
ELEG/CISC 867: Advanced Machine Learning Spring 2019

Lecture 8: Boosting
Lecturer: Xiugang Wu 03/26/2019, 03/28/2019

Boosting is a meta-algorithm that uses a generalization of linear predictors to address two major issues in
machine learning: bias-complexity tradeoff and computational complexity.

• In boosting paradigm, the learning starts with a basic class (that may have a large approximation
error), and as it progresses the class grows richer. This allows the learner to have smooth control over
the bias-complexity tradeoff.

• Boosting provides a tool for aggregating weak hypotheses to approximate gradually good predictors
for larger, and harder to learn, classes. This addresses the computational complexity of learning.

This lecture will introduce a popular boosting algorithm, AdaBoost (Adaptive Boosting). AdaBoost outputs
a hypothesis that is a linear combination of simple hypotheses, and enables us to control the tradeoff between
approximation and estimation errors by varying a single parameter. Throughout this lecture, we assume
that the realizability assumption holds.

1 Weak Learnability

First recall the definition of PAC learnability in the realizable case. A hypothesis class, H, is PAC learnable
in the realizable case if there exist nH : (0, 1)2 → N and a learning algorithm A with the following property:
For every ε, δ ∈ (0, 1), for every distribution P over X , and for every labeling function f : X → {±1},
if the realizable assumption holds with respect to H, P, f , then when running the learning algorithm A
on n ≥ nH(ε, δ) i.i.d. examples Zn generated by P and labeled by f , the algorithm returns a hypothesis
A(Zn) ∈ H such that

Pn(L(A(Zn), P, f) ≤ ε) ≥ 1− δ. (1)

By the fundamental theorem of learning, H is learnable iff its VC dimension is finite, and any learnable class
can be learned using any ERM algorithm.

The above definition of PAC learning captures the statistical aspect of learning, but ignores the computational
complexity. Indeed, it can be shown that implementing an ERM learner can be computationally hard (even
in the realizable case); see Chapter 8 in the textbook. This motivates us to trade computational hardness
with the requirement for accuracy. Given a distribution P and a target labeling function f , maybe there
exists an efficiently computable learning algorithm whose error is just slightly better than a random guess?
This idea is formalized in the following definition.

Definition 1.1 A hypothesis class, H, is γ-weak-learnable in the realizable case if there exist nH : (0, 1)→ N
and a learning algorithm A such that for any δ ∈ (0, 1), any distribution P over X , and any labeling function
f : X → {±1}, if the realizable assumption holds with respect to H, P, f , then

Pn(L(A(Zn), P, f) ≤ 1/2− γ) ≥ 1− δ, (2)

whenever n ≥ nH(δ), and in this case the algorithm A is said to be a γ-weak-learner for H.

1

2 Lecture 8: Boosting

The difference between the above weak learning and the aforementioned strong learning lies in the different
accuracy requirements in (1) and (2): strong learnability requires arbitrarily small error while weak learn-
ability only requires error slightly smaller than 1/2, i.e. slightly better than a random guess. Let’s discuss
the impact of adopting weak learning as compared to strong learning:

• Statistical Perspective: The quantitative version of the fundamental theorem of learning (Theorem

6.8 in the textbook) tells us that the sample complexity of PAC learning satisfies nH(ε, δ) ≥ C1
d+log(1/δ)

ε
for some constant C1; applying this with ε = 1/2 − γ, we see that if d = ∞ then H is not γ-weak-
learnable. Therefore, weak learnability is also characterized by the VC dimension, and is (qualitatively)
as hard as strong learnability if we ignore computational complexity and only consider sample com-
plexity.

• Computational Perspective: When we do consider computational complexity, however, the poten-
tial advantage of weak learning is that there may exist an algorithm that satisfies the requirements
of weak learning and can be implemented efficiently. For example, to construct a weak learner for H,
we may consider applying ERM with respect to some “simple” base hypothesis class B, where B is
such that i) ERMB is efficiently implementable and ii) for any distribution consistent with H, ERMB
hypothesis has error of at most 1/2− γ.

Assume the existence of an efficient weak learner. A natural question is then: Can we boost it into an
efficient strong learner? We will introduce the AdaBoost algorithm and show that this is indeed possible.
But before that, let us use an example to demonstrate that one can indeed build an efficient weak learner
using a base hypothesis class B.

1.1 Weak Learning of 3-Piece Classifiers Using Decision Stumps

Consider a binary classification problem, where X = R and Y = {−1,+1}. Let H be the class of 3-piece
classifiers:

H = {hθ1,θ2,b : θ1, θ2 ∈ R, θ1 < θ2, b ∈ {−1,+1}}

where hθ1,θ2,b is defined as

hθ1,θ2,b(x) =

{
+b x < θ1 or x > θ2

−b x ∈ [θ1, θ2]
.

Let B be the class of decision stumps:

B = {x 7→ sgn(x− θ) · b : θ ∈ R, b ∈ {−1,+1}}.

We can show that ERMB is a γ-weak-learner for H with γ = 1/12. To see this, first note that for every
distribution P consistent with H, there exists a decision stump h ∈ B with L(h, P) ≤ 1/3. Since the
VC dimension of decision stumps is 2, from Theorem 6.8 in the textbook we have that if the sample size

n = Ω(2+log(1/δ)
ε2), then with probability at least 1 − δ, ERMB returns a hypothesis with error at most

1/3 + ε. Setting ε = 1/12, we have that if n = Ω(144 log(1/δ)), then with probability at least 1− δ, the error
of ERMB hypothesis is at most 1/3 + 1/12 = 1/2− 1/12. Furthermore, it can easily shown that ERMB can
be implemented efficiently in time O(p(n)).

2 AdaBoost

AdaBoost is a meta-algorithm that has access to a weak learner and finds a hypothesis with low empirical
risk.

Lecture 8: Boosting 3

• The input of the AdaBoost algorithm is a set of training examples zn = {(xi, yi)}ni=1, where yi =
f(xi),∀i ∈ [1 : n] for some labelling function f .

• The boosting process proceeds in a sequence of consecutive rounds. At round t, the booster has a
distribution D(t) on [1 : n] from the (n − 1)-dimensional probability simplex, i.e. D(t) is such that i)
D(t)(i) ≥ 0,∀i ∈ [1 : n], and ii)

∑
i∈[1:n] D

(t)(i) = 1. The booster passes the distribution D(t) and
training sample zn to the weak learner.

• The weak learner returns a weak hypothesis ht, whose error εt is less than 1/2−γ with probability 1−δ;
here the error εt is calculated according to the distribution P

(t)
n on X that is induced by (D(t), zn), i.e.,

P (t)
n (x) =

n∑
i=1

D(t)(i) · I(xi = x),∀x ∈ X ,

and

εt , L(ht, P
(t)
n , f) =

n∑
i=1

D(t)(i) · I(ht(xi) 6= yi).

• Then AdaBoost assigns a weight wt for ht, i.e. wt = 1
2 log(1/εt − 1); the higher error of ht the smaller

weight ht gets, and vice versa.

• At the end of the round t, AdaBoost updates the distribution D(t) to D(t+1) so that examples on
which ht errs will get a higher probability mass while examples on which ht is correct will get a lower
probability mass; this allows the weak learner to focus on the problematic examples in the next round.

• Finally, AdaBoost outputs a strong classifier that is based on a weighted sum of all the weak hypotheses.

The pseudocode of AdaBoost is in the following.

Algorithm 1 AdaBoost

1: input: Training sample zn = {(xi, yi)}ni=1, weak learner WL, number of rounds T
2: initialize: D(1) ← (1

n ,
1
n , . . . ,

1
n)

3: for t = 1, . . . , T do
4: ht ←WL(D(t), zn)
5: εt ←

∑n
i=1 D(t)(i) · I(ht(xi) 6= yi)

6: wt ← 1
2 log(1/εt − 1)

7: D(t+1)(i)← D(t)(i)e−wtyiht(xi)∑n
j=1 D(t)(j)e−wtyjht(xj)

,∀i ∈ [1 : n]

8: end for
9: output hs(x) = sgn(

∑T
t=1 wtht(x))

The following theorem shows that the training error of the output strong hypothesis hs decreases exponen-
tially fast with the number T of boosting rounds.

Theorem 2.1 Let zn be the training set, and assume that at each iteration t of AdaBoost, the weak learner
returns a hypothesis ht for which εt ≤ 1/2 − γ. Then the training error of the output hypothesis hs of
AdaBoost after T iterations is at most

L(hs, z
n) =

1

n

n∑
i=1

I(hs(xi) 6= yi) ≤ e−2γ
2T .

4 Lecture 8: Boosting

Proof: For each t ∈ [1 : T], let ft =
∑
p≤t wphp so that the output of AdaBoost is sgn ◦ fT , and let f0 = 0.

For each t ∈ [0 : T], denote

Zt =
1

n

n∑
i=1

e−yift(xi),

so that the training error of sgn ◦ ft is upper bounded by Zt, i.e.,

L(sgn ◦ ft, zn) =
1

n

n∑
i=1

I(sgn ◦ ft(xi) 6= yi) ≤
1

n

n∑
i=1

e−yift(xi) = Zt.

To prove the theorem it suffices to show ZT ≤ e−2γ
2T .

Now write

ZT =
ZT
ZT−1

· ZT−1
ZT−2

· · · Z2

Z1
· Z1

Z0
; (3)

we will show

Zt
Zt−1

≤ e−2γ
2

,∀t ∈ [1 : T]. (4)

For this, first note that by induction we have

D(t)(i) =
e−yift−1(xi)∑n
j=1 e

−yjft−1(xj)
.

Hence for any t ∈ [1 : T],

Zt
Zt−1

=

∑n
i=1 e

−yift(xi)∑n
i=1 e

−yift−1(xi)

=

∑n
i=1 e

−yift−1(xi) · e−yiwtht(xi)∑n
i=1 e

−yift−1(xi)

=
n∑
i=1

e−yift−1(xi)∑n
i=1 e

−yift−1(xi)
· e−yiwtht(xi)

=

n∑
i=1

D(t)(i) · e−yiwtht(xi)

=
∑

i:yiht(xi)=1

D(t)(i) · e−wt +
∑

i:yiht(xi)=−1

D(t)(i) · ewt

= (1− εt)
1√

1/εt − 1
+ εt

√
1/εt − 1

= 2
√
εt(1− εt)

which, for εt ≤ 1/2− γ, is upper bounded by

2
√
εt(1− εt) ≤ 2

√
(1/2− γ)(1/2 + γ) =

√
1− 4γ2 ≤ e−2γ

2

.

This proves the theorem. �

Lecture 8: Boosting 5

2.1 Discussion

• Computational Complexity: Each iteration of AdaBoost involves a single call to the weak learner and
O(n) operations; therefore, AdaBoost is efficient if the weak learner can be implemented efficiently (c.f.
the case of ERM with respect to decision stumps).

• Failure Probability of Boosting: According to the definition of a weak learner, it can fail with probability
δ. Using the union bound, the probability that the weak learner will not fail at any of the iterations is
at least 1− δT . One can make δT very small without affecting the sample complexity too much since
the dependence of the sample complexity on δ can always be logarithmic in 1/δ.

• Generalization Error: The above theorem shows that the training error of AdaBoost output hypothesis
goes to zero as T grows. But what about the true error? Note that the output of AdaBoost is in fact
a composition of a halfspace over the prediction of T weak hypotheses; we can show that if the weak
hypotheses come from a base class of low VC dimension, then the generalization error is small, i.e. the
true error is close to the training error, for AdaBoost output hypothesis.

3 Linear Combinations of Base Hypotheses

As mentioned before, a popular approach for constructing a weak learner is to apply ERM with respect to a
base hypothesis class, say B. In this case, the output of AdaBoost is from the hypothesis class of composing
a halfspace over BT :

L(B, T) =

{
x 7→ sgn(

T∑
t=1

wtht(x)) : w ∈ RT ;ht ∈ B,∀t ∈ [1 : T]

}
=
{
x 7→ sgn(wTψ(x)) : w ∈ RT ;ψ(x) = (h1(x), h2(x), . . . , hT (x)), where ht ∈ B,∀t ∈ [1 : T]

}
.

3.1 Bias-Complexity Tradeoff: Estimation Error vs. Approximation Error

• It can be shown that up to logarithmic factors, the VC dimension of L(B, T) is upper bounded by T
times the VC dimension of B, i.e., VC-d(L(B, T)) = Õ(VC-d(B) · T). Therefore, the estimation error
of AdaBoost grows linearly with T , and will be small if B has a low VC dimension.

• On the other hand, the training error of AdaBoost decreases with T . In fact, it turns that T can
be used to decrease the approximation error of L(B, T), or in other words, to increase the expressive
power of L(B, T). See the example in Section 10.3 of the textbook, where it is shown that the class of
halfspaces over T decision stumps yields all the T -piece classifier.

• Therefore, T is a parameter that an control the bias-complexity tradeoff. Enlarging T yields a more
expressive hypothesis class but on the other hand might increase the estimation error.

