix

An M-channel maximally decimated multirate filterbank is shown in Fig.A.6.
A multirate filterbank in Fig.A.6 is called perfect reconstruction (PR) if and
only if #(n) = cz(n — ng) for a nonzero constant ¢ and an integer ng.

The question now becomes how to construct a PR multirate filterbank,
in other words, what conditions on H,,,(2) and F,(z) are for the PR. Since
in many applications, such as transmultiplexing and image analysis and
coding, FIR filters are preferred, in what follows we are only interested
in FIR filters H.(2) and F,,(z) in Fig.A.6. In this case, the multirate
filterbank is called FIR. Examples of 2-channel PR filterbanks were first
obtained by Smith and Barnwell [124] and Mintzer [99], independently.
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X (n)
H, (z) M+—-——>M*—> F,(z)

H, (z) M +—>M*—> F,(2)

% (n)
L Hy , (z)—®=rM +—~> M *—» Fy1 (Z)"é——V
analysis bank synthesis bank

Figure A.6: M-channel maximally decimated multirate filterbank.

In the z-transform domain, the PR property becomes
X(2) = cz7™X(2). (A.2.1)

In terms of an input signal X (z), using (A.1.1) the output X (z) in Fig.A.6
can be formulated as follows:

M-1
X(2) = )+ Y A=) X (2Wiy), (A.2.2)
=1
where

M—
Z k(ZWE)Fi(z), 0<I< M —1. (A.2.3)
k=0

Clearly, the second term in the right-hand side of (A.2.2) is the aliasing
term. For the PR property (A.2.1), we need

Ao(z) =cz™™ and Ai(z) =0 for 1 <I< M -1 (A.2.4)
We now want to simplify the PR condition (A.2.4). To do so, let
t(z) = [cz—nO:O; e aO]Ty

f(z) = [FO(Z)aFl(Z)v te ’FM—I(Z)]Ti
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and
Hy(2) s Hp-1(2)
H(z) = : : . (A.2.5)
Ho(zWHM=Y) .. Hpo(xWM1)
Then
H(2)f(2) = Mt(z). (A.2.6)

Thus, given an analysis bank, Ho(z), ..., Hpr—1(2), if the matrix polynomial
H(2) has an FIR inverse, then the synthesis bank f(z) can be solved from
the equation (A.2.6). In other words, the multirate filterbank in Fig.A.6
with this synthesis is PR. The matrix polynomial H(z) in (A.2.5) is called
the aliasing component (AC) matrix. In conclusion, we have the following
theorem.

Theorem A.1 An FIR multirate filterbank in Fig. 16 is perfect recon-
struction if and only if its AC matriz H(z) has FIR inverse.

One can see that the AC matrix H(z) is a structured matrix, where its
components are not free but related. This limits the study and construction
of PR multirate filterbanks. We next want to use the polyphase represen-
tations and Noble identities introduced in Section A.1.2 and convert the
AC matrix to the polyphase matrix in which all components are free.

A.2.2 Maximally Decimated Multirate Filterbanks:
Perfect Reconstruction and Polyphase Matrix

The analysis in Section A.2.1 is a direct analysis of the relationship between
the input and the output in Fig.A.6. We next want to first simplify the block
diagram in Fig.A.6 by using some properties of building blocks studied in
Section A.1l, such as Noble identities and polyphase representations, and
then study the PR property for the simplified system. The main idea for
the simplification is to switch the orders of decimator/expander and FIR
filters, and then convert the multirate filterbank into a multi-input and
multi-output (MIMO) system.

For each analysis filter H,,,(z) in Fig.A.6, let E,, x(z) be its kth Type
1 polyphase component, and for each synthesis filter F,,(z) in Fig.A.6, let
Ry m(2z) be its Ith Type 2 polyphase component, for 0 < m,k,l < M — 1.
Let

E(z) = (Emx(2))o<mr<rm—1, and R(z) = (Rim(2))o<t,m<rm—1,
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synthesis bank
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Figure A.7: Polyphase representation of M-channel maximally decimated

multirate filterbank.
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which are called the polyphase matrices of the analysis bank and the syn-
thesis bank in Fig.A.6, respectively. Then it is not hard to see that

h(z) = E(zM)e(z) and £(2) = &(2)R(zM), (A.2.7)

where h(z) = (Ho(z), - ,Hpy-1(2))T,e(2) = (1,271, -+ , 27 M7 £(2) =
(Fo(2),-,Frm_1(2))T, and &(z) is the tilde operation of e(z). Thus, by
using the Noble identities, the multirate filterbank in Fig.A.6 is the same as
the one shown in Fig.A.7(a), which is called the polyphase representation
of the multirate filterbank in Fig.A.6.

Let P(z) = R(2)E(z), then the multirate filterbank in Fig.A.6 is equiva-
lent to the MIMO system in Fig.A.7(b) with system transform matrix P(z).
Clearly, the PR property is equivalent to the invertibility of the polyphase
matrix E(z).

Theorem A.2 An FIR multirate filterbank in Fig.A.6 is perfect recon-
struction if and only if the polyphase matriz E(z) has FIR inverse.

Theorem A.1 deals with the AC matrix H(z) while Theorem A.2 deals
with the polyphase matrix E(z). From (A.2.7), it is not hard to see the
following relationships between these two matrices:

H(z) = Wi, D(2)ET(2M) and E(zM) = HT(z)WyD(27!), (A.2.8)
where Wy is the DFT matrix and D(z) is the diagonal matrix polynomial:
D(z) = diag(1,27%,--- , 2~ M*1),

From (A.2.8), it is clear that the FIR invertibilities of the AC matrix H(z)
and the polyphase matrix E(z) are equivalent. Unlike matrix H(z), matrix
E(z) does not have any relationship between its components, which leads
to the systematic construction and factorization discussed later.

In some applications, such as the cross-talk cancellation in transmulti-
plexers [142], PR may not be necessary as long as the aliasing (cross-talk)
is cancelled in a multirate filterbank, i.e., the second term at the right hand
side of (A.2.2) is zero. A necessary and sufficient condition on such filter-
banks was obtained by Vaidyanathan and Mitra [145], which is stated as
follows. A square matrix polynomial P(z) is called pseudo-circulant if and
only if it has the following form:

Po(2) Py_a(z) -+ Pfz)
Z_1P1(Z) Po(z) s z"le(z)
P(z) = : : : :
27 Py _9(2z) 27'Py_3(z) -+ Pm-1(2)

27 1Ppy_1(2) 27 1Pp—2(2) -+ Py(2)
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Notice that, when there are no z~! in the above P(2), it is circulant.

Theorem A.3 An M -channel multirate filterbank in Fig.A.6 is aliasing
free if and only if the polyphase matriz P(z) = R(2)E(z) is pseudo-circulant.
Under this condition, the filterbank output and the input are related by
X(2) = Ag(2)X(z) as in (A.2.2), where

Ao(2) = 27 MY By (zM) + 27 Py (2M) + - - + 27 M Py (2M)).

A.3 Perfect Reconstruction FIR Multirate
Filterbank Factorization and Construc-
tion

From the studies in Section A.2, PR FIR M-channel multirate filterbanks
are converted to M x M matrix polynomials. In this section, we focus on
M x M matrix polynomials E(z) = (Ex(2))o<k,i<m-1. Without loss of
generality, in what follows we only consider FIR and causal matrix polyno-
mials, i.e.,

L
E(z) = » Eiuz™", L is a nonnegative integer.

n=0

As studied in Section A.2, when the polyphase matrices of analysis banks
have FIR inverses, the corresponding synthesis banks can be obtained by
using the inverses for the PR multirate filterbanks, i.e., PR FIR multirate
filterbanks are constructed. In this section, we first study general E(z) with
FIR inverses and then study paraunitary matrix polynomials E(z) that are
corresponding to paraunitary multirate filterbanks.

A.3.1 Factorization of FIR Polyphase Matrices with
FIR Inverses

The goal of this subsection is to characterize all FIR causal M x M matrix
polynomials with FIR inverses. Since the determinant of the FIR inverse
of an M x M matrix polynomial is the inverse of its determinant, we have
the following lemma.

Lemma A.1 An FIR matriz polynomial has FIR inverse if and only if its
determinant is cz™™ for a nonzero constant ¢ and an integer ng.
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Let H(z) be an FIR causal matrix polynomial with FIR inverse. If
det(H(z)) = cz~*, then p is called its McMillan degree, the minimal num-
ber of delay elements to implement the MIMO system [142]. A matrix
polynomial H(z2) is called unimodular if and only if its McMillan degree
is 0, i.e., its determinant is a nonzero constant. To introduce the com-
plete factorization of FIR matrix polynomials with FIR inverses, let us first
introduce three types of elementary operations. »

Three elementary row (column) operations:

Type I: Interchange two rows (or columns).
Type 2: Multiply a row (or column) with a nonzero constant c.

Type 8 Add a polynomial multiple of a row (or column) to another
row (or column).

The corresponding matrices of the above elementary operations are called
elementary matrices, which have the following forms.

Let e; be the M dimensional vector with its ith entry 1 and other entries
Ofori=1,2,...,.M,ie,

e= (0 --- 01 0 --- 0T.
i
A Type 1 elementary matrix A can be written as

A=1+ (e,~ - ej)(ej - ei)T,

for certain i # j and 1 <4, < M.
A Type 2 elementary matrix A can be written as
A=1+ ce,-e!,
for certain ¢ # —1 and a certain i, 1 <i < M.
A Type 3 elementary matrix U(z) can be written as

U(z) =1+ a(z)eiej-,

where a(z) is a polynomial of 27! and 7 # j with 1 < 4,5 < M.

With these three elementary operations/matrices, any M x N matrix
polynomial can be diagonalized and the resulted decomposition is called
the Smith-McMillan decomposition, which is stated as follows. An M x N
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matrix polynomial has the following Smith-McMillan decomposition (see,
for example, [142]):

[ Yo(z) 0 0 0 0]
0 m(2) 0 0 0
HZ) =WE) | 0 0 o ) 0 - 0 |UE), (A31)
0 0 - 0O 0 --- 0
0 0 - 0 0 - 0]

where W (z) and U(z) are products of some elementary matrix polynomials
with sizes M x M and N x N, respectively, v;(z) are polynomials of 271,
~i(z) divides y;41(2), for i =0,1,...,p— 1, i.e.,

’Yi(z)|7i+1(z), = 01 ]-a P~ 1)

and A
o) = S8,

where Ag(z) = 1, and A;(z) for ¢ > 0 is the greatest common divisor of all
the ¢ x ¢ minors of H(z).

When H(z) is a square causal matrix polynomial with FIR inverse, the
diagonal matrix in the Smith-McMillan decomposition has the form of

diag(c1z™™,--- ,epmz™ ™M)

where n,, > 0and ¢, Z0for 1 <m < M,and 0 < m; < -+ < nyy.
Although this is a complete characterization of all square causal matrix
polynomials with FIR inverses, the factorization in (A.3.1) is not convenient
to be incorporated in the optimal design studied later. We next want to
introduce another factorization. For more details, see [143, 144]. We define
three kinds of basic matrices.
Class I.

O £ {V(z): V(2) = I - vvt + z=lvv! where v is an M x 1 constant
vector with unit norm }.

Let V(z) = I-vvt +27tvvt € O. Then its inverse V71(z) = I-vvt +
zvvt,
Class I1.

U ={U0(): Uk =1+ az'"‘eie} where « is a constant, m is a
nonnegative integer and ¢ # j with 1 <4, < M }.
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Let U(z) = I+ az‘"‘eie; € U. Then, its inverse U™1(2) = I —
az‘meie}.
Class III.

A2 {A:A=1+(e;—e;)(e;—e;)! forcertaini #jand 1 <i,j <M
orA=1+ ceie:-r for certain ¢ # —1 and a certain i, 1 <i < M }.

Let A =1+ (e; — ej)(e; —e;)! € A. Then, its inverse A™! = A. Let
A=1+ ceief € A. Then, its inverse A~! =1— C_,_Lleie;'.

With these three cases of matrices, we have the following complete fac-
torization.

Theorem A.4 A causal FIR M x M matriz polynomial H(z) has FIR
wnverse if and only if H(z) has the following form

H(z) = V,(2) - Vi(2)A,Uy(2) - - - A1 U1 (2), (A.3.2)

where p is the McMillan degree of H(z), o is a certain nonnegative integer,
Vi(z) €O fori=1,2,...,p, A, € A and Uy(z) €U fori=1,2,...,0.

A.3.2 Factorization of Paraunitary FIR Matrix
Polynomials

In this subsection, we introduce paraunitary matrix polynomials and corre-
sponding multirate filterbanks, which are special FIR multirate filterbanks
with FIR inverses.

An M x N matrix polynomial H(z) is called peraunitary if and only if

H(z)H(z) = dly, for all complex values z,

where d is a positive constant and Iy is the N x N identity matrix. When we
restrict the complex value z on the unit circle, i.e., in the Fourier transform
domain, it becomes the concept of lossless matrices. An M x N matrix
polynomial H(z) is called lossless if and only if

H(e’“)H(e’) = dIy, for all real values w,

where d is a positive constant. When H(z) is FIR, “lossless” is equivalent
to “paraunitary.” When H(z) exists for all z = e/ but not all complex
values z, “lossless” is not equivalent to “paraunitary,” while “paraunitary”
always implies “lossless.” Since we are interested in FIR H(z), we only
consider paraunitary matrix polynomials in this subsection. An example of
paraunitary matrix polynomial is:

27 41 271-1
Hz) =1 1 _4 z7l+1

,inthiscasefl(z)=[§t} z;}]’
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and }
H(z)H(z) = 41,.

A paraunitary multirate filterbank is shown in Fig.A.8.

x(n)
H, (z) =M +—> M*—» Hy (1/2")

H, (z) =M +——>M*-—N H) (1/2")

x(n)
LHM_I(Z)—-’M+—>M *—»H,:_l(l/z* )—»&——»
analysis bank synthesis bank

Figure A.8: Paraunitary M-channel maximally decimated multirate filter-
bank.

Similar to orthogonal transformations (matrices), the advantages of pa-
raunitary multirate filterbanks include that they preserve signal energies in
the decompositions (or transformations) and the synthesis banks (or inverse
transformations) are simply the tilde operations of the analysis banks. In
this sense, paraunitary multirate filterbanks are generalizations of orthog-
onal transformations, such as DFT, by adding delay variables (or memory)
into the transformations. In the following, we want to present a com-
plete characterization of all paraunitary matrix polynomials obtained by
Vaidyanathan.

Theorem A.5 (Vaidyanathan) An M x M causal FIR matriz polynomial
H(z) is paraunitary if and only if it can be factorized as

H(z) =dV,(2)---Vi(2)Ho, (A.3.3)

where d is a positive constant, p is the McMillan degree of H(z), Hy is an
M x M unitary constant matriz, V;(2) € O for1=1,2,...,p, and if p=10
then H(z) = dHj.

For a nonsquare paraunitary matrix polynomial, the following similar
factorization holds (see [38, 142, 173] for more details). ‘
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Theorem A.6 An M x N causal FIR matriz polynomial H(z) is parau-
nitary if and only if it can be factorized as

H(z) = dVP(Z) .. 'VI(Z)H(),

where d is a positive constant, Hy is an M x N wunitary constant matriz,
Vi(z) € O fori=1,2,...,p, and if p = 0 then H(z) = dHj.

For 2-channel paraunitary matrix polynomials, the above factorization
is simplified as the following lattice representation, see [142].

Corollary A.1 A 2 X2 causal FIR matriz polynomial H(z) is paraunitary
if and only if it can be factorized as
1 0
H(z) = dR,A(2)---Ri1A(2)Ryo [ 0 +1 ] ,

where d is a positive constant, p is the McMillan degree of H(z), and

cosf; sin@, 1 0
R; = —sinf; cosé; jl’ and A(z) = [ 0 27! ]’

and 0; is an angle for i =0,1,2,...,p.

A lattice realization of a 2-channel paraunitary analysis bank is shown
in Fig.A.9, where a = Vd, ¢; = cosf; and s; = sin#; for i = 0,1,...,p,
where p delays are needed.

x(n)

Figure A.9: Lattice realization of 2-channel paraunitary analysis bank.

A.3.3 Perfect Reconstruction Multirate Filterbank De-
sign

After the complete characterizations of PR multirate filterbanks, the next

important issue is the design of a desired PR multirate filterbank. In this
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subsection, we want to briefly describe a method for the design. The goal
here is to design an M-channel PR multirate filterbank such that all analysis
filters have good filter properties, i.e., with good passband and stopband
attenuation properties. What one can do is to use the factorizations (A.3.2)
and (A.3.3) to parameterize these analysis filters and then formulate the
minimization problem for the parameters:

M-1
min H,.(e)dw. A34
Z /mth s‘copband| ) ( )

m=0

For design examples, see [142, 126].

A.4 DFT and Cosine Modulated Filterbanks

In Section A.3, we have studied general M-channel maximally decimated
multirate filterbanks, where the Fourier spectra of M analysis filters may
not necessarily have the same shape. In many applications, such as FDMA
communication systems, it is however quite often that all M analysis filters
are derived from a single prototype filter and therefore have the same shape
of their Fourier spectra. The advantage of such systems is the implementa-
tion simplicity. In this section, we introduce two kinds of such filterbanks.
One is the discrete Fourier transform (DFT) filterbank, where analysis fil-
ters are single-sided shifts of a prototype filter in the frequency domain
(or exponential modulation). The other is the cosine modulated filterbank,
where analysis filters are double-sided shifts of a prototype filter.

A.4.1 DFT Filterbanks

DFT filterbanks form a class of the simplest multirate filterbanks, where
all analysis filters are shifted from a single prototype filter in the frequency
domain. The question then becomes when DFT filterbanks are PR. To
study this question, let us formulate the analysis filters. Let

L1
P(z) =) p(n)z"",

n=0

be an FIR filter with length L, which is usually a good lowpass filter. The
M analysis filters are
L-1
Hn(z) = P(zWip) = Y _ pm)Wy™"2z™", 0<m<M-1, (A4l

n=0
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where their Fourier spectra are illustrated in Fig.A.5. Notice that M anal-
ysis filter coefficients h,,,(n) = W;;""p(n) are no longer real even when the
prototype filter coefficients p(n) are real.

Let P(z), 0 <! < M —1, be the Type 1 polyphase components of the
prototype filter P(z) with total M components. Then it is not hard to see
that the polyphase matrix of the analysis bank H,(2),0 <m <M —-1,in
(A4d.1) is

E(2) = W}, diag(P(2), Pi(2),- - , Pr-1(2)),

which is shown in Fig.A.10 with P(z) =diag(Ps(z), Pr(2)," - , Pm-1(2)).

x(n) x(n)
M M =

P(z) Wy

Y

Y
]
Y

z-1
1 B, _(z) — - L

analysis bank analysis bank

Lt Bt B

-

Figure A.10: DFT analysis bank.

By the study in Section A.2, it is clear that the DFT filterbanks are PR
if and only if

Po(z) =cmz ™™, ¢m #0,0<m <M ~1, for some integer n,,

or
M-1
P(z)= > emz MmN ¢, 0. (A4.2)
m=0

The paraunitariness of the above DFT filterbank forces |¢,n| = ¢ # 0 for
all 0 < m < M — 1, which is basically equivalent to the DFT. When
P,(z) = 1/VM for 0 < m < M — 1, the DFT filterbank is precisely
reduced to the DFT as shown in Fig.A.11, which is the reason for the name
of the DFT filterbanks.

One can see that the condition on the prototype filter P(z) in (A.4.2)
for the PR property is very restrictive and usually limits‘their applications.
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x(n) |
Mﬂ—»
z-1
M+ -
1 1 4

= =W
\l—l\TWM .l .

'
!

K2
'
v

L
[} : .
z1
Mﬁ+-4-> " —I-'N[+
£(n)
analysis bank synthesis bank

Figure A.11: DFT (analysis bank) and IDFT (synthesis bank).

There are three ways to get around this condition. The first one, which is
also the most intuitive, is to design P(z) with excellent lowpass property.
Then the DFT filterbank is almost PR because the whole frequency band
is almost divided with a wall-cut manner by M analysis filters. The second
way is to use nonmaximally decimated DFT filterbanks, i.e., the decimation
factor is less than the number of channels (or users), which corresponds to
oversampled short-time Fourier transforms or discrete Gabor transforms,
see for example, [106, 156, 109]. The third way is to use double-sided
shifts instead of the single-sided shifts as in (A.4.2), which leads to cosine
modulated filterbanks as we shall see in the next subsection.

A.4.2 Cosine Modulated Filterbanks

The DFT filterbanks in Section A.4.1 have two disadvantages. One is that
analysis filter coefficients are complex-valued and the other is that the PR
condition is too restrictive. We now want to use double-sided shifts or cosine
modulations to construct M analysis filters with real coefficients and better
filter properties in PR multirate banks.

Let P(z) be a prototype filter with length L as before. Let

Um(2) = P(zWF%%) and Vin(2) = P(zW;,5" ), 0<m < M -1,
andfor 0<m< M -1,

L-1
Hin(2) = amUn(2) + a5 Vin(2) = 3 2 real(am Wyt )p(n)z .

n=0
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This tells us that the analysis filter coefficients are all real. Furthermore,

let -
am_W(m+05)(L /2+(-1)"n/4

Then the analysis filter coefficients are

I (m+05)(n - == 13" ] . (A4.3)

hm(n) = 2cos [M

The corresponding synthesis filter coefficients are
fm(n) = 2cos [M(m +0.5)(n — —) - 1’51 ] . (A.4.4)

From these filters, one can see why they are called cosine modulated fil-
terbanks. We now present a necessary and sufficient condition for the PR
property, which was obtained in [73]. For details, see [142].

Theorem A.7 Let Pi(z), 0 <1 <2M — 1, be the Type 1 polyphase com-
ponents of a prototype filter P(z) of length L with 2M total components.
If L = 2KM + 1 for some positive integer K and M analysis filters and
synthesis filters are defined in (A.4.3) and (A.4.4), respectively, then the
cosine modulated filterbank is paraunitary if and only if

Pr(2)Pr(2) + Pra st (2) P (2) =, 0<m < M -1, (A.4.5)
for a constant o > 0.

This theorem suggests the following method to construct paraunitary
cosine modulated filterbanks. Define

Prym(2)

Qm(z) = [ (z) ] m=0,1,2,..,M—1,
then condition (A.4.5) is equivalent to

Qn(2)Qm(2) =, m=0,1,2,... M -1,

i.e., all Qn,(2) are 2 x 1 paraunitary matrix polynomials. They have been
completely characterized in Section A.3.2 and the factorization in Theorem
A.6 can be used to construct optimal cosine modulated filterbanks similar
to those studied in Section A.3.3. For design examples, see [142].
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trellis coded modulation, 51
trellis codes, 50
trellis diagram, 10
trellis error diagram, 52
trellis precoding, 2
turbo codes, 122
turbo coding, 94
turbo decoder, 123
turbo encoder, 123
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