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Abstract— We consider the discrete memoryless symmetric
primitive relay channel, where, a source X wants to send
information to a destination Y with the help of a relay Z and
the relay can communicate to the destination via an error-free
digital link of rate R(, while Y and Z are conditionally
independent and identically distributed given X. We develop
two new upper bounds on the capacity of this channel that are
tighter than existing bounds, including the celebrated cut-set
bound. Our approach significantly deviates from the standard
information-theoretic approach for proving upper bounds on
the capacity of multi-user channels. We build on the blowing-up
lemma to analyze the probabilistic geometric relations between
the typical sets of the n-letter random variables associated with
a reliable code for communicating over this channel. These
relations translate to new entropy inequalities between the
n-letter random variables involved. As an application of our
bounds, we study an open question posed by (Cover, 1987),
namely, what is the minimum rate R(’)" needed for the Z-Y link
in order for the capacity of the relay channel to be equal to that
of the broadcast cut. We consider the special case when the X-Y
and X-Z links are both binary symmetric channels. Our tighter
bounds on the capacity of the relay channel immediately translate
to tighter lower bounds for R}. More interestingly, we show that
when p — 1/2, R > 0.1803; even though the broadcast channel
becomes completely noisy as p — 1/2 and its capacity, and
therefore the capacity of the relay channel, goes to zero, a strictly
positive rate R is required for the relay channel capacity to
be equal to the broadcast bound. Existing upper bounds on the
capacity of the relay channel, and the cut-set bound in particular,
would rather imply R(’)" — 0, while achievability schemes require
Rj — 1. We conjecture that Rj — 1 as p — 1/2.

Index Terms—Relay channel, cut-set bound,
information inequality, geometry of typical set.

converse,

I. INTRODUCTION

HARACTERIZING the capacity of relay channels [3]
has been a long-standing open problem in network infor-
mation theory. The seminal work of Cover and El Gamal [4]
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p(y, z|x)

Fig. 1. Primitive relay channel.

has introduced two basic achievability schemes: Decode-and-
Forward and Compress-and-Forward, and derived a general
upper bound on the capacity of this channel, now known as
the cut-set bound. Over the last decade, significant progress
has been made on the achievability side: these schemes have
been extended and unified to multi-relay networks [5]-[7] and
many new relaying strategies have been discovered, such as
Amplify-and-Forward, Quantize-Map-and-Forward, Compute-
and-Forward, Noisy Network Coding, Hybrid Coding
etc [8]-[12]. However, the progress on developing upper
bounds that are tighter than the cut-set bound has been
relatively limited. In particular, in most of the special cases
where the capacity is known, the converse is given by the
cut-set bound [4], [13]-[15].

In general, however, the cut-set bound is known to be
not tight. Specifically, consider the primitive relay channel
depicted in Fig. 1, where the source’s input X is received by
the relay Z and the destination Y through a channel p(y, z|x),
and the relay Z can communicate to the destination Y via an
error-free digital link of rate Ry. When Y and Z are condition-
ally independent given X, and Y is a stochastically degraded
version of Z, Zhang [16] uses the blowing-up lemma [17]
to show that the capacity can be strictly smaller than the
cut-set bound in certain regimes of this channel. However,
Zhang’s result does not provide any information regarding the
gap or suggest a way to compute it. For a special case of the
primitive relay channel where the noise for the X-Y link is
modulo additive and Z is a corrupted version of this noise,
Aleksic, Razaghi and Yu characterize the capacity and show
that it is strictly lower than the cut-set bound [18]. While this
result provides an exact capacity characterization for a non-
trivial special case, it builds strongly on the peculiarity of the
channel model and in this respect its scope is more limited
than Zhang’s result.

More recently, a new upper bound demonstrating an explicit
gap to the cut-set bound was developed by Xue [19] for general
primitive relay channels. In Xue’s bound, the gap to the cut-
set bound is related to the reliability function of the X-Y link.
In particular, it builds on the blowing-up lemma to obtain a
lower bound on the successful decoding probability based only
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on Y and then compares this lower bound to the reliability
function of the single-user channel X-Y. Unlike Zhang’s
result, Xue’s bound identifies an explicit gap to the cut-set
bound that can be numerically computed. However, compared
to the cut-set bound, Xue’s bound only considers the informa-
tion flow from the source and the relay to the destination (the
multiple-access cut) and does not bound the flow from the
source to the relay and the destination (the broadcast cut).
Therefore it can be looser than the cut-set bound since it
does not capture the inherent trade-off between maximizing
the information flow across these two different cuts of the
network.

In this paper, we present two new upper bounds on the
capacity of the primitive relay channel that are tighter than
the cut-set bound. To simplify exposition, we concentrate on
the symmetric case (Y and Z are conditionally independent
and identically distributed given X) in this paper, however our
results can be extended to the asymmetric case via channel
simulation arguments [32]. Just like Zhang and Xue, we
critically build on the blowing up lemma, however we develop
novel ways for utilizing it which lead to simpler arguments
and tighter results. In general, proving an upper bound on
the capacity of a multi-user channel involves dealing with
entropy relations between the various n-letter random vari-
ables induced by the reliable code and the channel structure
(together with using Fano’s inequality). In order to prove
the desired relations between the entropies of the n-letter
random variables involved, in this paper we consider their
B-length i.i.d. extensions (leading to length B i.i.d. sequences
of n-letter random variables). We then use the blowing-up
lemma to analyze the geometry of the typical sets associated
with these B-length sequences. The key step in our devel-
opment is to translate the (probabilistic) geometric relations
between these typical sets into new entropy relations between
the random variables involved. While both of our bounds are
based on this same approach, they use different arguments to
translate the geometry of the typical sets to entropy relations,
and eventually lead to two different bounds on the capacity of
the channel which do not include each other in general.

As an application of our bounds, we consider the binary
symmetric channel, i.e., we assume both the X-Y and X-Z
links are binary symmetric channels with crossover proba-
bility, say, p. We demonstrate that both our bounds perform
strictly better than the cut-set bound and Xue’s bound, and
particularly, our second bound provides considerable gain over
these earlier bounds. We then use our bounds to investigate
an open question posed by Cover [20] which asks for the
minimum required Z-Y link rate R in order for the capacity
of the relay channel to be equal to the capacity of the broadcast
cut, i.e. max,(x) [ (X; Y, Z). Obviously as R; becomes larger
the capacity of the relay channel does approach the capacity
of the broadcast cut. For example, in the binary symmetric
case if Rgp = 1, the relay can convey its noisy observation as
it is to the destinaton, therefore the broadcast cut capacity is
trivially achievable. In this sense, Cover’s open problem asks
how smaller Ry can be made than 1 without decreasing the
capacity of the relay channel. Interestingly, there is a striking
dichotomy between the currently available upper and lower
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bounds for R when p — 1/2,1.e. when the broadcast channel
becomes completely noisy and its capacity, and therefore the
capacity of the relay channel, goes to zero. Achievability
schemes, Hash-and-Forward in particular, require Ry — 1
even though the capacity itself tends to zero. The cut-set bound
and Xue’s bound, on the other hand, require Ry — O in
order for the capacity to be equal to the broadcast capacity.
By strengthening our second bound in this specific case, we
show that Ra" > 0.1803; indeed a strictly positive rate Ry is
needed in order to achieve the vanishing broadcast capacity.
We conjecture that R — 1 when p — 1/2; to achieve the
broadcast capacity the relay has no choice but to forward
its observation, which is almost pure noise, as it is to the
destination.!

A. Organization of the Paper

The remainder of the paper is organized as follows.
Section II and III introduces the channel model and reviews
the existing upper bounds for primitive relay channels,
respectively. Section IV discusses our new upper bounds for
symmetric primitive relay channels in detail, followed by a
treatment on the binary symmetric channel case in Section V.
Sections VI-IX are then dedicated to the proofs of our bounds.
Finally, some concluding remarks are included in Section X.

II. CHANNEL MODEL

Consider a primitive relay channel as depicted in Fig. 1. The
source’s input X is received by the relay Z and the destination
Y through a channel

Qx, p(y,zlx), Qy x Qz)

where Qy, Qy and Qy are finite sets denoting the alphabets
of the source, the destination and the relay, respectively, and
p(y, z|x) is the channel transition probability; the relay Z can
communicate to the destination Y via an error-free digital link
of rate Ry.

For this channel, a code of rate R for n channel uses,
denoted by

(C(n,R), Ju (Zn)» gn(yn, Ju (Zn))); or simply, (C(n,R), fus 8n)s

consists of the following:
1) A codebook at the source X,

Cory = (x"(m) e A%, m e {1,2,...,2"F});
2) An encoding function at the relay Z,
fo i QL — {1,2,..., 2Ry,
3) A decoding function at the destination Y,
gn  QF x {1,2,...,2"R0) — (1,2,..., 2"k},
The average probability of error of the code is defined as

P = Pr(g,(Y", fu(Z")) # M),

lRecently we have solved Cover’s problem in the Gaussian case [21]. In
particular, we show that for a symmetric Gaussian primitive relay channel,
the broadcast capacity can be achieved if and only if the relay—destination
link is of infinite capacity.
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where the message M is assumed to be uniformly drawn
from the message set {1, 2, .. ., 2"’} A rate R is said to be
achievable if there exists a sequence of codes

{(C(n,R)’ fn, gn)}zozl

such that the average probability of error Pe(") — Qasn — oo.

The capacity of the primitive relay channel is the supremum
of all achievable rates, denoted by C(Rp). Also, denote by
Cxy,Cxz and Cyxyz the capacities of the channels X-Y,
X-Z, and X-YZ, respectively. Obviously, we have
C(O) = ny and C(OO) = nyz.

A. Symmetric Primitive Relay Channel

In this paper, we focus on the symmetric case of the primi-
tive relay channel, that is, when Y and Z are conditionally
independent and identically distributed given X. Formally,
a primitive relay channel is said to be symmetric if

D p(y, zlx) = p(ylx) p(z|x),

2) Qy = Qz = Q, and Pr(Y = ow|X =

Pr(Z = w|X = x) for any w € Q and x € Qy.
In this case, we also use p(w|x) to denote the transition
probability of both the X-Y and X-Z channels.

x) =

IIT1. EXISTING UPPER BOUNDS FOR
PRIMITIVE RELAY CHANNELS

For general primitive relay channels, the well-known cut-set
bound can be stated as follows.

Proposition 1 (Cut-Set Bound): For the general primitive
relay channel, if a rate R is achievable, then there exists
some p(x) such that

R=<I(X;Y,2)
R<I(X;Y)+ Rop.

Inequalities (1) and (2) are generally known as the broadcast
bound and multiple-access bound, since they correspond to the
broadcast channel X-Y Z and multiple-access channel XZ-Y,
respectively.

Note that although the cut-set bound in (1)—(2) is tight
for most of the cases where the capacity is determined [4],
[13]-[15], it is known to be not tight in general. The first coun-
terexample was given by Zhang in [16], where he considered
a class of stochastically degraded primitive relay channels.
Using the blowing-up lemma [17], he showed that the capacity
of the channel can be strictly smaller than the cut-set bound.

Proposition 2 (Zhang [16]): For a primitive relay channel,
if ¥ and Z are conditionally independent given X, and Y
is a stochastically degraded version of Z (i.e. there exists

some ¢(y|z) such that p(ylx) = >, p(z|x)q(y|z)), then the
capacity C(Rp) of the channel satisfies

ey

C(Ry) < Cxy + Ry 3)
when

max I1(X;Z)—Cxy. 4
p(x):I(X;Y)=Cxy ( ) X @

In the regime where Ry satisfies both (4) and the condition

Ry >

Cxy +Ro < max 1(X;Y,2),

p(x):1(X;Y)=Cxy
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the cut-set bound becomes Cxy + Rg, however the strictness
of the inequality in (3) implies that the cut-set bound is loose
with some positive gap. Roughly speaking this corresponds
to the regime where the cut-set bound is limited by the
multiple-access bound but the source-relay channel is not
strong enough to enable the relay to trivially decode the
transmitted message. However, note that Zhang’s result does
not provide any information about how large the gap can be.

Recently, a new upper bound demonstrating an explicit gap
to the cut-set bound was developed by Xue [19]. This new
bound was first established for the symmetric case, and then
extended to the general asymmetric case employing channel
simulation theory [22], [23]. The proof uses a generalized
version of the blowing-up lemma [19] to characterize the
successful decoding probability based only on Y and then
compares it with the reliability function for the single-user
channel X-Y. Xue’s bound specialized for the symmetric case
is given as follows.

Proposition 3 (Xue’s Bound): For the symmetric primitive
relay channel, if a rate R is achievable, then there exists some
a € [0, Ro] such that

[ R<Cxy+Ry—a (5)
E(R) < Hx(va) + valog|Q| (6)

where H,(r) is the binary entropy function and E(R) is the
reliability function for the X-Y link defined as

E(R) := péFf‘ffo)(_pR +§‘(§‘} Eo(p, p(x))) @)
with
1 I+p
Eo(p, p(x)) := —log Z(Z p(x)p(y|x>l+ﬂ)
T \T

It can be seen that Xue’s bound modifies the origi-
nal multiple-access bound (2) by introducing an additional
term “—a” in (5), where “a” is a non-negative auxiliary
variable subject to the constraint (6). As noted in [19], this
implies that the capacity of the symmetric primitive relay
channel is strictly less than Cxyy + Ro for any Ry > O.
To see this, consider any rate R > Cxy. Then it follows
from [24] that E(R) > 0, which forces a to be strictly positive
in light of (6), and thus R < Cxy + Ro by (5). Since a
here is numerically computable, Xue’s bound improves over
Zhang’s result as it provides an explicit lower bound on the
gap between the capacity and the cut-set bound.

Nevertheless, Xue’s bound has its own limitations: i) com-
pared to the cut-set bound, it lacks a constraint on the
broadcast cut and therefore decouples the information flow
over the broadcast and multiple-access cuts of the channel
(note that it can be always amended by including the bound
R < Cxyz, however with such a straightforward amendment
the bound R < Cxyz would have no coupling with those in
(5) and (6), which can be potentially coupled through p(x)
as done in the cut-set bound); ii) there is no coupling
between (5) and (6) which can also benefit from a coupling
through the input distribution p(x). Our bounds presented
in the next section overcome these limitations and further
improve on Xue’s bound. They are also structurally different
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from Xue’s bound as they involve only classical information
measures and do not involve the reliability function.

IV. NEw UPPER BOUNDS FOR SYMMETRIC
PRIMITIVE RELAY CHANNELS

This section presents two new upper bounds on the capacity
of symmetric primitive relay channels that are generally tighter
than the cut-set bound. Before stating our main theorems, in
the following subsection we first explain the relation of our
new bounds to the cut-set bound.

A. Improving on the Cut-Set Bound

Let the relay’s transmission be denoted by I, = f,(Z").
Let us recall the derivation of the cut-set bound. The first step
in deriving (1)—(2) is to use Fano’s inequality to conclude that

nR <I(X";Y", I,) + ne.
We can then either proceed as

nR < I(X"; Y", I,) + ne
IX™" Y",Z™) + ne
nl(X;Y,Z) + ne

IA

A

to obtain the broadcast bound (1), where the second inequality
follows from the data processing inequality and the single
letterization in the third line can be either done with a time-
sharing or fixed composition code argument®; or we can
proceed as

nR < I(X"; Y", I,) + ne

<
< IX";Y") + H(I,|Y") — H(I,|X") +ne  (8)
<nl(X;Y)+nRo+ ne 9)

to obtain the multiple-access bound (2), where to obtain the
last inequality we upper bound H (1,,|Y") by nRg and use the
fact that H (I,|X") is non-negative.

Instead of simply lower bounding H (I,|X") by 0 in the
last step, our bounds presented in the next two subsections
are based on letting H(I,|X") = na, and proving a third
inequality that forces a, to be strictly non-zero. This new
inequality is based on capturing the tension between how large
H(I,|Y™) and how small H([,|X") can be. Intuitively, it is
easy to see this tension. Specifically, suppose H (I,|X") =~ 0,
then roughly speaking, this implies that given the transmitted
codeword X", there is no ambiguity about [,,, or equivalently,
all the Z" sequences jointly typical with X" are mapped to the
same I,. Since Y" and Z" are statistically equivalent given X"
(they share the same typical set given X") this would further
imply that 7, can be determined based on Y”, and therefore
H(I,|Y™) ~ 0. This would force the rate to be even smaller
than I(X;Y).

Equivalently, rewriting (8) as

R<nl(X;Y)+1(;; X" —I(I;; Y") + ne, (10)

2Note that the time-sharing or the fixed composition code argument for
single letterization is needed to preserve the coupling to the second inequality
in (9) via X.
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our approach can be thought of as fixing the first n-letter
mutual information to be

I1(I,; X" = H(I,) — na,

and controlling the second n-letter mutual information
I(I,; Y™). In doing so, we only build on the Markov chain
structure I, — Z" — X" — Y" and the fact that Z" and Y”
are conditionally i.i.d. given X". In particular, we do not
employ the fact that these random variables are associated
with a reliable code. Note that this approach of directly study-
ing the relation between the n-letter information measures
involved significantly deviates from the standard approach
in network information theory for developing converses,
where one usually seeks to single letterize such n-letter
expressions.

More precisely, we proceed as follows. We fix H (I,|X") =
na, and leave this term as it is in (8), yielding

R<I(X;Y)+ Ry—ay+e.

We then prove the following two upper bounds (11) and (12)
on I(l;; X™) — I(I,; Y") in terms of ay:

[a,1n2
I(In;X”)—I(In;Y”)SnV( %)—nan, (11)

where
. log |Q| if r > %
v = [ Hy(r) +rlog(|Q|—1) ifr < |S|2‘T_‘1;
and
a,In2
I(In; X") = I(In; Y") < nA(p(X), > ) 12)

a,In2

where A (p(x), 5 ) is a quantity that depends on the

distribution p(x) and a,, which we will formally define in
Section IV-C. These two bounds are obtained via bounding
H(I,|Y") and H(Y"|I;) in terms of a, respectively, and
combined with (10) they immediately yield new constraints
on R.

The heart of our argument is therefore to prove the two
bounds in (11) and (12). To accomplish this, we suggest a new
set of proof techniques. In particular, we look at the B-letter
i.i.d. extensions of the random variables X", Y", Z" and I,
and study the geometric relations between their typical sets
by using the generalized blowing-up lemma. While we use
this same general approach for obtaining (11) and (12), we
build on different arguments in each case, which eventually
leads to two different bounds on the capacity of the relay
channel that do not include each other in general.

B. Via Bounding H(I,|Y™)

Our first bound builds on bounding H (I,|Y") and it is given
by the following theorem.

Theorem 4: For the symmetric primitive relay channel, if a
rate R is achievable, then there exists some p(x) and

, 2 [1Q] - 1)?
a € |0, min Ro,H(Z|X),E( Ql ) (13)
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such that
[ R<I(X;Y,2) (14)
R<I(X;Y)+Ry—a (15)
aln?2
RSI(X;Y)+H2( 7 )
aln?2
+ log(|Q| —1) —a. (16)

Clearly our bound in Theorem 4 implies the cut-set bound
in Proposition 1. In fact, it can be checked that our bound is
strictly tighter than the cut-set bound for any Ry > 0. For this,
note that (15) will reduce to (2) only if a = 0; however, if
a = 0 then (16) will constrain R by the rate 1(X;Y) which
is lower than the cut-set bound.

Our bound is also generally tighter than Xue’s bound, and
since Xue’s bound implies Zhang’s result [16], so does our
bound. In particular, our bound overcomes the limitations of
Xue’s bound that are observed in Section III, and furthermore
tightens the constraint (6) on a to (16). By contrasting
(14)—(16) to (5)-(6), we note the following improvements:

1) Our bound introduces the missing constraint on the
broadcast cut (14) and couples it with (15)—(16) through
the input distribution p(x).

2) The term Cyxy in (5) is replaced by I(X; Y) in (15).
Since the distribution p(x) in Theorem 4 has to be
chosen to satisfy all the constraints (14)—(16), it may
not necessarily maximize I(X; Y), and thus (15) is in
general stricter than (5).

3) The constraint (6) on a is replaced by (16). To show
that the latter is stricter, rewrite it as

R—I(X;Y)
- \/a1n2 +\/aln2
= 2 ) )

Note that (6) is active only if R > Cxy. In Appendix
A we show that in this case the L.H.S. (left-hand-side)
of (17) is generally greater than that of (6), while the the
R.H.S. (right-hand-side) of (17) is obviously less than
that of (6) for any a > 0. Therefore, the constraint (16)
is also stricter than (6).

log(IQ — 1) —a. (17)

A simple example demonstrating the above improvements
is given in Appendix B. The improvements 1) and 2) come
from fixed composition code analysis [25] (or alternatively
a time-sharing argument), while the key to improvement 3),
which accounts for the structural change from (6) to (16), is
a new argument for bounding H (I,|Y") instead of analyzing
the successful decoding probability based only on Y as done
in [19].

C. Via Bounding H (Y"|I,)

Before presenting our second upper bound, we first define
a parameter that will be used in stating the theorem.
Definition 5: Given a fixed channel transition probability

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 4, APRIL 2017

p(wl|x), for any p(x) and d > 0, A(p(x), d) is defined as

A(p(x),d)
= ,sl?af‘&() H(p(w|x)|p(x)) + D(p(w]x)||p(w|x)| p(x))
—H (p(wlx)|p(x)) (18)
1
st5 20 IPWh@l) = pp@ll <d.  (19)

(x,0)

In the above, we adopt the notation in [26]. Specifically,
D(p(w|x)||p(w|x)|p(x)) is the conditional relative entropy
defined as
p(w|x)
p(o|x)

D(p(@]0)||p(@]x)|p(x)) := D p(x)p(wlx) log

(x,0)

>

(20)

H(p(w|x)|p(x)) is the conditional entropy defined with
respect to the joint distribution p(x)p(w|x), i.e.,

H(p(@lx)|p(x) := = D p(x)p(wlx)log wlx), (21)

(x,0)

and H(p(w|x)|p(x)) is the conditional entropy similarly
defined with respect to p(x)p(w|x).

A(p(x),d) can be interpreted as follows: given a random
variable X ~ p(x), assume we want to describe a related
random variable Y. We use a code designed for the conditional
distribution p(w|x) for Y given X, while Y actually comes
from a distribution p(w|x). The distribution p(w|x) cannot
be too different than the assumed distribution in the sense that
the total variation distance between the two joint distributions
p(x)p(wlx) and p(x)p(w|x) is bounded by d. A(p(x),d)
captures the maximal inefficiency we would incur for having Y
come from a different distribution than the one assumed,
i.e. it is the maximal number of extra bits we would use
when compared to the case where Y comes from the assumed
distribution.

It can be easily seen that A(p(x),d) > 0 for all p(x) and
d > 0, and A(p(x),d) = 0 when d = 0. Moreover, for
any fixed p(x) and d > 0, A(p(x),d) = oo if and only if
there exists some x with p(x) > 0, and some @ such that
p(w|x) = 0. Thus, a sufficient condition for A(p(x),d) < oo
for all p(x) and d > 0 is that the channel transition matrix is
fully connected, i.e., p(w|x) > 0,VY(x,w) € Qx x Q. In this
case, A(p(x),d) — 0 as d — O for any p(x).

Example 6: Suppose p(w|x) corresponds to a binary sym-
metric channel with crossover probability p < 1/2. We derive
A (p(x),d) according to Definition 5 in Appendix C and
obtain

A (p(x),d) =min{d, 1 — p}log

(22)

Interestingly, in this case A(p(x), d) has a simple expression
that is independent of p(x).

We are now ready to state our second new upper bound,
which is proved by bounding H (Y"|I,).

Theorem 7: For the symmetric primitive relay channel,
if a rate R is achievable, then there exists some p(x) and
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a € [0, min {Ry, H(Z|X)}] such that

R=<I1(X;Y,2) (23)
R<IX;Y)+Ry—a (24)
R= 1067+ A ( p), 202 (25)

Theorem 7 also implies the cut-set bound in Propositions 1.
In particular, when the channels X-Y and X-Z have a fully
connected transition matrix, our new bound is strictly tighter
than the cut-set bound since A (p(x),d) — 0 as d — 0 for
any p(x) in this case.

It should be pointed out that the bounds in Theorems 4 and 7
are proved based on essentially different arguments, and they
do not include each other in general. For instance, in the
case when X-Y and X-Z are binary erasure channels (i.e.
Pr(Y = x|x) = 1 — p, and Pr(Y = erasurelx) = p,
Vx € {0,1}), A (p(x),d) = oo for all p(x) and d > O,
and thus our second bound reduces to the cut-set bound, but
the first bound is still strictly tighter than the cut-set bound;
whereas in the case when X-Y and X-Z are binary symmetric
channels, our second bound is significantly tighter than both
the cut-set bound and the first bound as we will show in the
next section.

V. BINARY SYMMETRIC CHANNEL

As an application of the upper bounds stated in
Sections III and IV, we consider the case where the channel
is binary symmetric, i.e., both the X-Y and X-Z links are
binary symmetric channels with crossover probability p. The
various upper bounds can be specialized to this case as follows
(see Appendix D for derivations).

o Cut-set bound (Prop. 1):

C(Ro) < min{l + Hy(p * p) — 2H2(p),
1 - HZ(p) + RO})

where pi * p2 := pi(1 — p2) + p2(1 — p1).
o Xue’s bound (Prop. 3):

C(Ro) < max ]min{l — Hx(p) + Ro —a,
E7(Hy(Va) + Va)},

where E~!(-) is the inverse function of E(R).
o Our first bound (Thm. 4):

C(Ro) < max

ae[O,min{Ro,Hz(l’)aﬁ}]

min {1 + Hy(p * p) — 2Hy(p),

1 — Hy(p) + Ro — a,

1— Hz(p)-i—Hz( algz)—a].
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Fig. 2. Upper bounds on C(Rg) for binary symmetric case with p = 0.2.

e Our second bound (Thm. 7):

C(Ry) < max
ae[0,min{Ro, Hx(p), 125 1-p)?} ]

min [1 + Hy(p x p) — 2Ha(p),

1—H2(P)+R0_a,

aln?2 1-—
1 — Hy(p)+ 4/ log—p].
2 p

Fig. 2 plots the above bounds for p = 0.2 and Ry €
[0.15,0.21]. As can be seen, both of our bounds perform
strictly better than the cut-set bound and Xue’s bound, where
the latter two are quite close to each other. Particularly, our
second bound provides considerable gain over the other three
bounds.

A. Cover’s Open Problem on the Critical Ry

Now suppose we want to achieve the rate Cxyz for the
relay channel. What is the minimum rate needed for the relay—
destination link? This question was posed by Cover [20] and
has been open for decades. Formally, we are interested in the
critical value

RS = inf{Ry : C(Rg) = Cxyz}.

The upper bounds on the capacity of the primitive relay
channel presented in the previous sections can be immediately
used to develop lower bounds on Rj. Note that since Xue’s
bound is always dominated by our first bound, in the following
we only compare the lower bounds on R implied by our two
bounds with that implied by the cut-set bound.

o Cut-set bound (Prop. 1):

Ry = Ha(p * p) — Ha(p).
e Our first bound (Thm. 4):
min

() -

> Hy(p * p) — Ha(p)

R > Hy(p * p) — Hy(p) + a.
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e Our second bound (Thm. 7):
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Fig. 3 plots these lower bounds on Rjj versus the crossover
probability p. We see again that our second bound provides
more gain over the cut-set bound than our first bound does.

From Fig. 3 we observe that all these lower bounds on R;
converge to 0 as p — 0 or p — 1/2. On the other hand, to
achieve Cxyz, a natural way is to use a simple Compress-
and-Forward scheme with only Slepian-Wolf binning, a.k.a.
Hash-and-Forward (H-F) [27], to faithfully transfer the relay’s
observation Z" to the destination so that the joint decoding
based on Z" and Y” can be performed.? This leads to an upper
bound on Rjj, namely R; < Ha(p * p), where Hy(p * p) is
the conditional entropy H (Z|Y) induced by the uniform input
distribution. Interestingly, this H-F upper bound also converges
to 0 as p — 0; butas p — 1/2, it converges to 1 even though
Cxyz is diminishing in this regime, which is in sharp contrast
to the above lower bounds on R; that all converge to 0.

This leads to an interesting dichotomy: as p — 1/2 while
achievability requires a full bit of Ry to support the diminish-
ing Cxy z rate, the converse results allow for a diminishing Ry.
Building on our second upper bound on the capacity of the
primitive relay channel, in Section IX we prove the following
improved lower bound on RE‘)‘, which deviates from 0 as
p — 1/2, thus suggesting that a positive R( is needed to
achieve Cxyz even when Cxyz — 0. The proof of this
result follows the argument for proving our second bound,
however it also critically incorporates the fact that the rate of
the codebook is approximately Cxyz in this case as well as
the fact that the channel is binary symmetric, which allows us
to do a combinatorial geometric analysis of the typical sets in
Hamming space.

3Note that Decode-and-Forward can not achieve C xyz here and Compress-
and-Forward with binary compression can achieve Cxyz only when the
compression process is lossless, in which case it reduces to Hash-and-Forward.
One can also check that due to the symmetry of the relay channel model
under consideration, a combination of Decode-and-Forward and Compress-
and-Forward as in [4, Thm 7] falls back to Compress-and-Forward itself.
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Theorem 8: For the binary symmetric channel case,

2 [ Ha(p* p) — Ha(p)
H i
2p)+ (1—2p)log 5L

Ry = Ha(p % p) — 3

Fig. 4 shows this further improved lower bound on R as
well as the H-F upper bound. Clearly, this improved lower
bound is tighter than all other lower bounds, and in particular,
it converges to a strictly positive value, 0.1803, as p — 1/2
while all the other lower bounds converge to 0. This also shows
that Rjj is discontinuous since when p = 1/2, the capacity of
the relay channel is 0, and therefore trivially R; = 0. We
indeed believe that R; — 1 as p — 1/2 but proving this
currently remains out of reach.

From Fig. 4, one can observe that in the other extreme, as
p — 0, upper and lower bounds on Rj do indeed match and
all approach 0. One can indeed check that the speed at which
they approach 0 is also not too different. In particular, we can
show that H-F is approximately optimal within a multiplicative
factor of 2 in the regime where p — 0. More precisely, letting
RIY = Hy(p + p) and RSS = Ha(p * p) — Ha(p) denote the
H-F bound and the cut-set bound on R; respectively, it can
be shown (see Appendix E) that

H-F
RO

C-S
RO

—2as p— 0. (26)

VI. PRELIMINARY RESULTS

Before proceeding to the proofs of the theorems, we state
a few preliminary results that will be used in the sequel.

A. Fixed Composition Code

We start by overviewing the notion of fixed composi-
tion code [25]. This notion will be useful for coupling
constraints (14)-(16) together in Theorem 4, and similarly
(23)-(25) in Theorem 7, through the input distribution p(x).
For the purpose of showing Theorem 4, this notion can be
replaced by a time sharing argument [30], however the latter
technique is not sufficient in deriving the bound in Theorem 7.
Therefore for consistency, this paper employs the fixed com-
position code argument for proving both Theorems 4 and 7.
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Definition 9: The composition Qy» (or empirical probabil-
ity distribution) of a sequence x” is the relative proportion of
occurrences of each symbol of Qy, i.e., Qxn(a) = N(a|x")/n
for all a € Qx, where N(a|x") is the number of times the
symbol a occurs in the sequence x".

Definition 10: A code for the primitive relay channel is said
to be of fixed composition Q, denoted by (CEnQ,]R)’ s &n), if
all the codewords in C(,, g) have the same composition Q.

The following lemma says that if a rate R is achievable by
some sequence of codes, then there exists a sequence of fixed
composition codes that can achieve essentially the same rate.

Lemma 11: Suppose a rate R is achievable over the primi-
tive relay channel. Then for any 7 > 0, there exists a sequence
of fixed composition codes with rate R; ;= R — 7

{(C([,%’;Q]Ty fn, gl’l)};’zozl

such that the average probability of error Pe(") — Qasn — oo.

The proof of this lemma relies on the property that there are
only a polynomial number of compositions and can be easily
extended from the proof for a single user channel [25].

Justified by the above lemma, in deriving the upper bounds
in Theorems 4 and 7 we will assume that a reliable fixed
composition code, as given in (27), is used to communicate
over the relay channel. A benefit of this is that now the
various n-letter information quantities possess single-letter
characterizations or bounds, as demonstrated in the following.

Lemma 12: For the n-channel use code with fixed compo-
sition Q,,, we have

HY"X") = H(ZYX") = nH(Y|X) = nH (Z|X)
HY", Z"X") = nH(Y, Z|X),

27)

and

IX"; YY) =I1(X";Z" <nl(X;Y)=nl(X; 2)
1(X"; Y™, Z") < nl(X;Y, Z)

where H(Y|X), H(Z|X) and I(X;Y), I(X; Z) are calculated
based on Q,(x)p(w|x), and H(Y, Z|X) and I(X;Y, Z) are
calculated based on Q,(x)p(y|x)p(z|x).

The proof of this lemma is given in Appendix F.

B. Blowing-Up Lemma

We next recall the generalized blowing-up lemma
[29, Lemma 12] which will be the key geometric ingredient
in our proofs.

Lemma 13 (Generalized Blowing-Up Lemma): Let
Ui, U, ..., U, be n independent random variables taking
values in a finite set Y. Then for any A < U" with
Pr(U" € A) = 27",

n _—2nr?
Pr(U" € Fn(\/@+1)(A)) >1—e , Vt>0,

in which T',(A) is the blown-up set of A with radius r defined
as

A :={u" el :30" €A st.duy@",v") <r},

where dy (1", v") denotes the Hamming distance between the
two sequences u" and v”.

2261

Note that in the above lemma there are no assumptions
on the individual probability distribution of Uy, Ua, ..., Uy;
in particular, they are not required to be identically
distributed.

C. Strong Typicality

We finally recall the notion of strong typicality and some
of the properties of strongly typical sequences that will be
used in the sequel. For a more detailed discussion and proofs
see [31].

Consider any discrete random variable (or vector) U € U
with distribution p(u). Letu = (uy, uz, ..., up) be a B-length
sequence with elements drawn from U. The set of sequences
u € U?B that are e-typical with respect to U is defined as

TBWU) = (u: |Quu) — p)| < ep(u),Yu e U}, (28)

where Qy(u) is the empirical distribution of u as defined in
Definition 9.

The notion of typicality can be readily extended to two
random variables (U, V) by treating (U, V) as a single random
variable, leading to the jointly e-typical set ’L(B)(U , V). Based
on this one can further define the conditionally e-typical set

TE W) ={v: @,v) e TP, V)).

Finally, note that the above notions of typicality, joint
typicality and conditional typicality extend to three or more
random variables.

We now summarize some of the properties of strongly typ-
ical sequences that will be used in our proofs. Let (U, V, W)
be i.i.d. generated according to p(u, v, w), i.e.,

B
p@,v,w) =[] p(us, vs, wp).
b=1

Then we have:
1) For any (u,v) € ’L(B)(U, V),
273(H(V|U)+5) < p(V|u) < 273(H(V|U)75) (29)
for some 6 — 0 as € — 0;
2) For any u € ’TegB)(U) and € > ¢,
Pr(V e 7B (Vu)[U=u) - 1 as B — oo; (30)
3) For any u € ’TG(B)(U ) and B sufficiently large,

2BHVIV)=0) < ’Z(B)(Vlu)’ < BHVI+9) (31
for some 6 — 0 as ¢ — 0.
4) For any (u, V) € ’TG(B)(U , V) and B sufficiently large,
Pr(W € 7B (Wu, v)|U = u) > 27 BUV:WID+0)
and Pr(W ¢ ’Te(B)(Wlu, Vv)|U = u) < 2~ BUV:WIU)=9)
(32)

for some § — 0 as € — 0.

VII. PROOF OF THEOREM 4

We are now ready to prove Theorem 4. In particular, we
will prove bounds (14)—(16) sequentially with the focus on
showing (16).



2262

A. Proof of (14)—(15)

We assume that a reliable fixed composition code as given
in (27) is used to communicate over the relay channel. Let
the relay’s transmission be denoted by I, = f,,(Z"). Using
Lemma 12, we have

nR; =n(R—1)=H(M)
=I(M;Y", I,)+ HMI|Y", I,,)
< IX"Y" I, +ne
< I(X";Y", Z") + ne
<=n(I(X;Y,Z) +e€) (33)
ie.,
R=<IX;Y,Z)+7t+¢€ (34)

for any 7, € > 0 and sufficiently large n, where (33) follows
from Fano’s inequality.
Moreover, for any 7,¢ > 0 and sufficiently large n,
continuing with (33) we have
n(R — 1)
<IX",Y", I,) + ne
I(X"M Y 4+ I(X"™; L|Y™) + ne

=I1X"; YY"+ H,|Y") — H(I,|X") + ne 35)
<n(I(X;Y)+ Ry —an +€) (36)
i.e.,
R<IX;Y)+Ro—an+7+e€ (37
where |
ap = —H(I,|X") (38)

n
is subject to the following constraint

0 < a, < min [Ro, lH(Z”lX")] = min{Ry, H(Z|X)}.
n
(39

B. Proof of (16)

The proof of (16) is based on the following key lemma,
whose proof is provided at the end of this section. Note that
this lemma provides an entropy relation for random variables
(of arbitrary dimension) satisfying certain conditions and can
be of interest in its own right, decoupled from the specific
relay channel problem considered in this paper.

Lemma 14: For any fixed n, let I, be an integer random
variable and X", Y" and Z" be n-length discrete random
vectors which form the Markov chain I, — Z" — X" — Y".
Assume moreover that Z" and Y” are conditionally i.i.d. and
memoryless given X", i.e., py|x are pz|x are such that

prix(@|x) = pzix(@|x) := p(o|x),Yo € Q,x € Qy,

where Qx and Q denote the alphabet of X and the common
alphabet of Y and Z respectively and

n
pynznxn (0", 2" = [ | pOilx) p(Gilxi),
i=1
for all y",z" € Q", x" € Q%; and I, = f,(Z") is a determin-
istic mapping of Z" to a set of integers. Let H (I,|X") = na,
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for some a,, > 0. Then

In2
H(I,|Y") < nV(,/a”Zn ) (40)
with
V) e log |Q| if r > % 41
| B +riogq@l -1 it <85 (42)

where H(r) is the binary entropy function defined as
Hy(r) = —rlogr — (1 —r)log(l —r).

To apply the above lemma and prove (16), we continue
with (35). Instead of upper bounding H (I,|Y") by nRo as
in (36), we use relation (40) to upper bound H (I,|Y"). It is
trivial to observe that the random variables (I,,, Z", X", Y™) in
the relay channel satisfy the technical conditions of the lemma.
Thus, recalling the definition of a, in (38) and plugging the
bound (40) on H(I,|Y™) into (35), we have for any 7,€ > 0
and sufficiently large n,

ayIn2
R<IX;Y)+V > —ap +71 +e€ (43)

Combining (34), (37), (43) and (39), we have that if a rate
R is achievable, then for any ¢ > 0 and sufficiently large n,

R<IX;Y,Z)+¢
R<IX;Y)4+Ro—an+9

L In2
R < I(X; Y)+V(,/a 2“ )—a,,+5

ap € [0, min{Ry, H(Z|X)}].

where

Since ¢ can be made arbitrarily small, we arrive at the
following proposition.

Proposition 15: If a rate R is achievable, then there exists
some p(x) and a € [0, min {Ry, H(Z|X)}] such that

R=<I(X;Y,Z) (44)
R<IX;Y)+Ry—a (45)
aln?2
R<IX;Y)+V 5 )@ (46)
where
v aln2
2
: 2 (1-1)>
log |Q| if a> 5 or

Hj (,/ “12112)—{- % log(|Q] — 1) otherwise.
Now we show that Proposition 15 is in fact equivalent to
Theorem 4.
Theorem 4 — Proposition 15: Suppose Theorem 4 is true.
Then, for any R achievable, there exists some

, 2 (19 -1\
a € | 0, min RO,H(Z|X),E( Q )
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satisfying (14)—(16). For such a < é (lST‘TTl)z (46) reduces
to (16) and thus Proposition 15 is also true.

Proposition 15 — Theorem 4: Suppose Proposition 15
is true. Then, for any R achievable, there exists some

a € [0, min {Rzo’ H(Z|X)}] satisfying (44)—(46). If such
a < i (195" then (14)-(16) hold with this a; otherwise,

(14)—(16) hold with the choice of a’ = % (%)2 In either
case, Theorem 4 is also true.

This establishes the equivalence between Proposition 15 and
Theorem 4, and thus completes the proof of Theorem 4 apart
from the proof of Lemma 14. We next provide the proof for
this lemma.

Proof of Lemma 14: To prove Lemma 14, we lift the
n-dimensional random variables to a higher dimensional, say
nB dimensional space, and invoke the concept of strong
typicality. Specifically, consider the B-length i.i.d. extensions
of the random variables X", Y", Z" and I,, i.e.,

(X" (B), Y"(B), Z"(b), 1n (D))} i

where for any b € [1 : B], (X"(b), Y"(b), Z"(b), I,(b)) has
the same distribution as (X", Y",Z", I,). For notational
convenience, in the sequel we write the B-length
vector [X"(1), X"(2),...,X"(B)] as X and similarly
define Y,Z and I; note here we have I = [f,(Z"(1)),
(Z"Q2)), ..., n(Z"(B)] =: f(Z).

Consider now the e-jointly typical set Z(B)(X", I,) with
respect to (X", 1,), defined similarly as in (28). Due to
property (29), for any (x,1i) € ’L(B)(X”, I,) we have

(47)

p(ilx) > 2= B(H(In]X")+e€1) > 2*n3(an+61)’

for some ¢; — 0 as € — 0, i.e.,
Pr(Z € £~ (i)|x) > 27" Blante)

where f1(i) := {w € Q"8 : f(w) = i} with Q denoting the
common alphabet of Z and Y.

We will now blow-up the set f~!(i). Note that by the
assumptions of the lemma, Z is an nB-length sequence of
independent random variables given x, and thus by applying
Lemma 13 we obtain (48), shown at the bottom of this
page, for sufficiently large B. Since Y and Z are identically
distributed given X, we have

Pr(Y e T (fHa)Ix) = 1 — e,

nB(/@l2 15 Jer)
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and thus,
P(Yel o e M)
= %Pr(Y €T a2y DI DPCD)
=2 PV el | oy, e OpD)  (49)

(x,i)

>

TP (x,1,)

1y
Pr(Y € an(@ﬂﬁ)(f i)[x)

x p(x, i)
>(—a) D, pxi)
x,)eT P (xn,1,)
> (1 - Je)?
>1-2e (50)

for sufficiently large B, where (49) follows due to the
Markov chain: Y — X — Z — I, and (50) follows since
Pr(Te(B)(X”,I,,)) — 1 as B — oo. Finally, choosing J to
be 2,/€| we arrive at the following proposition.

Proposition 16: For any 6 > 0 and B sufficiently large,

—1 _
Pr(Y € FnB( #M)(f M) =1-09.

With the above proposition, we now upper bound H (I|Y).
Let

E=I(YeTl (F'my

nB(/ 2 1)
where I(-) is the indicator function defined as

1 if A holds

I(A) = .
0 otherwise.

We have

HAY)

IA

H(, E|Y)

H(E|Y) + HA)Y, E)

< HA|Y,E)+1

=Pr(E=1)H{Y,E=1)
+Pr(E =0)HA|Y,E =0) + 1

< HA|Y,E=1)+nBRy+ 1.

A

(51

To bound H(I|Y, E = 1), consider a Hamming ball centered

Pr(Z T i =Pr(ZeT L
r( nB( /a,L;n2+2ﬁ)(f ()1x) r( nB( (an+521)ln2+[ /“”5"2+2«/67 /(a,1+521)1nz])(f ()1x)
>Pr(Z el i
> Pr( nB( (an+521)ln2+[ "'"2‘“2+2¢67 /(,n21n27 Elénz])(f DH)1x)

=
> 1_6—2n361
> 11— e

Pr(Z €T 1
r( € nB( ((ln+§l)lﬂ2+ﬁ)(f (l))lx)

(48)
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at Y of radius nB ( %2"2 + 5), which we denote as*

Ball(Y,nB(,/a";n2 +5))
= [QidH(Qa Y) <nB (,/a”;112 +5)}.

-1
R L)}

ensures that there is at least one point @ € f~!(I) belong-
ing to this ball, and therefore, given £ = 1 and Y
the number of different 3ossibilities for I is bounded by

Ball (Y, nB (

this Hamming ball, leading to the following upper bound on

The condition £ = 1, ie, Y € T

a,In2

) , the number of sequences in

H{Y,E=1),
a,In2
H{|Y,E=1) <log|Ball{ Y,nB > +9

=nBv(,/“”;“2+5) (52)
< 1B [v(,/“”i“z)m} (53)

for some 61 — 0 as § — 0, where the function V (-) is defined
as in (41)—(42), (52) follows from the characterization of the
volume of a Hamming ball (see Appendix G for details),
and (53) follows from the continuity of the function V().
Plugging (53) into (51), we have

[a,n2
H1|Y) <nB [V( a"zn )+51]+5nBR0+1.

Dividing B at both sides of the above inequality and noting
that

B
HY) =Y H(I,(b)|Y" (b)) = BH(I,|Y"),
b=1

we have

nin2 1
H(1,,|Y")5n(v(,/“ 1 )+51+(5R0+—). (54)
2 nB

Since d, d; and ﬁ in (54) can all be made arbitrarily small
by choosing B sufficiently large, we obtain

H(I,|Y") 5nv(,/a";n2).

This finishes the proof of Lemma 14.

(55)

4The Hamming ball here should be distinguished from the notion of
Hamming sphere that will be used later in Section IX. Specifically, a Hamming
ball centered at ¢ of radius r, denoted by Ball(c, r), is defined as the set of
points that are within Hamming distance r of ¢, whereas a corresponding
Hamming sphere, denoted by Sphere(c, r), is the set of points that are at a
Hamming distance equal to r from c.
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VIII. PROOF OF THEOREM 7

We now prove Theorem 7. The bounds (23)—(24) are the
same as (14)—(15), which have been proved in Section VIIL.
To show (25), we still assume that we use a reliable fixed
composition code for communicating over the relay channel
as given in (27). However instead of using Lemma 14 to
upper bound H (I,|Y") as we did in the previous section, we
will now use the following lemma, which upper bounds the
conditional entropy H(Y"|I,) and whose proof is given in
Section VIII-A. Note that just like Lemma 14, the statement
of this lemma is decoupled from the relay channel problem.

Lemma 17: For any fixed n, let I, be an integer random
variable and X", Y" and Z" be n-length discrete random
vectors which form the Markov chain [,, — Z" — X" — Y".
Assume moreover that Z" and Y" are conditionally i.i.d. and
memoryless given X", i.e., py|x are pzx are such that

prix(@lx) = pzix(@|x) := p(o|x), Yo e Q,x e Qy,

where Qx and Q denote the alphabet of X and the common
alphabet of Y and Z respectively and

n
pynznxn (", 2" = [ | pOilx) p(Gilxi),
i=1
for all y",z" e Q" x" € Q%; and I, = f,(Z") is a
deterministic mapping of Z” to a set of integers; and X" has
a fixed composition Q,(x). Let H(I,|X") = na, for some
a, > 0. Then

HY"|Iy) < HX"[I) — H(X"|Z") + nH (Y|X)

a,In2
+I’ZA Ql’l’ 2 )

where H(Y|X) is calculated based on Q,(x)p(w|x), and
A(-, ) is as defined in (18)—(19).

It is straightforward to observe that the random variables
associated with the n-blocklength reliable fixed composition
code satisfy the assumptions of the lemma. Therefore for the
relay channel, we have

n(R —r1)

I(X"; Y", I,) + ne

=I1(X" L)+ 1(X"; Y"I,) + ne

= H(X") — HX"|I,) + HY"|I,) — H(Y"|X") + ne
< H(X") — H(X"|I,) + H(X"|I,) — H(X"|Z")

n2
FnHY|X) +nA (Qn, y “”; )— H(Y"|X") + ne

(56)

IA

a,In2
=1(X";Z") +nA(Qn,,/ T)—l-ne (57)
a,In?2
Sn[I(X;Y)JrA(Qn,,/ 5 )+E] (58)

for any 7, € > 0 and n sufficiently large, where in (57) we have
used the fact that H(Y"|X") = nH(Y|X) (cf. Lemma 12),
and (58) follows from the symmetry between Y" and Z"
and Lemma 12 again. This proves the bound (25) and hence
Theorem 7. In the rest of this section we prove Lemma 17.
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A. Proof of Lemma 17

The remaining step then is to show the entropy inequal-
ity (56) in Lemma 17. For this, again we look at the B-length
ii.d. sequence of (X", Y", Z", I,), i.e.,

X, Y, Z, 1) = (X"(0), Y" (b), Z" (B), In ()} 5—1.
The following lemma is crucial for proving inequality (56),
and its own proof will be given in the next subsection.
Lemma 18: For any 6 > 0 and B sufficiently large, there
exists a set S(Y", I,) of (y, i) pairs such that
Pr((Y’ I) € S(Yna Il’l)) . 1— 59
and for any (y,i) € S(Y", I,),

. —B(H(X”ll,,)—H(X”|Z”)+nH(Y|X)+nA(Q,1,,/ #)M)
p(yli) > 2 .

We will now use Lemma 18 to prove Lemma 17. Letting
E = 1((Y,I) € S(Y", I,)), we have for any 6 > 0 and B
sufficiently large,

H(Y|D) < H(Y, EII)
H(EID+ H(Y|LE)
HYILE)+1
=Pr(E=1D)HXYILE=1)
+Pr(E=0H(Y|I,E=0)+1
HXI|L, E=1)4+0nBlog|Q|+1
=— > p.ilE=Dlogp(yli, E=1)

(y.heS,I)
+onBlog|Q| + 1
— > p(.ilE =1)log p(yli)

(y.)eS¥".I)
+onBlog|Q| + 1

IA

IA

IA

(59)

IA

B[H(X”lln) — H(X"|Z") 4+ nH(Y|X)

n2
+nA(Qn,,/a"2n )+5} +onBlog|Q| + 1,

(60)

where (59) follows because for any (y,i) € SY", I,),
we have

p(yl)p(E =1y, i)
p(E = 11i)
__ ryl)
— p(E =1]i)
p(yli),
where the second equality holds since (Y,I) € S(Y", I,)

implies E = 1. Dividing B at both sides of (60) and noticing
that H(Y|I) = BH(Y"|I,), we have

H(Y"|I,) < H(X"|I,) — H(X"|Z") + nH (Y|X)

a,In2 1
+nAl Q,, > +5+5nlog|Q|+E.

Since both ¢ and % in the above inequality can be made
arbitrarily small by choosing B sufficiently large, Lemma 17
is thus proved.

PyILE=1)=

v
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B. Proof of Lemma 18
Let S(Y", I,,) be defined as

SY", I,) == {(y,i):yeT (7B (z"i))}. (61)

nB( w-ﬁ-é)
We first show that for any € > 0 and B sufficiently large,
Pr(Y,D) e SY", I)) > 1 —e. (62)

For this, consider any (x,i) € ’Tg(B)(X”,In), € > 0. From
property (32) of jointly typical sequences, we have
PI'(Z c f]’g(B)(Zn|X’ i)IX) > 273(1(2”;1”\)(”)4»51)
— 9~ B(Hn|X")+&)

—nB(ap+é
Z 2 (n 1),

where €, — 0 as € — 0 and B — o0. Since Tg(B)(Z”|x,i) -
7% (2"]i), we further have

Pr(Z € TP (2"}i)|x) = 27" Bl@nté),

Then, by applying Lemma 13 along the same lines as the proof
of Proposition 16, we can obtain

(B) (7n s _ =
PrOY ET | gy )T (2D 2 1 NE

for sufficiently large B. Choosing € to be max{2+/€|, €} then
proves (62).

Consider any (y,i) € S(Y",1,). By the definition of
S(Y", I,), we can find one z € ’L(B)(ani) such that

In2
du(y,z) <nB (W + 6)~ (63)
Then,
Pyl =D p(ylx) p(x|i)
X
= > pNpkl) (64)
xeTd® (X7|2,)
> 0~ BUHX"|)+e1) Z p(ylx) (65)
xeT® (X7|2,)
> 0= B(H(X"|In)+er) |7;(B) (X" |z, i)| min p(ylx)
xeZdB) (X7 |2,1)
(66)
> 2 BHX"IL)+en)BHX"Z =€) min  p(y|x),
xeTB) (x|,i)
(67)

for some €1,¢ — 0 as ¢ — 0 and B — 00, where the z
throughout (64)—(67) is the one belonging to ’L(B)(ani) and
satisfying (63), and (65) and (67) follow from properties (29)
and (31) of jointly typical sequences respectively.

We now lower bound p(y|x) for any x € ’TG(B)(X”|z,i).
Since x € TP (X"|z,1), we have (x,z) € TP (x", zm),
ie., (x,z) are jointly typical with respect to the n-letter
random variables (X", Z"). Due to the fixed composition
code assumption and the discrete memoryless property of
the channel, this can be shown (see Appendix H) to further
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imply that (x,z) are also jointly typical with respect to the
single-letter random variables (X, Z), i.e.,

|Px,2)(x, @) — Qn(x) p(@]x)| < €30, (x) p(wlx), V(x, ®)
(68)

for some €3 — 0 as € — 0, where Px z)(x, w) denotes the
joint empirical distribution of (x,z) with respect to (X, Z),
defined as

P(x,z)(xa ) = nLBN(x, w|X, Z)

where N(x,w|x,z) denotes the number of times the
symbols (x, w) occur in the sequences (x,z). On the other
hand, we show in Appendix I that the bound (63) on
the Hamming distance between y and z can translate to
a bound on the total variation distance between the two
empirical distributions P(x y)(x, @) and Py z(x, w) for any x,
namely,

2
2 1Py (6, 0) = Py (6, 0)| < —du(y, 2)

()
n2
52(‘/“”; +e). (69)

Combining (68) and (69), we have for some ¢4 — 0 as e — 0,

a,In?2

D Py (x, 0) = Qu(x) ploolx)| <2 +e, (70)

(x,0)

or equivalently expressed as

1 ,In2
3 2 10x0) Rix(l) = Cu@p(olo)] = ||+ 5,

(x,0)

(71)

where we have used the fact that the empirical distribution
Px(x) = Qp(x) due to the fixed composition code assumption,
and Pyx(w|x) is the conditional empirical distribution
satisfying

N, olx,y) = N(X|X)Pylx(50|x)~

To bound p(y|x), we have

1
-1
-5 og p(y[x)
1 nB
=-3 glogp(yilxi)

1
=—— Z N(x, w|x,y)log p(w|x)

(x,0)

=~ > Py (x, w)log p(elx)

(x,0)

= Z [—P(x,y)(x, w) log p(w|x)

(x,0)
+ P(x,y)(x» U)) 10g PyIX(w|x)
— Px.y)(x, w)log Pyx(w]x)]
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=~ Py, w)log Pyx(w]x)

(x,0)
Pylx(wlx)

+ Z Px,y)(x, w) log (@)

(x,0)
= H (Py;x(w]x)|Px(x)) + D(Py;x(wlx)|| p(w]x)| Px(x))
= H(Pyx(0]x)|Qn(x)) + D(Pyjx(@]x)||p(w]x)| Qn(x)),
(72)
where the second equality follows from grouping log p(y;|x;)
according to different (x, w) and then summing over (x, ®),

and Pyx(w|x) satisfies the constraint (71). For any p(x) and
d > 0, define A (p(x),d) as follows:

A (p(x),d)
= max H(p(@l0)|p() + D(p(@})l|p@lo)]p()
— H(p(ol)|p(x)) (73)
. % D Ip@)plx) — p)p@lx) <d.  (74)

(x,0)

Comparing (72) and (71) to (73) and (74), we have

1 a,In2 e
—%logp(ybc) < A(Qn;\/ > + 5)+ H(Y|X)
a,In2
< A(Qn;\/ > )+H(YIX)+65 (75)

for some €5 — 0 as € — 0, where H(Y|X) is calculated
based on Q,(x)p(w|x), and the last inequality follows since
A(p(x),d) is continuous in d for d > 0. This combined
with (67) yields that for any (y,i) € S(Y", I,,),

p(yli) > 2~ BHE ) +eny BHX"Z") ~€)
) A (Qn’@)wmxms)
X

Z—B(H(X”un)—MX"|Z")+nH<Y\X)+nA(Qn,,/#)m)

for some €6 — 0 as € — 0 and B — oo. Finally, choosing
0 = max({e, €}, we have

Pr((Y9 I) € S(Yn5 II’Z)) = 1- 5»
and for any (y,i) € S(Y", I,),

p(yli)
2—B(H(X”\In)—H(X”\Z”)+nH(YIX)+nA(Qn,\/””ziz)+5)

- >

which concludes the proof of Lemma 18.

IX. PROOF OF THEOREM 8

The main idea for proving Theorem 8 follows that for
Theorem 7. In order to highlight the difference, we first look
at the the parameter A(p(x), d) that plays an important role
in the bound in Theorem 7 more closely. In Section IV-C,
we have indicated that A(p(x), d) can be interpreted as the
maximal number of extra bits we would need to compress Y
given X, when Y comes from a conditional distribution
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p(w|x) instead of the assumed distribution p(w|x) and the
total variation distance between the two joint distributions is
bounded by d. An alternative role that emerges for this quan-
tity in the context of the proof of Theorem 7 is the following.

Consider a pair (x,z) of nB-length sequences that are
jointly typical with respect to p(x)p(w|x). We have’

p(zlx) = 2—nBH(p(wlx)|p(x)) (76)

Let y be a sequence taking values in the same alphabet as z
and bounded in its Hamming distance to z by n Bd. Theorem 7
is based on obtaining a lower bound on the conditional
probability of the sequence y given x under p(x)p(w|x).
In particular, in (75), we show that

p(y|x) > 27 "BIH@@RD)IpE)+APC).d)], a7

Comparing (76) and (77), we can see that A(p(x),d) char-
acterizes the maximum possible exponential decrease from
p(z|x) to p(y|x) where (x,z) is jointly typical with respect
to p(x)p(w|x) and the Hamming distance between y and z is
bounded by nBd.

For the binary symmetric channel, i.e. when the conditional
distribution p(w|x) corresponds to a binary symmetric channel
with crossover probability p < 1/2, we show in Appendix C
that we have the following explicit expression

I—p

A(p(x),d) = min { Hy(p) + d log ,—10gp] — Hx(p)

= min{d, 1 — p}log (78)
We next provide an alternative way to obtain this expres-
sion by resorting to the above interpretation of A(p(x),d).
Note that when p(w|x) corresponds to a binary symmetric
channel with crossover portability p < 1/2, for a (x, z) pair
that is jointly typical with respect to p(x)p(w|x), we have
dg(x,z) <nB(p+¢€) and

p(z|x) = 27"BHAp) (79)

If y satisfies dy(y,z) < nBd, then by the triangle inequality
we have

dH (X’ Y) dH (X’ Z) + dH (Y’ Z)

nB(p +d + 2e)

=
=

and therefore,
p(ylx) 2 pnB(p+d)(1 _ p)annB(erd)
_ o nBlH(p)+dlog L]

Since we also trivially have p(y|x) > p"8 = 27Blogp,
it follows that

—nB min{Hz(p)+d10g 1771’,— log p}

p(ylx) =2 (80)

Comparing (79) with (80), we have the maximum possible

exponential decrease from p(z|x) to p(y|x) given by (78).
The above discussion reveals that the proof of Theorem 7

inherently uses the triangle inequality to obtain a worst case

5Following [30], we say a; = by if lim,,_q n—ll log % = 0. Notations

“>” and “<” are similarly defined.
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bound, equal to nB(d + p), on the distance between x and y.
The new ingredient in the proof of Theorem 8 is a more precise
analysis on the distance between y and x by building on the
fact that the capacity of the primitive relay channel is equal to
the broadcast bound in the context of Cover’s open problem.
Specifically, we show that most of the typical x’s are within
a distance nB(d * p) from y in this case. The detailed proof
of Theorem 8 is as follows, where we only emphasize the
difference from that of Theorem 7.

We start by observing that Theorem 8 follows from the
following proposition as a corollary.

Proposition 19: In the binary symmetric channel case, for
any 7 > 0, if arate R = Cxyz — 7 is achievable, then there
exists some a > 0 such that

Cxyz—1=<Cxy+Rp—a (81)

aln?2
CXYz—TEny—i-A/(,/ 3 )+ﬂ (82)

where

A'(d) :=d(1 —2p)log

(83)

and u > O0as 7t — 0.
Specifically, we have by (81),
Ro > Cxyz —Cxy+a—1
=1+ Hy(p*p)—2H(p) — (1 — Ha(p)) +a—7
= Hy(p* p) — Ha(p) +a—r, (84)

where we use the fact that Cxyz = 1 + Ha(p * p) — 2Ha(p)
and Cxyy = 1 — Hy(p), and by (82),

aln?2 aln?2 1
A’(\/ 5 ):\/ 5 (1—-2p)log

Cxyz—Cxy —1—u
Hy(p*p)—Ha(p)—7 —

- P

v

so that

2
2 (Hz(p*p)—Hz(P)) — (85)

a> —
In2\ (1 —2p)10g177p

for some w1 — 0 as 7 — 0. Combining (84) and (85), we
have

2
2 ( H - H
Ro > Hx(p * p) — Ha(p) + n2 ( (zl(izg log ﬁ)))
p

_T_/u19

and by the definition of Rj,

2
2 (H x p)—H
Rg > lim Ha(px p) — Ha(p) + — (Z22* )= H(p)

-7 —

2
2 [ H — H
= hpxp) = )+ n( (zl(li*zg log 7 ))
p

which is Theorem 8.
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We now show Proposition 19, whose proof builds on the
technique developed to prove Theorem 7 but doesn’t require
fixed composition code analysis. To show (81), along the lines
of the proof of (24), we have for any achievable rate R =
Cxyz—1,7>0,

n(Cxyz — 1) < I(X"; Y") + nRo — nay, + ne
<n(Cxy + Ry — ay +€), (86)
ie.,
Cxyz — 1 <Cxy+Ro—ay+e, (87)

where (86) follows from the memoryless property of the
channel and ¢ — 0 as n — oo. To show (82), we need the
following lemma, whose proof is given in Section IX-A.
Lemma 20: In the binary symmetric channel case, for any
n-channel use code with rate R = Cxyz — 7 and Pe(n) — 0,

HY"|Iy) < HX"[I) — H(X"|Z") + nH (Y|X)

A /anIn2
+nA — +nu,

where u can be made arbitrarily small by choosing n suf-
ficiently large and 7 sufficiently small, H(Y|X) = H(p),
a, = %H([MX”), and A’(-) is as defined in (83).

With the above lemma, following the lines that lead
to (57) from (56), we can show that for any achievable rate
R=Cxyz—17,7>0,

In2
I(X";Y")—i—nA’(,/anZn )—i—n,u + ne
In2
n|:ny+A/(,/an2n )+,Lt+6:|,

ayIn2

(88)

IA

n(Cxyz — 1)

IA

ie.,

nyz—TSny-f-A’( )+#+E, (39)
where f — Qasn —-ooand r — 0, and € — 0 as n — oo.
Combining (87) and (89) proves Proposition 19.

A. Proof of Lemma 20

To show the entropy inequality (88) in Lemma 20, we again
look at the B-length i.i.d. sequence of the n-letter random
variables (X",Y", Z", I,) that are induced by the n-channel
use reliable code of rate Cxyz — 7, denoted by

X, Y, Z, 1) := {(X"(b), Y"(b), Z"(b), L, (P))}E_,.

The following Lemma 21 is crucial for establishing
Lemma 20, which allows one to essentially only consider the
(y, i) pairs belonging to the high probability set S(Y", I,,) with
the desired property (90).

Lemma 21: Given any ¢ > 0, for 7 sufficiently small and
n, B sufficiently large, there exists a set S(Y”, I,) of (y,1i)
pairs such that

Pr((Y,D) e S(Y", I,)) > 1 -6,

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 4, APRIL 2017

and for any (y,i) € S(Y", I,),

. 7B(H(X”|1,l)7H(X”\Z”)+nH(Y|X)+nA/(,/“”TI"Z)erS)
p(yli) > 2 .
(90)
With Lemma 21, along the same lines as in the proof of
Lemma 17, we can show that

HY"|I,) = HX"[I,) — H(X"|Z") + nH (Y|X)

n2 1
+nA’(,/%)+n5+5nlog|Q| + =

where ¢ can be made arbitrarily small by choosing 7 suf-
ficiently small and n, B sufficiently large. This proves the
entropy inequality (88).

We are now in a position to show Lemma 21.

Proof of Lemma 21: The only difference of Lemma 21
from Lemma 18 is that here the lower bound on
p(yli),V(y,i) € S(Y", I,) is sharpened to that of (90). In
particular, assume S(Y”", I,) is defined exactly as in (61).
Then, for any specific (yo,ip) € S(Y", I,), we can find one
20 € T2 (Z"i) such that

In2
dr (yo, Zo) < nB (,/ anzn + e).

The key to the aforementioned sharpening is a tighter upper
bound on the distance between y( and the X’s typical with z,
as stated in the following lemma. The proof of this lemma is
based on a combinatorial geometric argument, and is deferred
until we finish the proof of Lemma 21.

Lemma 22: Consider any yq such that dg(yo, Zo) = nBdy
for some zg € ’];(B) (Z™). There exists some ¢’ — 0 as € — 0
such that

oD

Pr(dy(X,yo) <nB(do* p+€)|zg) >1—0

where v can be made arbitrarily small by choosing n, B
sufficiently large and 7 sufficiently small.

Roughly speaking, Lemma 22 says that if the distance
between yo and zo is nBdp and z is typical, then given zo
the typical x’s are within a distance nB(dp * p + €’) from yj.
Building on this, we further have for some ¢/ — 0 as ¢ — 0,

n2
Pr(X € Ball(yo, nB((/ a"zn Fexp+e)

ﬂ 7B (X" |20, iO)’ZO)

1 — Pr(X ¢ Ball(yo, nB((y/ a,,;n2 +é€)x p+e))z)

=

—Pr(X ¢ T B (X" |20, i0)|20)
>1l—-—v—0
=1- 21),

where we have used the fact that
Pr(X ¢ 7B (X" |29, i0)|20) — 0 as B — oo.

any X € TE(B)(X” |z, i0), p(x|zg) <
)=€1) for some ¢; — 0 as € — 0, we
can lower bound the number of x’s that belong to

Since for
»—B(H(X"|Z"
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Ball(yo, nB((/ 2 + ¢) % p + €)) N TP X"z, i0)

as follows:

apIn2
Ball(yo, nB((/ =5— + €)% p +€) [ ) T2 (X" |20, o)

> (1 - 20)23(1‘1(?(”\2”)—61)
> ZB(H(X’”Zn)—fl—Ul),

92)

where v1 - 0 as 7 — 0 and n, B — o0.
We now lower bound the conditional probability p(yolip)
for (yo,ip) € S(Y", I,,). In particular, we have

p(yolio)
= > p(yolx)p(xlio)
> > p(yolx) p(x[io)

x € Ball(yg, nB((y/ 5= +€) * p +€))
NTE (X" 129, i0)
2 B(H(X"|Z")—€1—01)9—B(H(X"|I)+€2)

v

93)

X min p(yolx)

xeBall(yo,nB(( #-‘ré)*p-ﬁ-é/))
for some €3 — 0 as € — 0, where the equality follows from

the law of total probability, and the second inequality follows
because the number of x’s belonging to

o In 2 .
Ball(yo, nB(,/ “5— + ) % p+ ) (| TP (X" 20, i0)

is lower bounded by (92) and for any x € TE(B)(X”|z0,i0),
p(xlip) can be lower bounded by 2~ B(H(X"Il+€2) Fipally, to
lower bound the last term in (93), we have for any x such that

In2
< nB((,/%—i—e)*p—}—e’)

a,In2

dn (X, y0)

=: nB( *p+€3),

it follows that
P(YOIX) = (1 — p)nB*dH(xayo)de(x,yO)

(1~ py B0 B (1 — p)rB—dux.yo) pdn(x.y0)

(1 _ p)nB(l—p)pan

BHy () p du(x,y0)—nBp
e )

l—p
ap In2

nB(
> o-nBH(p) P ’
> =

)nB( a2 (1 _2p)tes)

*p+e3)—nBp

— »—nBHxp) (_P
L—p
_ 2—nB(Hz(p)+( P2 1-2p) e og 57 )

(s ().

where €3,e4 — 0 as € — 0. Plugging (94) into (93), we

obtain that
. —B[H(X"|1n)—H(X"|Z")+nH2(p)+nA/(,/#)]
p(yolio) > 2

X2—B(vl+61+ez+ne4),

(94)

which proves the lemma. ]
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Fig. 5. Illustration of a specific pair (X, yg)-

B. Proof of Lemma 22

Consider a specific (yo, zo) pair where zg € ’L(B)(Z") and
dp(yo,zo) = nBdp. Let

qq = Pr(dg (X, yo) > nBd|zgp).

To show Lemma 22, we will show that g; diminishes for
d > dop * p. More precisely, we will show that there exists
some ¢ — 0as e — Osuchthatd =dy*p+¢ and g5 < v,
where v satisfies lim; .o lim,,— o0 limp_, o0 © = 0. To this end,
instead of directly upper bounding g4, below we will look at
the following intermediate probability involving Y:

Pr(di (Y, y0) = nB(d * p - o),
p(Yzg) < 27 BHIIZ0 ),
di(Y,70) € [1B(p * p = €0),nB(p  p + €0)l[20)  (95)

and show that it is essentially lower bounded by g4; then via
upper bounding this intermediate probability in (95) we can
effectively upper bound ¢, as desired.

We first lower bound the probability in (95) in terms of g,.
Using the properties of jointly typical sequences, we can show
(see Appendix J) that there exists some €9 — 0 as € — 0 such
that for any ¢ > 0 and B sufficiently large,

Pr(p(Y|z()) < 2—B(H(Y”|Z”)750)’

dy(Y,20) € [nB(p* p—e€0),nB(p*p+ 60)]’20)

>1—34. (96)

Consider the following inequalities:

Pr(du (Y, yo0) > nB(d * p — €0)|z0)
= D Pr(du(Y.yo) = nB(d * p — €0)|x) p(x|z0)
= 2

x:dp (x,y0)=nBd

> qq - min
x:dy (x,y0)=nBd

Pr(dy (Y, yo) = nB(d * p — €)Ix) p(x|2o)
Pr(dy(Y,yo) > nB(d * p — €)|x).
o7

To bound the second term in (97), without loss of generality
consider a specific pair (x,yop) as shown in Fig. 5, where
yo = 0 and dy(x,y0) = nBd; > nBd. By the law of large
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numbers, we have for any ¢ > 0 and B sufficiently large,

1
— N1 —p) =T x)
< Pr(V(UIY) = nB(d1 % p — e)lX)
< Pr(N(11Y) = nB(d * p — €0)|x)
= Pr(dn(Y, yo) = nB(d * p — )X, ©98)

where (98) follows since the event N(1|Y) > nB(d * p — €p)
implies N(1|Y) > nB(d * p — €p) due to the relation d| > d.
Plugging this into (97), we obtain

Pr(dy (Y, yo) > nB(d * p — €0)|z9) > ga(1 — ).  (99)

Combining (96) and (99), we have for any 6 > 0 and B
sufficiently large,

Pr(dH(Y, ¥o0) > nB(d * p — €),
p(Y|zg) < 27 BHIZD=c0),
dy(Y,20) € [nB(p * p — €0), nB(p % p + eo)]]zo)
> 1—(@+1—qa(l —0))

= qa(l —90) —
> qa — 20.

On the other hand,
Pr(di (Y, y0) = nB(d  p — €0),
p(Yzg) < 27 BHIIZ0 o),
di(Y,20) € [nB(p* p — €0), nB(p + p + €o)[0)

< Hy:du(y,yo) = nB(d * p — €p),

du(y, zo) € [nB(p * p — €0), nB(p * p + €0)l}|
w2~ BUH(Y"|Z") —c0)

1 1 €0
1—6 <Pr[—N@© 1x.Y) > —NOx)p — 2,
< Pr{ VO Y) = VO —

1
— N(1,1x,Y) >
—N(L 1K Y)

1 p*p+e€o

=| |J Sphere(yo.nBr () |J

r=d*p—eg P=pP*p—€0
w2~ BH¥"IZ" )

Sphere(zg, nBp)

p*p+eo

U U

r=dxp—€g pP=p*p—€q

Sphere(yo, nBr) ﬂ Sphere(zg, nBp)

Inter(r, p)
x 2~ BHY"|Z")—e0)
Therefore,
p*p+eo
qa < 26 + 27 BHI"IZN—e0) U U Inter(r, p)| .
r=dxp—€y p=p*p—€o
(100)

Now we show that the second term on the R.H.S. of (100)
vanishes if d > dy * p. Without loss of generality, consider
a specific pair (yg,zo) as shown in Fig. 6, where yo = 0
and dy(yo,z9) = ndy. We first characterize the volume of
Inter(r, p) for any r and p = p * p, i.e.,

Sphere(yo, nBr) ﬂ Sphere(zg, nBp * p)| . (101)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 4, APRIL 2017

1's: nBN; 1’s : nBNy
y | l | J |
7o 11----- 1100w 00
nBdy nB(1 — doy——>
yo 100000000« w eeeeiieinns 000

Fig. 6. Tllustration of a specific pair (yg, Z)-

For any y, let nB N1 denote the number of 1’s appearing in its
first nBdy digits, and n BN, denote the number of 1’s in the
rest. Then the volume in (101) amounts to the number of y’s
such that the following two equalities hold
Ni+Ny=r
do— N1+ Ny=p=x*p
i.e.,
r+do—pxp
2
r+pxp—do
— 5
Here, N; € [0, dp] and N; € [0, (1 — dp)], i.e.,
[ r € [p*p—do, pxp+dl
reldo—pxp,2—px*p—dl.
Therefore, with p = p * p,

nBdy nB(1 — dyp)
Inter(r, p) = nB r+d0;p*p nB r+p>k2p—d0

d, —d
By (Ha (L)) B (1—do) (Ha(“Hirtst))

1=

Ny =

(102)
(103)

<2

_ B0 - ) o

for sufficiently large B, where (104) follows from the bound
(h) < WZ”HZU‘) for any k € (0,1), as stated in
[30, Lemma 17.5.1].

Let f(r) = doHa("M47*P) + (1 — do) Ha("5HEs0).
It can be verified that f(r) attalns the maximum H(p * p) if
and only if r = dy * p * p; see Appendix K. Thus, when

p=p*p

d=dyxp+¢€

r>dxp—e¢

=(doxp+e)xp—eo

=dyxpxp+e(1—2p)—eo,
we have

Inter(r, p) < onB(Hy(pxp)—e1)

for some €1 > 0 provided €’(1 —2p) — ¢ > 0. Further, due to
the continuity of Inter(r, p) in p, for any p € [p* p — €0, p *

ptel,d=doxp+e,r>dxp—eo,
Inter(r, p) < 2"BH2(pxp)—c1+e) (105)

for some €3 — 0 as ¢g — 0.
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Plugging (105) into (100), we have for d = dy * p + ¢’ and
sufficiently large B,

qa <25+ 2—B(HY"|Z")—€0)
pxp+eo

1
x S Y pbthe-ate)

r=dxp—eo p=p*p—€o
< 26 4 2~ BHITZ") —e0) pnB(Hy(pxp)—€1teoter)

< 26 + 2 BGHY™Z—Hy(pxp)+€1-260—€2)
with

Laamzn = Lo, zm - mazmy
n n

= l(H(Xn)-f-1"1(Yn,Z"|X")
! — HX"|Y",Z") — H(Z"))

= l(H(M) —HM|X"Y+HY", Z"|X")
! — HX"|Y",Z") — H(Z"))

> l(nR — nep + 2nHy(p) — neg — n)

= Z'XYZ —T+2H(p) —1-2¢

= Hy(p* p) — 7 — 2e0, (106)

for n sufficiently large, where in (106) we have used Fano’s
inequality. Thus, when z, ¢p are sufficiently small and n, B are
sufficiently large, we have for any ¢/ > 0, d =do* p + €,

qa <20+ 9—nB(e1—1—4ep—e2)
< 30.

We finally conclude that for a (yg,Zzog) pair where zy €
’ZZ(B)(Z”) and dy(yo, zo) = nBdp, there exists some ¢/ — 0
as € — 0 such that

Pr(dy (X, yo) < nB(do * p + €)|zg) > 1 — v.

where » can be made arbitrarily small by choosing n,
B sufficiently large and 7 sufficiently small.

X. CONCLUSION

We consider the symmetric primitive relay channel, and
develop two new upper bounds on its capacity that are tighter
than existing bounds, including the celebrated cut-set bound.
Our approach uses measure concentration (the blowing-up
lemma in particular) to analyze the probabilistic geometric
relations between the typical sets of the n-letter random
variables associated with a reliable code for communicating
over this channel. We then translate these relations to new
entropy inequalities between the n-letter random variables
involved.

Information theory and geometry are indeed known to
be inherently related; for example the differential entropy
of a continuous random variable can be regarded as the
exponential growth rate of the volume of its typical set.
Therefore, entropy relations can, in principle, be developed by
studying the relative geometry of the typical sets of the random
variables. However, we are not aware of many examples where
such geometric techniques have been successfully used to
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1—po

Fig. 7. Binary asymmetric channel.

develop converses for problems in network information theory.
It would be interesting to see if the approach we develop in
this paper, i.e. deriving information inequalities by studying
the geometry of typical sets, in particular using measure
concentration, can be used to make progress on other long-
standing open problems in network information theory.

While we have exclusively focused on the symmetric relay
channel in this paper, our results can be extended to asym-
metric primitive relay channels [32] using the idea of channel
simulation. An extension of these ideas to the Gaussian case
has been provided in [33].

APPENDIX A

To see E(R) < R — Cxy for any R > I(X;Y), recall that
E(R) has the following alternative form [28]:

E(R) = min min D(p(y[x)||p(y|x)|p(x))
px) p(ylx)

+IR — I(p(x), p(ylx)|T

where [1|* = max{0,7}, D(F(IX)IIp(yIx)Ip(x)) is the
conditional relative entropy defined as

(107)

_ . p(ylx)
= 1
D(p(yI)p(y1x)|p(x)) (Xz,y)p(X)p(yIX) og o)’

and I(p(x), p(y|x)) is the mutual information defined with
respect to the joint distribution p(x)p(y|x), i.e.,

p(ylx)
> p)pOIx)

In the regime of R > Cyxy, simply choosing the p(x) and
p(y|x) in (107) to be capacity-achieving distribution p*(x)
and p(y|x) respectively would make the objective function
equal to R — Cyxy, and thus E(R) < R — Cyy.

I(p(x), p(yIx)) == D p(x)p(ylx) log

(x,y)

APPENDIX B

We demonstrate the improvements of our bound in
Theorem 4 over Xue’s bound using the following simple
example.

Example 23: Suppose both X-Y and X-Z links are the
binary asymmetric channels as depicted in Fig. 7, with para-
meters p; = 0.01 and py = 0.3. For the input distribution

o x=0

p(x) =

l—a x=1

we have
1(X;Y) = Hy(a(1 — p1) + (1 —a)p2)
—(aHy(p1) + (1 — a)H2(p2))
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and
1(X;Y,2) = H(la(1 — p1)* + (1 — o) p3,
a(l —pp1+ 1A —a)(d = p2)p2,
a(l = py)p1+ (1 —a)(l = p2)p2,
api + (1 —a)(1 = p2)’])
—2(aH2(p1) + (1 — a)Ha(p2)).
With p; = 001 and p; = 0.3, numerical
evaluation of [I(X;Y) and [I(X;Y,Z) yields that
Cxy = max, [(X;Y) = 0.46432 with the maximizer

ayy = 0.58, and Cxyz = max, I(X;Y, Z) = 0.72022 with
the maximizer a%,, = 0.54.

Suppose we want to achieve a rate R = Cxyz, and we
use Proposition 3 and Theorem 4 to derive a lower bound on
Ry, respectively. First consider Proposition 3. Numerically,
we have E(R) = 0.05951 for R = Cxyz = 0.72022, and the
minimum a to satisfy (6) is a = 0.00008. Thus, by (5), we
have

Ro > R—Cxy +a
> 0.72022 — 0.46432 + 0.00008
= 0.25598. (108)

We then apply Theorem 4 and demonstrate that the
improvements mentioned in Section IV-B result in
a tighter bound on Ry. In Theorem 4, p(x) has to
be chosen such that a = a%,, = 0.54 due to the
constraint (14). Under such a distribution of p(x),
numerically, we have I(X;Y) = 0.46223 < Cyxy, and
Cxyz—1(X;Y)=0.25799 > E(R). Noting the R.H.S. of (6)
is also sharpened to that of (17), we can calculate the minimum
a satisfying (17) to be a = 0.00546. Thus, by (15), we have

Ry>R—-I(X;Y)+a
0.72022 — 0.46223 + 0.00546

= 0.26345,

=
=

(109)

where it is easy to see that the last two terms in (109) are
both sharpened compared to those in (108).

Therefore, in order to achieve the rate R = Cxyz, the lower
bounds on Ry yielded by Proposition 3 and Theorem 4 are

Ro > 0.25598
and
Ro > 0.26345
respectively. Viewed from another perspective, for

Ry € [0.25598, 0.26345), the bound in Theorem 4 asserts
that the capacity of the relay channel C(Rg) < Cxyz, which
excludes the possibility of achieving R = Cxyz while Xue’s
bound in Proposition 3 cannot.

APPENDIX C
A (p(x), d) FOR BINARY SYMMETRIC CHANNELS

For a binary symmetric channel with crossover probability
p < 1/2, the objective function in (18) can be expressed
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as

H (p(w]x)|p(x)) + D(p(w|x)|| p(w]x)| p(x))
—H(p(wlx)|p(x))

= — D" p()p(lx)log j(w]x)
(x,0)
X polx)
+ (%) p(x) p(olx) log @)
- (;@ P()p@lx)log
= (%[p(x)ﬁ(wm — p(x)p(wlx)]log S
1
= > [p()polx) — p(x)polx)]log >
X#w
+ 2 [P(0) @) = p(x) p(olx)]log — > (110)
1
= > [p()polx) — p(x)p(olx)]log >
X#w
+ 2_[p@)(1 = pl) = p)(1 = plelx)]log T—
XF#w
(111)
1
= > [p)plx) — p(x) p(wlx)]log 5
X#w
= 2 [P0 pl@lx) = p(x) p(olx)]log — > (112)
XF#w
= > [p@p@lx) — px)p(elx)]log — (113)
X#w
We now show that under the constraint
1
5 2. IPWh@l) = p)p@ln)l <d,  (114)

(x,0)

the function in (113), and thus A (p(x), d), are upper bounded
by

min {d, 1 — p}log

Along the similar lines as in (110)—(112), we obtain

> Ip)p(@lx) = p(x) plelx)|

X=w

= Z Ip(x)p(w|x) — p(x) p(wl|x)],
XF#w

and thus the constraint (114) can be rewritten as

> Ip@) plolx) — p(x)pelx)| < d.
X#w

(115)
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On the other hand, we have

> 1p() plolx) — p(x)p(wlx)]

XF#w
= > p@)Ip(l) = plely)|
X F#0
<> p)UA-p)
X F#0
=1-p. (116)

Combining (113), (115) and (116) yields that

A (p(x),d) <min{d, 1 — p}log

In fact, it can be easily checked that the equality sign in the
above inequality can be attained by choosing

plwlx) = p+min{d, 1 — p},V(x, w) with x # o,

and thus we conclude that

A (p(x),d) = min{d, 1 — p}log

APPENDIX D
UPPER BOUNDS FOR BINARY SYMMETRIC CHANNEL CASE

Various upper bounds are evaluated for the binary
symmetric channel case as follows.

A. Cut-Set Bound (Prop. 1)

The optimal distribution for Prop. 1 is p*(0) = p*(1) =
1/2, under which,

I I"(X;Y,Z) = Cxyz = 1 + Ha(p * p) — 2Ha(p)
I"(X;Y) = Cxy =1 — Ha(p).

Therefore, the cut-set bound simplifies to

C(Ro) < min {1 + Ha(p * p) — 2H2(p), 1 — H2(p) + Ro} .

B. Xue’s Bound (Prop. 3)

Since the function E(R) is monotonic in R, its inverse
function E~!(-) exists and Xue’s bound can be expressed as

C(Ro) < Jmax min {1 — Hy(p) + Ro —a,
E (/@) + Va).

C. Our First Bound (Thm. 4)

The uniform distribution of X is also optimal for Thm. 4,
under which our first bound reduces to

max

C(Ry) <
ael0,min{Ro, H>(p), 715 )1

min [l + Hx(p * p) — 2Ha(p),

1-— Hz(p)-i—Hz( algz)—a].
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where the constraint of a follows since H(Z|X) = Ha(p)
for any p(x) and %(‘?'T_‘l) = ﬁ, and the term

% log(|Q| — 1) disappears compared to Thm. 4 since it
becomes 0 with |Q| = 2.

D. Our Second Bound (Thm. 7)
Recall that in the binary symmetric channel -case,
A (p(x), d) is independent of p(x) and given by

L=P A,

min {d, 1 — p}log

Therefore, our new bound becomes

C(Ro) < max
ael0,min{Ry, H2(p)}]

min {1 + Hx(p = p) — 2Ha(p),

1_H2(p)+R0_a,

1= Ha(p)+ A(,/“g’z)]. (117)

It is not difficult to see that for the R.H.S. of (117), at least one
of the maximizers must be no greater than %(l — p)z, ie.,

satisfying ”12—112 < 1—p. Therefore, (117) can be equivalently
stated as
C(Ro) < max

a€[0,min{Ro, H2(p), 125 (1-p)?)]

min Il + Ha(p = p) — 2Ha(p),

I_HZ(P)+RO_aa

alr121 1—p
og—— .
) g

1 — Hy(p) +

APPENDIX E
PROOF OF (26)

To show (26), it suffices to show Ha(p)/Ha(p * p) — 1/2
as p — 0. For this, we have
H(p)  _ H;(p)
p—0 Ha(px p)  p—0 Hy(p* p)-(p*p)
I=p
= lim —— P
rl=p  (l=py
1 log == (=5)

E ! y 1=pxp 1—pxp
p—01] TP (LR
0g pxp ( pxp )

log

p 1
= ()

lim
1
p—0 ]KZZP : (_ (p*p)Z) ) (2 - 4p)
(p*p)A —px*p)
p(1—p)

SR

—0

T o—
=

lim 2(1 — p * p)
p—0

Nl — B — B —

which proves (26).
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APPENDIX F
PROOF OF LEMMA 12

We only characterize H(Y"|X") and I(X"; Y") while the
other information quantities can be characterized similarly.
Consider H (Y"|x") for any specific x" with composition Q,,.
We have

n
H(Y"x") = > HYx", Y™

i=1

= > H(Ylx)

i=1
= > nQ,(x)H(Y|x)
= n)}-I(Y|X)

where H(Y|X) is calculated based on Q,(x)p(w|x).
Therefore, for the code with fixed composition Q,,

HY"X") =" p™H(Y"|x")

= > p("nH¥|X)]

= nH(Y|X).

To bound 7(X"; Y™), it suffices to bound H (Y"). For any
specific x" with composition Q,, we have for some €; — 0
as n — oo,

Pr(Y" e W (M)x") = 1 — ey,

where ’Té(ln)(Y ) is the typical set with respect to
> On(x)p(w|x). Therefore, for the code with fixed
composition Q,,

Pr(Y" e T (¥)) = > p")Pr(¥" € TV (¥)[x")

>1—e€.

Letting W = I(Y" € ’Té(ln)(Y)), we have

H(Y") < HY", W)
<14+ H"W)
=1+Pr(Y" e TW@))H"Y" € T\ ()
+Pr(Y" ¢ T (V) H(Y"|Y" ¢ T (Y))
< 1+1log |7 (V)] + ney log |9
< L+n(H(Y) + e) + ne; log|Q
<n(HY)+e¢)

where €1,€2,¢ — 0 as n — oo, and H(Y) is calculated
based on D, Q,(x)p(w|x). Combining this with the fact that
HY"X™ =nH(Y|X), we have

I(X": YY) <n(I(X;Y) +€). (118)

We now argue that the € in (118) can be dropped. Given
any fixed n, consider a length-B sequence of i.i.d. random
vector pairs {(X"(b), Y" (b))}llf:l, denoted by (X,Y), where
(X" (b), Y"(b)) have the same distribution as (X", Y") for

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 4, APRIL 2017

any b € [1 : B]. Obviously the length-nB vector X also has
composition Q,, and by (118) we have

IX;Y) <nB(I(X;Y)+e),

where € — 0 as B — o0. Due to the i.i.d. property, we further
have

BI(X™; Y") <nB(I(X;Y) +¢).

Dividing B at both sides of the above equation and letting
B — 0, we obtain I(X"; Y") <nl(X;Y).

APPENDIX G
VOLUME OF A HAMMING BALL

Consider the volume of a general n-dimensional Hamming
ball in Q" with radius nr. It is obvious that when r > 1, the
volume

|Ball(nr)| = |Q|" = 2"loel¢, (119)

For r < 1, we have

R I [CIENIE
=

|Ball(nr)| =

onH (k)

r _1\hk
<1+ E el

,
Z on(Hy (k)+klog(1Q]-1))
k=0

(nr +1)

IA

max 2" (Ha(k)+klog(IQ|-1))
ke{0,1,...r)

2n(H2(k)+k log(1Q2|—1)+€)

IA

< max
ke{o, 1.}

n(maxke(o’%w’r) H> (k)+k log(\Q|71)+e)

for any € > 0 and sufficiently large n, where the first
inequality follows from Stirling’s formula [30, Lemma 17.5.1].

Moreover, by [30, Lemma 17.5.1] we also have for
k=12 Tl

n onHy (k)

(nk) = k(=8

and therefore we can similarly lower bound |Ball(nr)| as

n( max H; (k)+klog(\Q|71),€)
|Ball(nr)| > 2 ( kel0, 4,y 72

for any € > 0 and sufficiently large n. Therefore, we have
forr <1,

1
lim —log|Ball(nr)| = max H(t) + tlog(]Q| —1). (120)
n—-oon t€l0,r]
Now we simplify the above expression. Let v () = Ha(t)+

tlog(|Q2] — 1) for t € (0, 1). We have v/(r) = log %
which is decreasing in ¢ for r € (0, 1) and equals 0 when
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r = |Q£‘2| . Thus, the maximum of o(¢) is attained when =(+e) Z Py(x")E [lN(x,a)lx”,Z”)i|
t = % and is given by X" Py(x")>0 "
Q-1 Q-1 1
(1) = H2(| | )+ L1 10— 1) =(+e) D PKRQEHE[- > U(Zj =)
12| 12| x": Px(x")>0 " Jixj=x
Q-1 Q-1 1 1 .
= - 0 — —log — = n
|Q| 1 XnZPx(Xn)>O
+ 0 log(|Q| — 1) = (1 + &) Px(x) p(olx)
Q-1 (1Q -DQ 1 on L = (1 +€1)On(x) p(w|x).
= 0 — —log —
IQI (1Q] = 1) 1€2] 1€2] Similarly,
|| — 1
= |Q| 0g |9 + 1o log €2 Pray(x, @) = (1 =€) Q@) p(@lv), V(x, ),
= log Q. (I21) " and thus
Therefore, we have | Pix,y (x, 0) — Qn(x) p(@]2)| < €10 () p(w]x), V(x, ).
max Hy(t) + tlog(|Q| — 1)
tel0,r] APPENDIX I
log |Q| when r € (‘ﬂzglz\ ,1) 12 For any (x,y,z), consider the total variation distance
= bet P d P . We h
Ha(r) +rlog(1] — 1) when r € [0, 91]. etween Ply) (¥, @) and Pix.z)(x, ). We have
B P —-P
Combining (119), (120) and (122), we obtain that " %})I (e (¥, @) = Pxa) (v, )|
lim 2 log [Ball(nr)| &
m —10 all(nr
oo = > D Ui yi) = (x,0) = ((xi, 20) = (x, 0))
[log|Q| when r > 81 x.o) li=1
= _ \_
Ha(r) + rlog(jQ = 1) - when r < Sy = > 1 > Wiy = (. 0) — L@, 20) = (¥, )
(x,w) ' ityi=z;
APPENDIX H
I = -1 =
For any (x,z) € 7\?(X", Z"), we have +l§z (beir 3e) = (&, ) = M, 20) = (&, w))‘
[Px(x") — p(x™)| < ep(x"), Vx"
|Px,2)(x",2") — p(x™, 2| < ep(x", 2"), V(x",7") = > 1D Wi y) = (r,0) — Ui, 1) = (x, 0))
(x,0) |ityi#zi
and thus
< DD i, yi) = (x, )
| Pox (2" x") — p(Z"Ix")| < e1p(Z"1x"), (r,) iryi#2i
V(x", ") with Py(x") £ 0, (123) +O° > N z) = (x, )
(.0) i1y 72
for some € — 0 as € — 0. = 2dy(y,2),

Therefore, we have for any (x, @) that

P(x,z) (x, w)

1
—Nx,o|x,z
N 0lx,2)

1
nB > NG "X 2) - Nix, olx", ")
(x™,2")
Z P(x,z) (xn’ Zn) : P(x”,z”)(x, )
(x",z")

>

x: Py (x")>0

>

x: Py (x")>0

(1+€)

Px(x”) Z Pz|x(Zn|x”) . P(xn,zn)(x, CU)

"

IA

"

Px(xn)E[P(x”,Z”)(x, CU)]

>

x": Py (x™)>0

Pe(x™) D" p@" X" (A + €1) - Pien on) (x, @)

ie.,

Z [Px,y) (X, 0) — Px,z)(x, 0)| < —dH(y,Z)

(x,0)

APPENDIX J
From property (30) of jointly typical sequences, for any
7o € TE(B)(Z”) and €] > €,
Pr((X,Y,z9) € ’Z;(IB)(X", Y", Z")|z9) — 1 as B — oo.
(124)
For any (y,20) € T3 (¥", 2"),

n n
B(H(Y"Z )=€) " for some €3 — 0 as €] — 0.

(125)

p(ylzo) <2~
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Also, along the same lines as Appendix H, it can be
shown that if (x,y,zg) are jointly typical with respect to
the n-letter random variables (X", Y", Z™), then (x,y, zo) are
also jointly typical with respect to the single-letter random
variables (X, Y, Z), i.e.,

| Pix,y.z0) (X5 ¥, 2) = Px(x) p(ylx) p(z]x)]
= &Px(x)p(ylx)p(zlx),
for some €3 — 0 as €; — 0. Then,
P(y,zo) (Oa 1)
= O0)( = p)p(1 +e3) + Px(1)p(1 — p)(1 + €3)
=p(—p)(1+e)

and Py z,)(0,1) = p(1 — p)(1 — €3). Similarly, we also have
Py,29)(1,0) € [p(1 = p)(1 — €3), p(1 — p)(1 + €3)],
and thus
du(y,20) = nBP(y (0, 1) + nB Py 4, (1, 0)
€ [2nBp(1 — p)(1 — &), 2nBp(1 — p)(1 + &)1,
ie.,
du(y,20) € [nB(p* p —€1),nB(p* p+e)l, (126)

where €4 — 0 as ¢; — O.
Combining (124), (125) and (126), we conclude that for any
7o € TE(B)(Z”) and some ¢g — 0 as € — 0,

Pr(p(Ylzg) < 27 BHI"Z0-),

du(Y, ) € 1B(p * p — €0), nB(p * p + €0)l[20)
— las B — oo.

APPENDIX K
PROPERTY OF f(r)

For notational convenience, let g := p * p. Taking the first
derivative of f(r), we have

£ = doH (r—i-do—q) ' (V—l—do—CI)/

2doy 2dy
r+q—do r+q—do\
1 — do)H} .
=) 2(2(1—do)) (2(1—do>)
1[ dy—r+gq 2—d0—r—q}
= —|log .
2 r+dyp—gq r+q—do
With r = dy * g, we have
fdo *q)
d —
— doi, (Pratdo—a
2doy
do*xq+q—do
1—dyH)| ———
+( 0) 2( 20— do) )
do(1 — 1—4d do —
— doH> (do(1 —gq) +( 0)g) +do—q
2dy
(do(1 —q) + (1 —do)q) +q — do
1 —dyH
+( 0) 2( 30 —do)
=doHy (1 —q) + (1 —do)H2 (q)
= H>(q)
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and
f'(do * q)
:l[logdo—do*Q-i-q 2—d0—do*q—61}
2 doxq+do—gq doxq—+q—do
_1 Og[do—(do(l—q)+(1—do)q)+q
2 (do(1 —gq) + (1 —do)q) +do — q

2—do— (do(1 —q)+ (1 —do)q)—q}
(do(1 —gq) + (1 —do)q) +q —do
2dog

1
2 Og[zdoa —9)
= 0.

2(1 —do)(1 — 61)}
2¢(1 — do)

Further taking the second derivative of f(r) yields that
1 [r4+dy—q (do—r+q)
2In2|do—r+q \r+do—¢q

n r+q—do 2—do—r—q\
2—dy—r—gq r+q—do

) =

_ 1 2doy
B 21ﬂ2[(r+d0—Q)(V—do—61)
N 2dy — 1) }
Q—do—r—q)r—do+q)]

Provided the following constraint on r (cf. (102)-(103))
r € (max{g — do, do — q}, min{g +do,2 — g — do})

it can be easily seen that f”(r) < 0. Therefore, f(r) attains
the maximum H>(p * p) if and only if r = do*q = do* p * p.
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