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B ig data has become a hot topic dur-
ing the last few years. But at times, 
its meaning has been quite confus-

ing. I hope that through sharing my 
thoughts in this article, we can have a 
better understanding of what big data is.

Whenever you see data, you may 
think that it is related to numbers and 
counting. In fact, today, data is more 
general than numbers. However, when 
data are input in computers, they be-
come bits and/or numbers. 

So, what is big data? When was 
it started? Where will it lead? These 
questions may have different answers 
to different readers. To me, trained in 
mathematics as a signal processing pro-
fessor in an electrical engineering de-
partment, data is quite natural, and so in 
this article, I provide my answers to the 
aforementioned questions.

First of all, what is big data? Unfor-
tunately, there is no precise mathemati-
cal definition for this concept. Big data 
or small data is relative. To see what big 
data is, let us first look at what small 
data is. Each person in my family, which 
consists of four people, eats two apples 
per day. Therefore, my family eats eight 
apples per day. This is small data and is 
accurate. What is next? For example, my 
whole family, including all relatives, eats 
400 apples per day. My neighbor’s whole 
family, including all of their relatives, 
eats 500 apples per day. Then, the total 
number of apples these two families 

eat will be no more than 900 apples per 
day. You might want to ask why it is not 
exactly the sum, i.e., 900, of the 400 and 
500 apples. The reason is that these two 
families may have some members in 
common and some of them from one 
family may be married to another in the 
other family. In this case, the total count 
may not be accurate, but you can have an 
accurate upper bound. Is this small data 
or something else? I would like to think 
of it as mid data. 

Next, it comes to the number of apples 
consumed in the world. How many 
apples do the people 
on the earth eat per 
day? To find out, one 
might say, let us make 
a table of the numbers 
of apples eaten per day 
for every country. It is 
approximately 300 
million for the United 
States, 300  million 
for Japan, etc. Oops, 
how many apples do 
the people eat in North 
Korea per day? Unfor-
tunately, there is no trustworthy data avail-
able. So, what do we do? Can we still count 
the numbers of apples consumed per day 
for the whole world? No, but we may use 
some colors to mark the levels of the num-
bers for all of the countries on a map. In this 
case, I would consider it big data, i.e., it is so 
big that no one can even estimate its volume 
but can only get some high-level indices.

In mathematics, there are mainly 
three subjects: algebra, e.g., high school 

algebra and abstract algebra; analysis, 
e.g., real analysis and functional analysis; 
and topology and geometry, e.g., alge-
braic topology and differential geometry. 
In my opinion, all of these subjects are 
about counting and calculation, which is, 
of course, all that mathematics is about. 
In algebra, you can count exactly. In 
analysis, you may not be able to count 
exactly but roughly or just estimate. You 
might want to ask, where are probability 
and statistics? They belong to analysis 
since they belong to measure theory, 
which belongs to real analysis. In topol-

ogy, you are not able 
to count the whole 
thing, but one still 
wants to count. In 
this case, what can 
be done? You can 
think of the whole 
thing as consisting 
of several pieces and 
then just count for the 
number of pieces. The 
real question is: what 
is a piece, and what is 
topology and geom-

etry about? It is a kind of index that you 
may get in the limiting case. If I am asked 
to make an analogy between mathematics 
and data classification, I would say that 
algebra corresponds to small data, analy-
sis corresponds to mid data, and topology/
geometry corresponds to big data.

Small data and algebra
As discussed previously, mathematics 
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fact, calculation is a type of counting. In 
many calculations, finding the solutions 
of equations is always one of the most 
important tasks. Among finding the 
solutions of equations, finding the roots 
of polynomials is probably the most 
important. The fundamental theorem 
of algebra tells us that any nonconstant 
single-variable polynomial has at least 
one complex root, which means that any 
single-variable polynomial equation can 
be solved with possibly complex num-
bers as solutions/roots. We know that 
roots of a polynomial of a degree lower 
than five have closed forms in terms 
of the coefficients of the polynomial. 
However, for a polynomial of a degree 
of five or higher, its roots may not have 
closed forms in terms of its coefficients, 
which was first mathematically proven 
by Galois and is, therefore, called the 
Galois theory. To do so, Galois invented 
the concepts of group, ring, and field, 
which led to modern mathematics. The 
smallest field is the binary field {0, 1}, 
and the largest is the complex field C 
that is the set of all complex numbers. 
The reason why C is the largest field is 
because every polynomial equation over 
the complex field can be solved already 
by the fundamental theorem of alge-
bra. There are many kinds of subfields 
and extended fields, such as algebraic 
number fields, by including, e.g., some 
roots of unity, i.e., ( ),exp 2 j/mr-  for 
some positive integer m, in the middle 
of {0, 1} and C. After the complex field, 
mathematicians generalized C to qua-
ternionic numbers that form, in fact, a 
domain as well as octonionic numbers. 

For example, a quaternionic number 
can be equivalently written as

  ,
x
y

y
x- ) )c m

where x  and y  are two complex num-
bers. With these generalizations, mathe-
maticians found that the most important 
property from all of these structures is 
the norm identity

 x y x y: :=  (1)

for any two elements x  and y  in the 
domain of interest, where the dot stands 
for the multiplication in the domain or 

the real multiplication, and  stands 
for the norm used in the domain. In 
other words, the norm of the product of 
any two elements is equal to the product 
of the norms of the two elements. This 
is clear when x  and y  are two complex 
numbers but is less obvious for other 
cases. A general design satisfying (1), 
as generalizations of complex numbers, 
quaternionic numbers, and octonionic 
numbers, is called compositions of qua-
dratic forms [1]. A , ,k n p6 @ Hermitian 
composition formula is
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where | | stands for the absolute value,  
, ,X x xk1 f= ^ h and , ,Y y yn1 f= ^ h  

are systems of indeterminates, and 
( , )z z X Yi i=  is a bilinear form of X  and 

.Y  As an example, let k n p 2= = =  and 
, .z x y x y z x y x y1 1 1 2 2 2 1 2 2 1= - = +

This corresponds to the following case. 
The product of the absolute values of 
two complex numbers is equal to the 
absolute value of the product of the two 
complex numbers, i.e., if jx x x1 2= +  
and jy y y1 2= +  for real-valued  
, , ,x x y y1 2 1 2  and ,jz z z xy1 2= + =  

then .z xy x y= =  More designs 
on the compositions of quadratic forms 
can be found in [2], which has found 
applications as space-time coding in 
wireless communications with multiple 
transmit antennas.

With this in mind, I would say that 
algebra is with the norm identity, where 
you are able to count precisely (the same 
as the first apple example mentioned pre-
viously), where 2 4 8 2 4$ $= =  and  

,500 400 500 400+ = +  when the 
dot sign in (1) is the real multipli cation 
and the real addition, respectively. This, 
in my opinion, corresponds to small data.

Mid data and analysis
In most cases, the norm identity (1) does 
not hold. Instead, it is the following 
inequality:

 x y x y: :#  (3)

for any two elements x  and y  in a set 
called space. This leads to the concept 

of a norm space, i.e., if there is an opera-
tion  on a set that satisfies (3) for any 
two elements x  and y  in the set, this set 
with some additional scaling property 
is called a norm space. It is the key for 
functional analysis or analysis, includ-
ing measure theory and/or probability 
theory and statistics. In this case, in (3), 
the dot sign is the addition +, and (3) 
is correspondingly called the triangular 
inequality. In my opinion, the differ-
ence between algebra and analysis is the 
difference between the norm equality 
and the norm inequality shown in (1) 
and (3), respectively. It is the same as the 
second apple example mentioned previ-
ously, where
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where the dot sign in (3) corresponds to 
the union of two sets and the real addi-
tion, respectively. I feel that this corre-
sponds to mid data.

Another observation about the above 
norm inequality is that the dot opera-
tion in (3) for two elements x  and y  can 
be thought of as a general operation as 
we have seen above for different cases 
of the dot sign. The norm inequality (3) 
becomes the triangular inequality when 
the dot is +, as mentioned previously. 
When the dot is a true product of two 
elements, such as the matrix multiplica-
tion of two matrices, the inequality (3) 
is the conventional norm inequality. The 
norm inequality (3) becomes the Cau-
chy–Schwarz inequality when the dot is 
the inner product

( ) ( )

( ) ( ) ,

f t g t dt

f t dt g t dt
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where the equality holds if, and only 
if, functions ( )f t  and ( )g t  are lin-
early dependent, i.e., ( ) ( )f t cg t=  or  
( ) ( )g t cf t=  for some constant .c  From 

this observation, almost all inequalities 
can be derived from the norm ineq uality 
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(3). Many fundamental results are 
derived by the Cauchy–Schwarz 
inequality (4), i.e., the norm inequal-
ity. For example, the Cauchy–Schwarz 
inequality leads to the conclusion that 
the optimal linear time-invariant fil-
ter to maximize the output signal-to-
noise ratio is, and only is, the filter that 
matches to the signal, i.e., the matched 
filter. It  has been extensively used in 
radar and communications. Another 
application of the Cauchy–Schwarz 
inequality is the proof of the Heisen-
berg uncertainty principle (HUP). It 
says that the product of the time width 
and the bandwidth is lower bounded 
by one half, and the lower bound is 
reached if, and only if, the signal is 
Gaussian, i.e., ( )expa b t2-  for some 
constant a  and some positive constant 

.b  As a simple consequence of the 
HUP, one is not able to design a signal 
that has an infinitely small time width 
and infinitely small bandwidth simul-
taneously. Otherwise, a person would 
be able to design as many orthogonal 
signals as possible in any finitely lim-
ited area of time and frequency, i.e., it 
would have infinite capacity for com-
munications over any finite bandwidth 
channel. One can see that both results 
have played key roles in science and 
engineering in recent history.

Big data and topology
When a person sees several large 
groups of fish moving in the ocean (see 

h t t p : / /c i r . i n s t i t u t e /c o l l e c t ive -
intelligence) or large groups of birds 
flying in the sky (see http://becausebirds 
.com/2014/07/29/how-do-bird-f locks-
work), he or she may not be able to 
count exactly or estimate approxi-
mately how many fish or birds are 
there. One may just 
count how many 
disconnected groups 
of fish. If a person 
treats each group as 
a visible hole of the 
ocean, it is the con-
cept of genus, i.e., 
one of the key concepts in topology, 
where the number of holes (or fish 
groups in this case) in an object (i.e., the 
ocean) is the genus of the object. More 
precisely, the genus of a connected, ori-
entable surface is an integer represent-
ing the maximum number of cuttings 
along nonintersecting, closed simple curves 
without rendering the resultant mani-
fold disconnec ted [4]. In the aforemen-
tioned definition, cutting is understood as 
the conventional cutting by a knife. Some 
simple examples are shown in Figure 1. 
Another simple, but more mathemati-
cal, way to understand it is as follows. 
If any loop (i.e., a simple closed curve) 
on a surface (a solid object, such as a 
solid ball), such as the sphere shown  
in Figure 1(a), can be continuously (on 
the surface or inside the solid object) 
contracted/tightened (also called con-
tinuously transformed) to a point on the 

surface, then the surface has genus 0. 
For the torus shown in Figure 1(b), it is 
impossible to do so because, if one picks 
up a simple loop around the hole, this 
loop cannot be continuously contracted 
to any point on the surface. However, if 
the torus is cut in the middle with one 
cut, as shown in Figure 1(b) [note that 
there are two cuts total shown in Fig-
ure 1(b)], then it is not possible to have a 
loop around any hole; thus, any simple 
loop can be continuously contracted on 
the surface to a point. In this case, the 
torus has genus 1, i.e., one and only one 
cut is used/needed to do so. As shown 
in Figure 1, genus is a topologically 
invariant variable in the sense that 
two shapes may look totally different, 
but they have the same genus, where 
the objects in the first row have zero, 
one, and two holes, and are topologi-
cally equivalent to those in the second 
row, respectively.

A possible application of the afore-
mentioned concept of genus in topology 
would be in the current investigations of 

big data representa-
tion that plays an 
important role in big 
data analysis. One 
efficient way to repre-
sent big data is to use 
a proper tensor [5]. 
When big data is too 

big and its tensor representation is prop-
erly used, it may be treated as a multidi-
mensional massive object. In this case, its 
topological properties, such as genus, may 
become simple but is an important feature.

As we have discussed previously, 
when an object is too complicated or 
too massive, the indices and/or the 
topologically invariant variables such 
as the genus, i.e., the number of holes 
and/or disconnected pieces, come to 
the picture. These topologically invari-
ant variables may be obtained by tak-
ing a limit when some parameters go to 
infinity, which may smooth out all the 
uncertainties or unknowns caused by 
the massiveness and make the calcu-
lations possible. In other words, tak-
ing a limit may simplify the calculation. 
One simple example is the calculation of 
the integration of a Gaussian function. 
For any finite real values a  and b  and 

(b) (c)(a)

Figure 1. The genus of an object; (a) genus 0, (b) genus 1, and (c) genus 2.

What is big data? there is 
no precise mathematical 
definition for this concept. 
Big data or small data  
is relative.
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a positive constant , e dtt

a

b 2

a a-#  does 
not have a simple closed form while 

e dtt2

3

3 a-

-
#  does. Another example is 

the diversity and multiplexing tradeoff 
(DMT) obtained by Zheng and Tse 
[3] for multiple-input, multiple-output 
(MIMO) antenna systems in wireless 
communications, which becomes a nec-
essary parameter in 
designing a MIMO 
wireless communi-
cation system. Let 
R be the transmis-
sion rate in bits/sec-
ond/hertz. Let r  be 
the normalized rate  

/ ( ),logr R SNR=  
where SNR  stands for signal-to-noise 
ratio and  is the channel SNR.  When 
SNR  is huge, one may expect that R  is 
huge as well by Shannon’s channel capac-
ity formula that is about ( ),log SNR  i.e., 
massive data (or big data) can be trans-
mitted through the channel. In this case, 
counting R  may be not possible, while 
counting r  becomes more reasonable, 
where r  is called the multiplexing gain. 
Let Pe  be the error probability at the 
receiver of a MIMO modulation scheme 
with transmission rate .R  Let

 ( )
( )
( )

.lim
log
log

d r
P

SNR
e

SNR
= -

"3
 (5)

Then, ( )d r  is the index of the negative 
exponential of the error probability Pe  
and called the diversity gain.

 ,P SNR ( )
e

d r. -  (6)

when SNR  is large enough. Zheng and 
Tse [3] obtained the following well-
known DMT:

) ( ) ( ),(d r m r n r= - -

where m  and n are the numbers of trans-
mit and receive antennas, respectively. 

One can see that both 
r  and ( )d r  are sort 
of indices, and they 
are only meaningful 
when SNR  approach-
es infinity, i.e., in a 
massive transmission 
rate case or big data 
case. This is the case 

when it is impossible to count one ele-
ment by one element for a massive data, 
and one needs to sort out its index, such as 
exponentials and/or genus, in some way 
to describe and/or extract features from 
the massive/big data. I think this belongs 
to topology in mathematics. Thus, in my 
opinion, topology in mathematics corre-
sponds to big data, where it is impossible 
or not necessary to count one element by 
one element.

Summary and discussion
In summary, I consider that small data 
corresponds to algebra, mid data corre-
sponds to analysis, and big data corre-
sponds to topology in mathematics. Was 
big data started when it was named? 
Of course not. Big data has existed for 
a long time, as massive groups of fish 
move in the ocean, massive groups of 

birds fly in the sky, and/or a massive 
number of people on the ground travel 
around the world. Today, massive bits 
are transmitted through both wired and 
wireless channels called the Internet. 
The key is how to get some indices, 
trends, or patterns from these massive 
data and/or how to find a needle in the 
ocean. What will big data lead to tomor-
row? Or, how deep can we go toward 
infinity tomorrow? Or, how fast will a 
computer be tomorrow?
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errata

Reference [8] in the “SP Education” 
column of the November 2016 issue 
of IEEE Signal Processing Maga-

zine [1] was published missing a URL. 

We apologize for any confusion this may 
have caused. The corrected reference is 
shown in [2]. 
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