
ELEG/CISC 867 Advanced Machine Learning

Homework 1 University of Delaware
Handout: March 12, 2019 Due: March 21, 2019

Problem 1 (Bayes Predictor; 30 pts). Suppose (X, Y ) ∈ X×Y are jointly distributed
according to distribution P . For any predictor h : X → Ŷ that maps input X to predicted
output Ŷ , define the risk of h under distribution P and loss function ` as

L(h, P ) , EP [`(Y, h(X))].

The predictor
f = argmin

h
L(h, P )

that minimizes the risk is called the Bayes predictor, and its resultant risk

min
h
L(h, P )

is called the Bayes risk. Show that under different loss functions, the Bayes predictor takes
different forms as follows and derive their resultant Bayes risks.

(a) 0-1 loss: Show that under the 0-1 loss, the Bayes predictor f is given by the well-
known maximum a posteriori (MAP) rule, i.e.,

f(x) = argmax
y∈Y

pY |X(y|x), [5 pts]

with the Bayes risk

L(f, P ) = 1−
∑
x∈X

max
y∈Y

pX,Y (x, y). [5 pts]

(b) Square loss: Show that under the square loss, the Bayes predictor f is given by the
conditional expectation of Y given X = x, i.e.,

f(x) = EP [Y |X = x], [5 pts]

with the Bayes risk
L(f, P ) = EP [Var(Y |X)]. [5 pts]

(c) Log loss: Show that under the log loss, the Bayes predictor f is given by the condi-
tional distribution of Y given X = x, i.e.,

[f(x)](y) = pY |X(y|x), [5 pts]

with the Bayes risk being the conditional entropy of Y given X:

L(f, P ) = E(X,Y )∼P [− log pY |X(Y |X)] = HP (Y |X). [5 pts]

Hint: You might find the following fact useful: For any two distributions P and Q
on X , the KL (Kullback-Leibler) divergence D(P‖Q) between P and Q, defined as

D(P‖Q) ,
∑
x∈X

p(x) log
p(x)

q(x)
,

is always non negative, i.e.,
D(P‖Q) ≥ 0

where the inequality holds with equality iff P = Q.



Problem 2 (Bias-Variance Tradeoff; 30 pts). The bias-variance tradeoff is a fun-
damental tradeoff in statistics and machine learning. To understand this tradeoff, in this
problem we show that under the square loss, the error in both the parametric estimation
and regression learning problems can decomposed as the sum of a (squared) bias and a
variance term.

(a) First consider the parametric estimation problem in statistical decision theory. As-
sume an outcome space X and a class of probability distributions {Pθ : θ ∈ Θ} on
the space X . Assume we observe an outcome X generated by Pθ for some θ that
is unknown to us. Based on this observation X, we want to estimate g(θ) for an
arbitrary function g on Θ using some decision rule δ. Show that for any decision rule
δ, the estimation error Eθ[(g(θ) − δ(X))2] under the square loss can be decomposed
as:

Eθ[(g(θ)− δ(X))2] = (Biasθ(δ))
2 + Varθ(δ), [10 pts]

where
Biasθ(δ) , g(θ)− Eθ[δ(X)]

is the bias of estimator δ and

Varθ(δ) , Eθ[(Eθ[δ(X)]− δ(X))2]

is the variance of the estimator δ.

If an estimator δ satisfies Eθ[δ(X)] = g(θ), then we say δ is an unbiased estimator.
Based on the above bias-variance decomposition, explain why the performance of an
unbiased estimator is determined by its variance. [5 pts]

(b) Now consider the regression problem in machine learning. Assume Y = f(X) + W ,
where X is the input and W ∼ N (0, N) is a Gaussian noise that is independent of
X. We want to find, based on an i.i.d. generated sequence of n training examples
Zn = {(Xi, Yi)}ni=1, a predictor hZn ∈ H that achieves small squared prediction error

EZn,X,Y [(Y − hZn(X))2].

Show that the following decomposition of the error holds:

EZn,X,Y [(Y − hZn(X))2] = Bias2 + Var + Bayes Risk, [10 pts]

where
Bias2 , EX [(f(X)− EZn [hZn(X)])2]

is the bias of the learner and

Var , EZn,X [(EZn [hZn(X)]− hZn(X))2]

is the variance of the learner, and

Bayes Risk = N

is the irreducible Bayes risk.

Can you make a plot to demonstrate how the bias, variance, and overall error vary
with the complexity of the model H? [5 pts]
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Problem 3 (No-Free-Lunch Theorem; 20 pts). Recall the following form of the
NFL theorem we have shown in Lecture 4:

“Let A be any learning algorithm for the task of binary classification with respect to
0-1 loss over a domain X . Let n be any number small than |X |/2, representing the training
set size. Then there exists a distribution P over X × {0, 1} such that

E[L(A(Zn), P )] ≥ 1/4.”

In this problem, we show that the above statement implies the version of the NFL theorem
stated in Theorem 1.1 of Lecture 4.

(a) First recall the Markov inequality, which says that for any nonnegative random vari-
able X and a ≥ 0,

P(X ≥ a) ≤ E[X]

a
.

Use the Markov inequality to prove the following reverse Markov inequality: For any
random variable Y that takes value on [0, 1] and a ∈ (0, 1),

P(Y ≥ a) ≥ E[Y ]− a
1− a

. [10 pts]

(b) Use the above reverse Markov inequality to show that if E[L(A(Zn), P )] ≥ 1/4, then
P n(L(A(Zn), P ) ≥ 1/8) ≥ 1/7. [10 pts]

Problem 4 (VC Dimension; 20 pts). In Lecture 5, we have shown that for a finite
hypothesis class H, VC-d(H) ≤ log |H|. Now consider the domain set X = [0, 1].

(a) Find an example of H on X so that H is infinite while VC-d(H) = 1. [10 pts]

(b) Find an example of H on X so that VC-d(H) = log |H| = 2. [10 pts]
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