
ELEG/CISC 867 Advanced Machine Learning

Homework 2 University of Delaware
Handout: April 23, 2019 Due: May 2, 2019

Problem 1 (Polynomial Regression; 10 pts). Consider a one-dimensional m-degree
polynomial regression learning task, where X = R, Y = R, and the hypothesis class Hm-poly

is the set of all m-degree polynomials

Hm-poly =
{
pa(x) : a = (a0, a1, . . . , am) ∈ Rm+1

}
,

where
pa(x) = a0 + a1x+ · · ·+ amx

m.

Show that one can learn the class Hm-poly by reducing the problem to an m+1-dimensional
linear regression problem. In particular, for this new linear regression problem, what are the
domain set X̄ , target set Ȳ , hypothesis class H̄, and training data z̄n = {(x̄i, ȳi)}ni=1? [Hint:
Every hypothesis in Hm-poly can be written as a generalized linear regression predictor.]

Problem 2 (Logistic Regression; 15 pts). Let X = {x ∈ Rd : ‖x‖ ≤ r} and
Y = {±1}. Let H = {w ∈ Rd : ‖w‖ ≤ B} and let the loss function be `(w, (x, y)) =
log(1 + e−yw

Tx). This corresponds to a logistic regression problem with the log(istic) loss,
where we assume that the instances are in a ball of radius r and we restrict the hypothesis
to be hw(x) = 1

1+e−wT x
where the norm of w is bounded by B. Follow the steps below to

show that this learning problem is convex-Lipschitz/smooth-bounded.

(a) Demonstrate that H is a convex set and `(w, (x, y)) is a convex function in w for any
data example (x, y). This allows us to conclude that the problem is a convex learning
problem. [5 pts]

(b) Show that `(w, (x, y)) is r-Lipschitz for any (x, y). This combined with the fact that
‖w‖ ≤ B implies that the problem is a convex-Lipschitz-bounded learning problem
with parameter r, B. [5 pts]

(c) Show that `(w, (x, y)) is r2/4-smooth and nonnegative for any (x, y). This combined
with the fact that ‖w‖ ≤ B implies that the problem is a convex-smooth-bounded
learning problem with parameter r2/4, B. [5 pts]

Problem 3 (Surrogate Loss Function; 30 pts). In many learning tasks, the natural
loss function is not convex and hence implementing the ERM rule is hard. To circumvent
this hardness, one popular approach is to replace the nonconvex loss function by a surrogate
loss function which i) is convex and ii) upper bounds the original loss. We now demonstrate
this concept in the context of learning halfspaces with 0-1 loss. In particular, let X = Rd

and Y = {±1}. Let the hypothesis class be the set of homogenous halfspaces, i.e.

H = {x 7→ sgn(wTx) : w ∈ Rd}

and let the loss be the 0-1 loss given by

`0−1(w, (x, y)) = I(sgn(wTx) 6= y).



(a) Check that the 0-1 loss can be equivalently expressed as

`0−1(w, (x, y)) = I(ywTx ≤ 0). [5 pts]

(b) Define the hinge loss function as

`hinge(w, (x, y)) = max{0, 1− ywTx}.

Plot the 0-1 loss and the hinge loss with respect to ywTx. [5 pts]

(c) Demonstrate that the hinge loss i) is convex, and ii) upper bounds the 0-1 loss, i.e.
`0−1(w, (x, y)) ≤ `hinge(w, (x, y)) for any w and (x, y); therefore, the hinge loss is a
convex surrogate for the 0-1 loss. [10 pts]

(d) Show that if we learn the problem with respect to the surrogate loss function `hinge,
the error of a hypothesis ŵ can be decomposed as

L0−1(ŵ, P ) ≤ min
w∈H

L0−1(w, P )︸ ︷︷ ︸
Lapp

+ min
w∈H

Lhinge(w, P )−min
w∈H

L0−1(w, P )︸ ︷︷ ︸
Lopt

+ Lhinge(ŵ, P )−min
w∈H

Lhinge(w, P )︸ ︷︷ ︸
Lest

.

Here, Lapp is the approximation error that measures how well the hypothesis class H
performs under the 0-1 loss, Lest is the estimation error that measures the difference
between the smallest error achievable within H and the error associated with ŵ
under the hinge loss, and Lopt is the optimization error that measures the difference
between the approximation error with respect to the surrogate hinge loss and the
approximation error with respect to the original 0-1 loss. [10 pts]

Problem 4 (Boosting; 15 pts). Recall that the AdaBoost algorithm at each iteration
updates the weighting distribution on the training data in such a way to “force” the weak
learner to focus on the problematic examples in the next iteration. In this question we will
find some rigorous justification for this argument. In particular, show that the error of ht
with respect to the distribution D(t+1) is exactly 1/2, i.e.,

n∑
i=1

D(t+1)(i) · I(ht(xi) 6= yi) =
1

2
, ∀t ∈ [1 : T ].

Problem 5 (Stochastic Gradient Descent; 40 pts). Consider a logistic regression
problem, where X = R2 and Y = {±1}, the hypothesis class H = {w : w ∈ R2}, and
the loss function is given by `(w, (x, y)) = log(1 + e−yw

Tx). Also assume that the data
generating distribution p(x, y) is given by

p(x, y) = p(y)p(x|y)

in which p(y) = 0.5 for any y ∈ {±1} and p(x|y) is a Gaussian distribution whose mean is
yµ and covariance matrix is the identity matrix I. Write a program (in Python, Matlab,
or R) to do the following few steps; submit the results along with the source code.

2



(a) Assume µ = (4, 4). Generate 1,000 i.i.d. pairs of (X, Y ) according to the above
described distribution p(x, y); this constitutes the training data Zn = {(Xi, Yi)}ni=1,
where n = 1000. [10 pts]

(b) Use SGD to learn the logistic regression model. Plot the training error vs. the number
of iterations. [You might want to try various step sizes

η ∈ {. . . , 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, . . . , }

to obtain a good plot.] [10 pts]

(c) Now generate a test dataset of 2,000 points. Use the trained model to compute the
test error, i.e. the empirical risk on the test dataset. [10 pts]

(d) Repeat parts (a)–(c) with µ = (0.5, 0.5). How have the training error and test error
been changed? Why? [10 pts]

3


