
ELEG/CISC 867: Advanced Machine Learning Spring 2019

Lecture 7: Linear Predictors
Lecturer: Xiugang Wu 03/19/2019, 03/21/2019

From this lecture, we will start our study on machine learning algorithms. The first family of hypothesis
classes we will discuss is linear predictors, which includes the hypothesis classes of halfspaces, linear regression
predictors, and logistic regression predictors. To see that these three hypothesis classes belong to the same
family of linear predictors, define the class of affine functions as

Ld = {hw,b : w ∈ Rd, b ∈ R}

where

hw,b(x) = wTx + b.

Then the aforementioned three hypothesis classes of linear predictors can be viewed as compositions of a
function φ : R→ Y on Ld. For example, in binary classification where Y = {−1,+1}, we choose φ to be the
sign function

φ(a) = sgn(a) =

{
+1 a ≥ 0

−1 a < 0
,

and for regression problems where Y = R, φ is simply the identity function φ(a) = a.

1 Halfspaces

Consider a binary classification problem, where X = Rd and Y = {−1,+1}. The class of halfspaces is defined
as:

HHS = sgn ◦ Ld = {sgn ◦ hw,b : hw,b ∈ Ld}
= {x 7→ sgn ◦ hw,b(x) : hw,b ∈ Ld}.

In other words, each halfspace hypothesis in HHS is parameterized by w ∈ Rd and b ∈ R and returns the
label sgn(wTx + b) upon receiving feature vector x.

It turns out that for the class of homogenous halfspaces sgn(wTx) in Rd, its VC dimension is d; for the
general class of nonhomogenous halfspaces sgn(wTx + b) in Rd, its VC dimension is d + 1. Therefore, we

can learn halfspaces using ERM as long as the sample size is Ω(d+log(1/δ)
ε2 ). Below we will discuss how to

implement an ERM procedure for halfspaces. In particular, we will focus on the “realizable” case, which is
also known as the “separable” case in the context of halfspaces since we can separate the positive examples
from the negative examples with a hyperplane. Implementing ERM for nonseparable case is known to be
computationally hard.

1



2 Lecture 7: Linear Predictors

w

wT x = 0

wT x + b = 0

+

�

�
bw

kwk
2

Figure 1: Halfspace.

1.1 Linear Programming for Halfspaces

Recall a Linear Program (LP) of the following form:

max
w∈Rd

wTu

s.t. Aw ≥ v

where w ∈ Rd is the optimization variable, wTu is the linear objective function with u ∈ Rd, Aw ≥ v is a
set of m linear inequalities with A ∈ Rm×d and v ∈ Rm. Such linear programs can be solved efficiently (in
time polynomial in m and d) and there are publicly available implementations of LP solvers.

We now show that ERM for halfspaces in the realizable case can be expressed as a linear program. First
consider the homogenous case. Let zn = {(xi, yi)}ni=1 be the training set of size n. An ERM predictor should
have zero error on the training set, i.e. we are looking for some w ∈ Rd such that

sgn(wTxi) = yi,∀i ∈ [1 : n],

i.e.,

(wTxi)yi > 0,∀i ∈ [1 : n].

Let w1 be a vector satisfying the above condition. Define w2 as

w2 =
w1

mini∈[1:n]((w
T
1 xi)yi)

.

Then obviously, w2 satisfies

(wT
2 xi)yi =

(wT
1 xi)yi

mini∈[1:n]((w
T
1 xi)yi)

≥ 1,∀i ∈ [1 : n].

Therefore, we have shown that there exists an ERM predictor with w satisfying

(wTxi)yi ≥ 1,∀i ∈ [1 : n].



Lecture 7: Linear Predictors 3

Such w can be found by solving the following LP using any LP solver:

max
w∈Rd

wT (0, 0, . . . , 0)

s.t.


y1x

T
1

y2x
T
2

...
ynx

T
n

w ≥


1
1
...
1

 .

Now consider the nonhomogenous case where a predictor is of the form sgn(wTx + b). Let w̄ = [w; b] and
x̄ = [x; 1]. Then the predictor can be rewritten as sgn(w̄T x̄). An w̄ for an ERM predictor in the realizable
case can be found by solving the following LP:

max
w̄∈Rd+1

w̄T (0, 0, . . . , 0)

s.t.


y1x̄

T
1

y2x̄
T
2

...
ynx̄

T
n

 w̄ ≥


1
1
...
1

 .

1.2 Perceptron for Halfspaces

A different implementation of ERM is the following Perceptron learning algorithm (PLA). It is an iterative

Algorithm 1 Batch Perceptron

1: input: Training sample zn = {(xi, yi)}ni=1

2: initialize: w(1) ← (0, 0, . . . , 0), t← 1
3: while (∃i s.t. 〈w(t),xi〉yi ≤ 0) do
4: w(t+1) ← w(t) + yixi
5: t← t+ 1
6: end while
7: output w(t)

algorithm that constructs a sequence of vectors w(t), t = 1, 2, 3, . . . At iteration t, the Perceptron finds an
example i that is mislabeled by w(t), i.e. 〈w(t),xi〉yi ≤ 0, and updates w(t) by letting w(t+1) = w(t) + yixi.
The intuition behind this update is that it will guide the solution to be more correct on the example i,
because

〈w(t+1),xi〉yi = 〈w(t),xi〉yi + 〈yixi,xi〉yi = 〈w(t),xi〉yi + ‖xi‖2.
Indeed, the following theorem guarantees that the algorithm stops with all sample points correctly labeled
in the realizable case.

Theorem 1.1 Assume that the training set zn = {(xi, yi)}ni=1 is separable. Let B be defined as

B = min{‖w‖ : 〈w,xi〉yi ≥ 1,∀i ∈ [1 : n]}
and let R be defined as

R = max
i∈[1:n]

‖xi‖.

Then the Perceptron algorithm stops after at most (RB)2 iterations, and when it stops it holds that

〈w(t),xi〉yi > 0,∀i ∈ [1 : n].



4 Lecture 7: Linear Predictors

Proof: Let w∗ = argmin{‖w‖ : 〈w,xi〉yi ≥ 1,∀i ∈ [1 : n]}. The idea of the proof is to show that after

performing T iterations, the cosine of the angle between w∗ and w(T+1) is at least
√
T

RB , i.e.,

cos(∠(w∗,w(T+1))) =
〈w∗,w(T+1)〉
‖w∗‖‖w(T+1)‖ ≥

√
T

RB
,

and therefore T ≤ (RB)2.

To show this, we first show that 〈w∗,w(T+1)〉 ≥ T . Indeed, initially we have 〈w∗,w(1)〉 = 0; at iteration t,
after updating w(t+1) based on example i we have

〈w∗,w(t+1)〉 − 〈w∗,w(t)〉 = 〈w∗,w(t) + yixi〉 − 〈w∗,w(t)〉
= 〈w∗, yixi〉
≥ 1.

Therefore, after T iterations, we have 〈w∗,w(T+1)〉 ≥ T .

Now we upper bound ‖w(T+1)‖. At each iteration t, we have

‖w(t+1)‖2 = ‖w(t) + yixi‖2

= ‖w(t)‖2 + ‖yixi‖2 + 2yi〈w(t),xi〉
≤ ‖w(t)‖2 + ‖yixi‖2

≤ ‖w(t)‖2 +R2.

Since ‖w(1)‖2 = 0, after T iterations, we have ‖w(T+1)‖2 ≤ TR2, i.e. ‖w(T+1)‖ ≤
√
TR.

Combining the above, we have

〈w∗,w(T+1)〉
‖w∗‖‖w(T+1)‖ ≥

T

B
√
TR

=

√
T

RB
,

which concludes the proof of the theorem. �

2 Linear Regression

Consider a regression problem, where X = Rd and Y = R. The class of linear regression predictor is defined
as:

HLR = Ld = {x 7→ wTx + b : w ∈ Rd, b ∈ R}.

To implement ERM for HLR with respect to the square loss, one can use the least squares algorithm.

2.1 Least Squares

The ERM problem for homogenous HLR is to find

argmin
w

L(hw, Pn) = argmin
w

1

n

n∑
i=1

(wTxi − yi)2.



Lecture 7: Linear Predictors 5

To solve the problem, we calculate the gradient ∇L(hw, Pn) of the objective function and compare it to zero,
i.e.,

∇L(hw, Pn) =
2

n

n∑
i=1

(wTxi − yi)xi = 0.

Let X be defined as

X =


xT1
xT2
...
xTn

 .
Then one can rewrite the above problem as

XTXw = XT yn,

leading to w = (XTX)−1XT yn in the case when XTX is invertible.

3 Logistic Regression

In logistic regression, we learn a family of function from X = Rd to Y = [0, 1],

Hsig = φsig ◦ Ld = {x 7→ φsig(wTx) : w ∈ Rd},

where φsig is the sigmoid function, or logistic function in this context, defined as

φsig(a) =
1

1 + e−a
.

Logistic regression is used for classification task — the output of a logistic regression predictor hw(x) can be
interpreted as the probability of the label of x being 1. If wTx is very positive (or negative), then φsig(wTx)
is close to 1 (or 0); if wTx is close to 0, then φsig(wTx) ≈ 0.5. Therefore, a logistic regression predictor
outputs a soft classification result, in contrast to the halfspace hypothesis which always output either +1 or
−1.

The commonly used loss function for logistic regression is log loss, given by

`log(y, hw(x)) =

{
log(1 + e−w

Tx) y = +1

log(1 + ew
Tx) y = −1

,

which can be written more compactly as

`log(y, hw(x)) = log(1 + e−yw
Tx)

and also known as the logistic loss function. The ERM rule for logistic regression under the log loss is
therefore to find

argmin
w

L(hw, Pn) = argmin
w

1

n

n∑
i=1

log(1 + e−yiw
Txi).

As we will see later in the course, this ERM problem can be solved efficiently using standard methods due
to a nice property, namely the convexity, of the log loss function.


