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Fig. 1. Uniform pdf. 

PROOF 
relative position and relative speed are uniformly 
distributed between 0 to 60 km and -40 to 40 d s ,  
respectively. Let us derive the variance of uniform 
distributed variable. The uniform probability density 
function (pdf) is defined by [2] 

The authors [l] assumed that both the target 

= 0 otherwise 

for real constants -m < a < 00 and b > a. Fig. 1 
illustrates the behavior of the above function. 

D: = E[E2] -c’ 
= i,” t2 (’> d[  - t2 

b - a  

- 
( b - U )  b3 -a3  3 (”;”)‘ - 

( b  - - -- 
12 . 

In case of relative range, x component b = 60sinpo, 
n = 0 and y component b = 60c0sp0, a = 0. Hence 

60 sin 2 -  (60 cos 
12 ’ ORY - 12 * 

02 = ( 
R* 

In case of relative speed, a = -40 b = 40 

(40 +40)2 802 - _  
12 - 12 ,Tix = 2 = 
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Doppler Ambiguity Resolution Using Optimal 
Multiple Pulse Repetition Frequencies 

Ferrari, B&enguer, and Alengrin recently proposed an 
algorithm for velocity ambiguity resolution in coherent pulsed 

Doppler radar using multiple pulse repetition frequencies (PRFs). 
In this algorithm, two step estimations (folded frequency and 

ambiguity order) for the Doppler frequency is used by choosing 
particular PRF values. The folded frequency is the fractional part 
of the Doppler frequency and is estimated by averaging the folded 
frequency estimates for each PRF. The ambiguity order is the 
integer part of the Doppler frequency and is estimated by using 
the quasi-maximum-likelihood criterion. The PRF are grouped 
into pairs and each pair PRF’ values are symmetric about 1. The 

folded frequency estimate for each pair is the circular mean of the 

two folded frequency estimates of the pair due to the symmetry 

property. 
We propose a new algorithm based on the optimal choice 

of the PRF values, where the PRF values are also grouped into 
pairs. In each pair PRF values, one is given and the other is 
optimally chosen. The optimality is built upon the minimal 
sidelobes of the maximum likelihood criterion. Numerical 
simulations are presented to illustrate the improved performance. 

I. INTRODUCTION 

Multiple pulse repetition frequency (PRF) is 
commonly used in modern-day radars for the velocity 
ambiguity resolution in coherent pulsed Doppler 
radars, see for example [1-4]. In this approach, the 
conventional method for achieving the ambiguity 
resolution is to search for the coincidence between 
unfolded Doppler frequency estimates for each 
PRF, see for example [2-4]. Since the Doppler 
frequency may take all possible real values in a 
range and infinite many trials are needed for all 
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Fig. 1. Multiple PRF waveform. 
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the possibilities of the Doppler frequency, it maybe 
impossible to have an exact match. Thus, estimation 
errors usually occur. Based on this observation, a 
two step estimation algorithm has been proposed in 
[ l ]  by Ferrari, Birenguer, and Alengrin. The basic 
idea for the two step estimation is the following. 
The Doppler frequency is decomposed into two 
parts: the folded part, Le., the fractional part modulo 
1, and the ambiguity order part, i.e., the integer 
part. By grouping the PRFs into pairs where each 
pair is symmetric about 1, the folded part is the 
“circular mean” [5] of the folded estimates of the pair 
PRFs. This circular averaging is the first step of the 
algorithm in [ 11. After the folded part is estimated, 
the second step is to find the match of the ambiguity 
order. By noticing that the ambiguity order takes 
integer values, there are only finite many possible 
trials needed ranging from the minimal and the 
maximal possible ambiguity orders. Therefore, the 
exact estimation of the Doppler frequency becomes 
possible with the two step estimation. Note that the 
key of this method is to convert the infinite many trials 
to the finite many trials, by converting a general real 
number matching to an integer matching. 

The motivation for this paper is as follows. Since 
the specific PRF pairs, which are symmetric about 
1, are needed in the Ferrari-B6renguer-Alengrin 
approach, it may reduce the detectability of using the 
maximum likelihood criterion to detect the peak or 
the match. It is because the sidelobes of the maximum 
likelihood function with the specific PRFs may not 
be as low as the one with other PRFs. The motivation 
of this work is to relax the above PRF condition in 
the following way: one of each pair PRFs is fixed and 
the other of the pair is optimally determined based 
on the lowest sidelobes of the maximum likelihood 
function. With this relaxization, the “circular mean” 
estimation of the folded frequency may not be as good 
as the one in [ 11. We propose an alternative approach 
to achieve the folded frequency estimation as follows. 
We first take the conventional mean of the folded 

frequency estimates in each pair. The true folded 
frequency falls in a finite number of possibilities from 
the conventional mean. These finite possibilities of 
the folded frequency can be obtained when the PRF 
pairs are known. Since the ambiguity order has also 
finite possibilities, the overall folded frequency and 
the ambiguity order have finite possibilities. This 
suggests us to estimate both the folded frequency 
and the ambiguity order simultaneously based on 
the maximum likelihood criterion. What is gained 
here is the detectability improvement of the Doppler 
frequency while the penalty is the increase of the 
computational complexity with a multiple of the 
one in [l] due to more possibilities to search for the 
folded frequency. , 

This paper is organized as follows. In Section 11, 
we briefly review the Ferrari-Bkrenguer-Alengrin 
approach proposed in [ 11. In Section 111, we 
study the optimal PRF method. In Section IV, we 
present numerical examples which outperform the 
Ferrari-Bkrenguer-Alengrin method. 

I I. THE FERRARI-BERENCU ER-ALENCRIN TWO 
STEP ESTIMATION METHOD 

First of all, we briefly describe the problem. Let 
radar transmit 2Nb bursts of n, pulses, where the PRF 
of the kth burst is assumed Fr(k) ,  1 5 k 5 2Nb. The 
time difference between two pulses in the kth burst is 
Tr(k)  = l / F r ( k ) .  It is assumed that the elapsed time 
between the last pulse of the kth burst and the first 
one of the ( k  + 1)th burst is Tr(k).  The time delays 
Tr(k)  are assumed as 

where N ( l ) , N ( 2 ) ,  . . . ,N(2Nb) are integers and Tr  is 
usually assumed as 1 for simplicity. The multiple PRF 
waveform is shown in Fig. 1. 

After coherent demodulation, the received data 
at the nth sample, 0 5 n 5 n, - 1, in the kth burst, 
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Let 1 5 k 5 2Nb, becomes 

yk(n) = x k ( n )  + b k ( n )  = ak( , fD>exp( j2 - r r fDnTr (k ) )  + bk(n) 

(2) 

where ,fD is the unknown Doppler frequency, bk(n) 
is white noise from the contribution of both thermal 
noise and clutter whitened residue, and uk(fD) contains 
the initial phase of the target signal on the kth burst. If 
a,&) = A, then we have 

k-1 

q<fD) = Aexp j2-rrn,fD x T r ( g )  , k 2 2. 

(3) 
i q=l 1 

Then the ambiguity resolution problem is to estimate 
the Doppler frequency fD from the noisy data yk(n)  in 
(2). It is usually assumed that fD is in a certain range, 
Le., I , f l  5 f,,,. The conventional detection method is 
the following maximum likelihood estimation. Find 
fa that maximizes the following maximum likelihood 
function 

L ( f >  = 

i.e., 

where u k ( f )  takes the form ( 3 )  with f D  replaced by 
f and l f D l  5 f,,,. This is a matching process and f 
needs to run all real numbers from -f,,, to f,,,. 
Clearly, it has infinite many trials and therefore is 
impossible to have an exact match. 

In [ 11, Ferrari-B6renguer-Alengrin proposed an 
alternative two step approach for the above problem 
without implementing infinite many trials, where 
particular N(k) in (1) were used. We next want to 
briefly describe this two step approach. 

Let N ( 2 p  + 1) be a positive integer and set 

N(2p + 2) = -N(2p + I), for p = 0, I , . .  .,Nb - 1. 

(5  1 
The Doppler frequency fD is decomposed into its 
integer part (the ambiguity order) n, and fractional 
part (the folded or reduced frequency) f ,  as 

f D  = f ,  + n, with 0 5 f ,  < 1. (6) 

Then (2) becomes 

O L n < n , - 1 .  (7) 

If fk could be obtained from yk(n), 0 5 n 5 n, - 1, 
in (7), by using N(2p + 2) = -N(2p + 1) in ( 5 ) ,  the 
reduced frequency f, would be 

From y,(n) in (7) what we can get for fk is, however, 
its folded version f k ,  i.e., 

fk = fk + 1, I is an unknown integer and 0 5 fk < 1. 

(10) 

In this case, the_ reduced frequency f ,  cannot be 
o_btained_from fk by simply taking their mean as 
(hp+l + .fZP+2)/2. However, when 

l h p + l  - h p + 2 1  < 0.5 (1 1) 

the reduced frequency f ,  can be recovered from fk by 
taking the “circular mean” [5]  as 

where angle(z) is the phase angle in radians in [0,2n) 
of the complex number z. With total Nb pairs of f k ,  the 
overall estimate of the reduced frequency f ,  is 

Nh-1 

When the Doppler frequency f in (4) is split into 
its reduced frequency part f (without confusion in 
understanding we also use f to denote the reduced 
frequency) and its ambiguity order part n, the 
maximum likelihood function in (4) can be written 
as 

1 k=l m=O 

12 . exp(- j27r(f + n)mTr(k)) 

(14) 
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where ak( f , r z )  corresponds to the term a k ( f )  in ( 4 )  
and can be expressed as 

( f , n >  = exp(j2T. fns2p)  (15)  

After the reduced frequency f ,  is estimated as in (1 3) ,  
the maximum likelihood function L ( f , n )  for both f 
and n is reduced to the one for the ambiguity order n 
only: 

L(n) ~ ( 1 ,  n)  

n,-1 

CYk(Yn)eXp(-j2nS,YY1Ti(k)) 
m=O 

where n ranges all integers from -nmaX to nmax and 
nmaX is the maximum ambiguity order corresponding 
to the maximum Doppler frequency f,,,. Thus, the 
searching of the Doppler frequency f D  from all the 
real numbers I f /  5 f,, to maximize L ( f )  in ( 4 )  
becomes the searching of the ambiguity order n 
from all integers In( 5 n,,, to maximize L(n) in (17). 
Note that there are only finite many possibilities of 
n, which makes the exact coincidence of the true 
ambiguity order possible. Let k, denote the optimal 
ambiguity order estimate from L(n) in (17). Then the 
final Doppler frequency estimate is 

ja=f;+k,. (18) 

The reason for choosing N ( k )  as integers in the 
whole approach is to use the discrete Fourier 
transform (DFT) calculations in (17) for the maximum 
likelihood function evaluations. For more details on 
the implementation issue, see [ 11. 

Bkrenguer-Alengrin two step estimation method. We 
call it FBA method. It is built upon the assumption ( 5 )  
and the condition (1 1) .  Condition (1 1) guarantees the 
accurate reduced frequency estimation and leads to the 
following condition on N ( k ) :  

The above is the main idea for the Ferrari- 

where ~ l , , ~  is the maximum ambiguity order. Clearly, 
when n,, is large, IN@)/ needs to be large. Large 
lN(k)I may increase ambiguity order errors as 
mentioned in [ 11. One way to relax the condition 
(11) or (19) is as follows, which also serves as a 
foundation for the optimal multiple PRF discussed 
latter. 

Assume 

In this case, although the circular mean (12)  may not 
be equal to the reduced frequency f ,  in (8), f ,  takes 
one of the following five values: 

where f , ( p )  is the conventional mean, f,(p) = 
( f 2 p + l  + f2p+2)/2,  and fk are obtained from (7) 
and (10). It is because the unknown parameter 1 in 
(10) may only take 0, -1 or 1, when the condition 
(20)  holds and 0 5 f ,  < 1 .  Thus, when Nb = 1 ,  the 
estimation o f f ,  and nr become the search of the 
optimal i ( p )  and 2, in the maximum likelehood 
function L( f , ,  n)  in (14) among 

f ,  E S ( p )  %r(P)>7r(P) - 0.5>J;,(P) + 0.5, 

f , ( p )  - 1>7m + 1) 
- 

(22)  

and In1 5 n,,,: 

which also has only finite comparisons. 

take the advantage of this multiplicity. One is to 
:&e the circular mean of all the above estimated 
f , ( p )  as in (13). The other is to search the optimal 
f among all possible elements in the sets S ( p )  for 

When Nb > 1 ,  there are at least two methods to 

p = O,l ,  ..., Nb - 1 :  

where 
Nh-1 

s = u S ( p ) .  
p=o 

Note that the condition (20)  can be further relaxed by 
allowing more possibilities for the reduced frequency 
f ,  from the mean f,. Thus, the size of N ( k )  can 
basically be arbitrary. The detection method in 
(20)-(24) is called modijied FBA method. On the other 
hand, the condition (5 )  may cause high sidelobes of 
the maximum likelihood function L(f , ,n)  in (14) and 
therefore reduce the performance when additive white 
noise b,(n) in (2) is significant. The goal of the rest of 
this paper is to relax the condition ( 5 )  and search for 
the optimal linear relationship between N ( 2 p  + 1) and 
N ( 2 p  + 2 )  instead of N ( 2 p  + 2)  = -N(2p + 1). 

It should be mentioned that another difference 
between the FBA method and the above modified 
FBA method is the following. In the FBA method, 
the angular mean is taken over the Nb bursts as shown 
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in (13), while, in the modified FBA method, the 
multiplicity of the bursts gives more possibilities to 
search for the correct folded frequency. The angular 
mean may reduce the error variance of the reduced 
frequency, while the more possibilities of the search 
may provide more accurate estimate of the reduced 
frequency. However, the latter one clearly causes more 
computations. 

Ill. OPTIMAL MULTIPLE PRF A N D  DOPPLER 
F REQU EN CY DETECT1 ON 

In this section, we use the same signal model as 
described in Section 11, where the assumption (5) is 
relaxed as 

N(2p + 2) = -cupN(2p + l), 

for p = 0,1, ..., N6 - 1 (25) 

where N(2p + 1) are positive integers and ap are 
positive real parameters. The goal of the rest of this 
paper is to optimally determine the parameters cyp  

g i v e n N ( 2 p + l ) f o r p = O , l ,  ..., N6-1 in te rmsof the  
lowest sidelobes of the maximum likelihood function 

With (25), an analogous formula of (9) for the 
L ( f  3 n). 

reduced frequency is 

(26) 

where f k  are defined in (8). One can see that the 
conventional mean (9) with the property (5) becomes 
the conventional weighted mean (26) with the 
property (25). The circular mean in (12), however, 
cannot be generalized to the general setting of the 
parameters ap. In other words, the reduced frequency 
f ,  can not be obtained as in the FBA method from 
the estimated individual f k  in (8), (lo), and (25) 
with general parameters ap unless ap = 1 using the 
periodogram method. Fortunately, the argument in 
(20)-(24) can be generalized as follows. 

(20), i.e., 
Without loss of generality, we assume the property 

N ( 2 p  + 1) > 1 + n,,, and 

0,1,. . . , N6 - 1, let 

When ap = 1, the set S ( p )  in (29) is the same as the 
set S ( p )  in (22). Similar to (21), we have 

Let 

Then the maximum likelihood estimates for the - 
reduced frequency f ,  and the ambiguity order nr are f ,  
and h,. that maximize L ( f , n )  for f E S and In1 5 n,,,, 
].e., 

where L ( f , n )  is similar to (14): 

(33) 

and y,(m) are the demodulated noisy data at the 
receiver: 

exp j 2 7 r z m  +b,(m) (35) ( N;k) ) 
, P = o , 1 ,  ..., Nb-1. where f D  = f, + nr is the unknown Doppler frequency 

and b,(m) are additive-white noise. The final Doppler 
frequency estimate is f, = 5 + iir. 

The performance of the above detection method 
depends on the property of the maximum likelihood 
function L( f ,n ) .  The lower sidelobes of L(f,n) 
are, the better performance of the detection is. The 
sidelobes depend on the choice of the parameters ap 
in (35), when N ( 2 p  + 1) are given. We next want to 
discuss the optimal choice of these parameters. 

1 + nmax I" + 111 > ___ 
Q P  

(27) 
Let 

I - 
p = 0,1,..., N6 - 1 

(28) 
where f k  are obtained from (7), (8), and (10) 
with N(k) satisfying (25) instead of (5) .  For p = 
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By substituting (34)-(35) into (33), we have 

n - n  
sin (m, [ ( f r  - f ) ~ r ( k )  

Clearly, the mainlobe value of the above maximum 
likelihood function is its value when f = f, and 
n = n,: 

L( f , ,nr )  = IAI22N,n,. (37)  

Since f ,  E S ( p ) ,  the offset value f ,  - f in (36) may 
only take the values in the following set, when f E S 
defined in (30): 

f l  f 2  Itap 
1 + ap' 1 + a p 7  1 + a p '  Soffset = /J f 1, *2, ___ ___ - 

A ;'i p = o  

*2a, &( 1 - a,) f 2 (  1 - a,) 
l + a p '  1 + a ,  ' 1 + a ,  ' 

It( 1 f 2a,) &(2 i a,) 
1 + a ,  ' 1 + a ,  }. (38) 

The offset value n, - n is in the set 
{ f l , f 2 ,  . . . , f2nnlax}. 

Let Esidelobe(~O, a l , .  . . , denote the total 
energy of all the sidelobe values of the maximum 
likelihood function L(f,n) in (36). Then, by 
normalizing A = 1 it can be expressed by 

where N(2p + 2) = -apN(2p  + l ) ,  p = 0,1,. . . ,Nb - I ,  
and Soffset is defined in (38). Given N ( 2 p  + l ) ,  p = 

0,1,. . . , Nb - 1, and nmax, the optimal parameters &,, 
p = 0,1,. . . , Nb - 1, can be obtained by minimizing 
the cost function Esldelobe(aO, ol , .  . . , aNbP1) in (39) for 
6, > 0, i.e., 

where, by (27),  
1 + nmax a =  

p N ( 2 p  + 1)' 

One may see that an explicit solution for the optimal 
ap is not possible. However, any existing optimization 
methods work for the above problem. 

case, 
Let us consider the simpliest case, Nb = 1. In this 

i l  f 2  Itao f 1 , f 2 ,  - - - 
1 + aO' 1 + aO' 1 + a,,' 

i2a,, *( 1 - ao) f2( 1 - ao) 
1+a,' l + w o  ' l + a o  ' 

*(l It 2a0) It(2 It CYo) 
(41) l + a o  ' 1+Q0 

and 

(42) 
Let us see some numerical examples of 

Esidelobe(ao). Consider N ( 1 )  = 40 and n, = 12. Figs. 2, 
3, and 4 show the Esidelobe(aO) versus a. when nmax = 
3, 5, and 12, respectively. One can see that the optimal 
a0 strongly depends on the maximal ambiguity order 
nmax, where the optimal a,, are h0 = 0.57, 1.85, and 
2.01 for nmax = 3, 5,  and 12, respectively. 

IV. NUMERICAL EXPERIMENTS 

In this section, we present numerical examples 
to compare the performances for the modified FBA 
method and the method with optimized PRFs 
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36.5 

Fig. 2. Esidelobe(~O) when N(1) = 40, n,r = 12, and nmaX = 3 .  Optimal i?e0 = 0.57. 

41.5 1 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
37.5 

parameter .ph.o 

Fi :. 3 .  Esidelobe(aO) when N(1) = 40, ns = 12, and nm, = 5.  Optimal &o = 1.85. 

proposed in this work. The following parameters are 
used in our simulations: N( l )  = 40, Nb = 1, n, = 12, 
and N(2) = -aoN( l ) ,  where a0 = 1 for FBA method 
and 01, the optimal Go for the method proposed in this 
work. The additive noise b,(n) in the known noisy 
radar data y,(n) in (2) is assumed white Gaussian 
noise with mean 0 and variance g2. As mentioned at 
the end of Section 111, the optimal Q~ depends on the 
maximal ambiguity order amax. Two different n,,, 
are tested: amax = 3 and 12. Let M be the number 
of signal realizations. Let , fD(k )  be the true Doppler 
frequency and , jD(k)  be the estimated one at the kth 
signal realization. Then the mean squared error (MSE) 
is calculated as 

(43) E,"=, Ifa(W -S,(k)l2 
M 

MSE = 

The signal-to-noise ratio (SNR) for the additive 
Gaussian noise is calculated by SNR = A2/cr2, where 
A is the transmitted signal amplitude. 

When n,, = 3 and N(l)  = -N(2) = 40 > 4(1 + 3) 
= 16, i.e., the condition (19) or (11) holds for the 
accurate circular mean formula (12). The FBA method 
works in this case although the parameter Q = 1 
is not optimal in terms of the sidelobe values of 
the maximum likelihood function Esldelobe(a,). The 
optimal parameter 0, in this case is &, = 0.57 as 
studied in Section 111. When cy0 = 0.57, clearly the 
number N ( 2 )  = -u,,N(l) = 22.8 is not an integer. For 
the DFT computation purpose, rounding Q = 0.57 to 
a. = 0.6 may be needed for N(2) to be an integer. 
When a, = 0.6, N ( 2 )  = -24. As mentioned in Section 
111, when cy, # 1, the accurate circular mean no longer 
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Fig. 4. Eside,obe(ao) when N(l) = 40, ns = 12, and nm, = 12. Optimal Go = 2.01. 
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Fig. 5. Comparison of reciprocal MSE of Doppler frequency estimations: FBA method and modified FBA method with optimal PRFs 
(or cyo). Solid line: modified FBA method with optimal a. = 0.57; dashdot line: modified FBA method with rounded optimal a. = 0.6; 

dashed line: FBA method. N(1)  = 40, nr = 12, maximal ambiguity order nm, = 3. 

holds. In this case, we use the modified FBA method 
for the Doppler frequency detection. 20,000 Monte 
Carlo tests are implemented, i.e., M = 20,000 in (43) 
Three curves are plotted in Fig. 5 for the reciprocal 
MSE, UMSE, of the Doppler frequency estimations. 
The solid line is for the modified FBA method with 
the optimal Q = 0.57; the dashdot iine is for the 
modified FBA method with the rounded aO, 0.6; the 
dashed line is for the FBA method. A significant 
improvement of the MSE at the transition SNR band 
can be clearly seen. 

the modified FBA method both work. From our 
As a remark, when a. = 1, the FBA method and 

numerous numerical examples, these two methods 
have the same performance in this case. 

When nmax = 12 and N(1) = - N ( 2 )  = 40 < 
4(1 + 12) = 52, i.e., the condition (19) or (1 1) for the 
accurate circular mean formula (12) does not hold. In 
this case, the FBA two step method does not work 
as shown in Fig. 6 and the modified FBA method 
should be used. The optimal parameter a. is Go = 
2.01. 10,000 Monte Carlo tests are implemented, i.e., 
M = 10,000 in (43). Similar to Fig. 5 ,  three curves are 
plotted in Fig. 6 for the reciprocal MSEs. The solid 
line is for the modified FBA method with the optimal 
a. = 2.01. The dashdot line is for the modified FBA 
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modlfied FBA method wlth optimal RPF 
modified FBA method 
FBA method 

sw (de) 
Fig. 6. Comparison of reciprocal MSE of Doppler frequency estimations: FBA method, modified FBA method, and modified FBA 
method with optimal PRFs (or ao). Solid line: modified FBA method with optimal a. = 2.01; dashdot line: modified FBA method; 

dashed line: FBA method. N(1) = 40, ns = 12, maximal ambiguity order rima = 12. 

method with uo = 1. The dashed line is for the FBA 
method. From Fig. 6, one can clearly see that in this 
case the FBA method fails, and the modified FBA 
method with the optimal cyo outperforms the one with 
nonoptimal cue. 

V. CONCLUSION 

In this paper, we studied the Ferrari-Birenguer- 
Alengrin’ s two step Doppler frequency detection 
method, where the folded frequency is first estimated 
using the circular mean and the ambiguity order is 
then estimated using the quasi maximum likelihood 
criterion. The accuracy of the folded frequency 
depends on the use of the particular pairs of PRFs. 
When the folded frequency is not equal to the circular 
mean, we modified the FBA method with a finite 
possibilities of the folded frequency and the ambiguity 
order. More importantly, we studied and formulated 
the optimal PRFs in the modified FBA method in 
terms of minimizing the total sidelobe energy of the 
maximum likelihood function. Better performance of 
the modified FBA method over the FBA method was 
shown by numerical examples. 
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